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ABSTRACT 
 

Kaluza-Klein cosmological model has been obtained in the general theory of relativity. The source 
for energy-momentum tensor is assumed a perfect fluid. The field equations have been solved by 

using a special form of the average scale factor
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proposed by Cai et al. [10]. 
The physical properties and the bouncing behavior of the model are also discussed. 
 

 
Keywords: Kaluza-Klein space time; bouncing universe. 
 

1. INTRODUCTION  
 

According to recent cosmological observations in 
terms of Supernovae Ia [1-2], large scale 
structure [3-4] with the baryon acoustic 
oscillations [5], cosmic microwave background 

radiations [6-8], and weak lensing [9], the current 
expansion of the universe is accelerating and 
homogeneous. At the present time, the cosmic 
acceleration is explained in two ways: One is the 
introduction of the so called dark energy with 
negative pressure in general relativity and the 
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other is the modification of gravity like f(R) 
gravity, f(t) gravity, f(R,T) gravity etc. on the large 
distances. 
  
The solution of the singularity problem of the 
standard Big Bang cosmology is known as 
bouncing universe. A bouncing universe with an 
initial contraction to a non-vanishing minimal 
radius and subsequently an expanding phase 
provides a possible solution to the singularity 
problem of the standard Big Bang cosmology. 
Moreover, for the universe entering into the hot 
Big Bang era after the bouncing, the equation of 
state (EoS) of the matter content in the 
universe must transit from  to . In 

the contracting phase, the scale factor  

decreases. ( ), and in the expanding 

phase, scale factor increases ( ).  Finally 

at the bouncing point,  and near this point 

, for a period of time. It is also discussed 

with other view that in the bouncing cosmology, 
the Hubble parameter passes across zero

 from to . Cai et al. have 

investigated bouncing universe with quintom 
matter. He showed that a bouncing universe has 
an initial narrow state by a minimal radius and 
then develops to an expanding phase [10]. This 
means for the universe arriving to the Big-bang 
era after the bouncing, the EoS parameter 
should be crossing from  to . 
Sadatian [11] has studied rip singularity scenario 
and bouncing universe in a Chaplygin gas dark 
energy model. Recently, Bamba et al. [12] have 
investigated bounce cosmology from 

gravity and bi-gravity. Astashenok [13] has 

studied effective energy models and dark energy 
models with bounce in frames of  gravity. 

Solomans et al. [14] have investigated bouncing 
behavior in Kantowski-Sach and Bianchi 
cosmology. Silva et al. [15] have studied 
bouncing solutions in Rastall’s theory with a 
barotropic fluid. Brevik and Timoshkin [16] have 
obtained inhomogeneous dark fluid and dark 
matter leading to a bounce cosmology. Singh          
et al. [17] have studied k-essence cosmologies in 
Kantowski-Sachs and Bianchi space times. 
 

The Kaluza-Klein theory [18-19] was introduced 
to unify Maxwell’s Theory of electromagnetism 
and Einstein’s gravity theory by adding                             
the fifth dimension. Due to its potential function to 
unify the fundamental interaction, Kaluza-Klein 
theory has been regarded as a candidate of 

fundamental theory. Ponce [20], Chi [21],                  
Fukui [22], Liu and Wesson [23], Coley [24]                 
have studied Kaluza-Klein cosmological                 
models with different contexts. Adhav et al. [25] 
have obtained Kaluza-Klein inflationary universe 
in general theory of relativity. Reddy et al. [26] 
have discussed a five dimensional Kaluza-                  
Klein cosmological model in the presence of 
perfect fluid in  gravity. Ranjeet et al. [27] 

have studied variable modified Chaplygin                    
gas in anisotropic universe with Kaluza- Klein 
metric. Katore et al. [28] have obtained                   
Kaluza-Klein cosmological model for                       
perfect fluid and dark energy. Ram and Priyanka 
[29] have presented some Kaluza-Klein 

cosmological models in  gravity theory. 

Sahoo et al. [30] have investigated Kaluza-Klein 
cosmological model in  gravity with . 

Recenty, Reddy et al. [31] have studied                  
Kaluza-Klein minimally interacting holographic 
dark energy model in a scalar tensor                      
theory of gravitation. Ghate and Mhaske [32] 
have investigated Kaluza-Klein barotropic 
cosmological model with varying gravitational 
constant  in creation field theory of                  
gravitation. 
 
In this paper, Bouncing behavior of Kaluza-Klein 
cosmological model has been studied in the 
general theory of relativity. This work is 
organized as follows: In section 2, the metric and 
field equations have been presented. The field 
equations have been solved in section 3 by using 
the physical condition that the expansion scalar

 is proportional to shear scalar  and the 
special form of average scale factor

proposed by Cai et al. 

[10]. The physical and geometrical behavior of 
the model have been discussed in section 4. 
while in section 5, concluding remarks are added 
for perusal. 
 

2. METRIC AND FIELD EQUATIONS 
 
Five dimensional Kaluza-Klein metric is 
considered in the form, 
 

, (1) 

 

where  and  are functions of cosmic 

time  and the fifth coordinate  is taken to be 

space-like. 
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The energy-momentum tensor when the source 
for energy is assumed a perfect fluid given by: 
 

           (2) 

 

where  is the flow vector satisfying

Here  is the total energy density of perfect fluid 

and  is the corresponding pressure. For the 

perfect fluid, and  are related by and 

equation of state 
 

, .                        (3) 

 

In co-moving system of coordinates, using 
equation (2), one can find 
 

 
and .          (4) 

 

The Einstein’s field equations are given by 
 

.            (5) 

 

Using equation (2), for the metric (1), the field 
equations (5) are given by 
 

,                                       (6)  

 

                       
(7) 

 

 ,                                    (8) 

 

where an overhead dot represents differentiation 
with respect to . 
 

The average scalar factor  and volume scalar 
 are given by 

 

.            (9) 
 
The generalized mean Hubble parameter  is 
defined by  
 

,               (10) 

 

where the directional Hubble parameters 

, 
 
and  are given by 

 

 .      (11) 

The expansion scalar  and shear scalar  are 
given by 
 

,                      (12)   

 

.                            (13) 

 
The deceleration parameter (DP)  is defined by 

 

.                                   (14) 

 

3. SOLUTION OF FIELD EQUATIONS 
 

The field equations (6) to (8) are a system of 
three highly non-linear differential equations in 
four unknowns ,,BA and  . The system is 

thus initially undetermined. We need one extra 
condition for solving the field equations 
completely. 
 

We assume that the expansion )(  is 

proportional to shear )(  . This condition leads 

to  
 

 
                  
which yields 
  

, 

                  
where 0 and m are arbitrary constants.  

 

Above equation, after integration, reduces to 
 

,   
 

where   
is an integration constant.  

 

Here, for simplicity and without loss of generality, 
we assume that 1 . 
 

Hence we have 
 

 mAB  , )1( m .                                  (15) 

 

Collins et al. [33] have pointed out that for 
spatially homogeneous metric, the normal 
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congruence to the homogeneous expansion 

satisfies that the condition 



 is constant. 

 
In cosmology, the constant deceleration 
parameter is commonly used by several 
researchers [34-38], as it duly gives a power law 
for metric function or corresponding quantity.  
 
The motivation to choose time dependent 
deceleration parameter (DP) is behind the fact 
that the expansion of the universe was 
decelerating in the past and accelerating at 
present as observed by recent observations of 
Type Ia supernova [1,2,39-41] and CMB 
anisotropies [42-43]. Also, the transition redshift 
from deceleration expansion to accelerated 
expansion is about 0.5. Now for a Universe 
which was decelerating in past and accelerating 
at the present time, the DP must show signature 
flipping [44-46]. So, in general, the DP is not a 
constant but time variable. The motivation to 
choose the following scale factor is that it 
provides a time-dependent DP. 
 
Under above motivations, we use a special form 
of deceleration parameter as,  
 

, 1                                                 (16) 

 
where R is average scale factor of the universe. 
 
This form is proposed by Cai et al. [10] and then 
modified by Sadatian [11].  
 

After integration of (16), we obtain the Hubble 
parameter as, 
 

. 

 

Integrating twice equation (16), we get the 
average scale factor which is time dependent 
given by: 
 

                     (17) 

 

Where 0t is an initial time and 1  is constant. 
 

Solving equations mAB   and , and 

using (17) we get: 

.                 (18)  

    
With the help of equation (17), equation (15) 
takes the form, 
 

 .                (19)  

          
Using above two equations (18) and (19), the 
metric (1) takes the form, 
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(20)  

 

Equation (20) represents Kaluza-Klein 
cosmological model with time dependent scale 
factors. 
 
4. PHYSICAL PROPERTIES OF THE 

MODEL 
 
The physical quantities such as spatial volume 
V , Hubble parameter H , expansion scalar  , 

mean anisotropy mA , shear scalar 2 , energy 

density  , equation of state parameter   are 

obtained as follows: 
 
The average scale factor is  
 

. 

 

From Fig. 1, in the earlier stage, the scale factor 

is slightly decreasing ( 0)( tR ) and in the 

expanding phase the scale factor increases 

rapidly ( 0)( tR ). Hence our model is bouncing 

at 0tt   ( 0)( tR ). 

 
The spatial volume is given by, 
 

.                (21) 

 

The spatial volume is finite at time 0t and 
increases with increasing value of time hence the 
model starts expanding with finite volume. 
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The Hubble parameter is given by, 
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From Fig. 2, the Hubble parameter 

 and , for  indicating that 

passes across zero  at 

represents that the universe is bouncing at 
 
The expansion scalar is, 
 

.           

 
 

 
Fig. 1. Plot of Average scale factor versus time for 

 

 
Fig. 2. Plot of 

1t 0H 1t

)0( H

 

  











1
1

32

02
0

0

t
tt

tt

Ghate et al.; PSIJ, 11(1): 1-9, 2016; Article no.PSIJ.24990

 
5 
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From Fig. 2, the Hubble parameter , for 

indicating that  

at , which 

represents that the universe is bouncing at .  

.                        (23) 

The mean anisotropy parameter 
 

,   

 

The shear scalar is 
 

We observe that 
 

, for 
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Fig. 3. Plot of Hubble parameter versus 

 
Fig. 4. Plot of energy density 

The mean anisotropy parameter 

and  is also constant, hence the 

model is anisotropic throughout the evolution of 
the universe except at  i.e. the model does 
not approach isotropy. 
 

The matter energy density is given by 
 

From Fig. 3, the energy density decreases at the 
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Hubble parameter versus time for  

 

 

energy density versus Time  

 

 is constant 

is also constant, hence the 

model is anisotropic throughout the evolution of 
the model does 

The matter energy density is given by  

.   (27) 
 

From Fig. 3, the energy density decreases at the 
and goes into 

the hot Big-bang era. The model bounces at 
and after bouncing the energy density 

rapidly increases for . 
 

The equation of state (Eos) parameter 
given by 
 

A bouncing universe model has an initial narrow 
state by a non-zero minimal radius and then 
develops to an expanding phase. For the 
universe going into the hot Big Bang era after the 
bouncing, the equation of state parameter of the 
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bang era. The model bounces at 
and after bouncing the energy density 

The equation of state (Eos) parameter  is 

   (28) 
 

A bouncing universe model has an initial narrow 
zero minimal radius and then 

xpanding phase. For the 
universe going into the hot Big Bang era after the 
bouncing, the equation of state parameter of the 

to . From
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Fig. 5. Plot of EoS parameter versus 
 

Fig. 4, before bouncing point at 

that the skew-ness parameter 
the bounce, the universe enter into the hot Big 
Bang era and occurs the big rip singularity. 
Further the Eos parameter 

Hence our model is bouncing at 
 

5. CONCLUSION  
 

Kaluza-Klein cosmological model has been 
investigated in the general theory of relativity. 
The source for energy momentum tensor is a 
perfect fluid. The field equations have been 
solved by using time dependent deceleration 

parameter. The mean anisotropy parameter 

is constant and  is also constant, hence 

the model is anisotropic throughout the evolution 
of the universe except at  i.e.
does not approach isotropy. It is interesting to 
note that the behavior of the model is bouncing 
as the Hubble parameter passes across zero 

from to , for some finite time 

. Also the energy density decreases at the 

early stage of evolution and rapidly increases 
showing big bounce . The Hubble 

parameter , for and  

 indicating that  passes across zero 

 at , ( ) which represents the 

model is bouncing at . The skew

parameter before the bounce at  

and  after the bounce.   
 

ACKNOWLEDGEMENTS 
 

Authors are thankful to referees for their valuable 
comments which helped in the improvement of 
the standard of paper. 

t




t

)0(lim
2

2


 



t

1m

H
)0( H 0H 0H

0tt 

0tt 

0H 0tt 

0tt  H

)0( H 0tt  00 t

0tt 

1

1

Ghate et al.; PSIJ, 11(1): 1-9, 2016; Article no.PSIJ.24990

 
7 
 

 

Plot of EoS parameter versus time for  
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 and after 
the bounce, the universe enter into the hot Big 
Bang era and occurs the big rip singularity. 
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