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Abstract

Hilbert's Fourth Problem is one of the most important mattieadagproblems, formulated kHilbert in
1900. Unfortunately, attempts to solve this problem duriny @ntury did not lead to the generally
recognized solution, and now modern mathematicians believehthgiroblem has been formulated by
Hilbert "very vague" and therefore it can not be solvec irfain purpose of this article is to develop a
new view on authors’ original solution to this problenddo interpret this problem as MILLENNIUM
PROBLEM in Geometry what has an interdisciplinary imb@oce and affects not only on geometry, put
also on all theoretical natural sciences. The sourcengfwaapproach to solving this problem is a new
branch of mathematics, the Mathematics of Harmonyghvgbes back in its origins to Euclid’s Elements
and has interdisciplinary importance for modern science.

Keywords: Millennium problems; Hilbert's fourth problemhet golden ratio; Fibonacci and Lucas
numbers; Binet's formulas; Bodnar's geometry; Gazale’s formulasursive hyperbolic
functions; original solution to Hilbert's fourth problem.

1 Introduction

In the recent years, the so-calldtillennium Problemsbecame a big dragging of mathematicians and
physicists. The outstanding mathematiciavid Hilbert gave the beginning of this dragging. In 1900 he
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presented twenty-three Great Mathematical Problentkeatnternational Congress of Mathematicians in
Paris. Explaining the purpose of the formulation of his "Mitcal Problems,David Hilbert writes [1]:

"For the close of a great epoch not only invites us to lbakk into the past but also directs our
thoughts to the unknown future".

Thus, Hilbert invites us not only to look to the past, bsb &b direct our efforts into the unknown future.

As outlined in the article [2]Hilbert's address of 1900 to the International Congress eftiMmaticians in
Paris is perhaps the most influential speech ever given to maticeanat given by a mathematician, or
given about mathematics. In it, Hilbert outlined 23 major mathiagbroblems to be studied in the coming
century... Hilbert's address was more than a collectionpafblems. It outlined his philosophy of
mathematics and proposed problems important to his philosophy”.

Modern mathematicians decided to continue the great tradifi@avid Hilbert. In May 2000, by emulating
to Hilbert, theClay Mathematics Institute of Cambridg@mnounced (in Paris, for full effect) about seven
"Millennium Prize Problems," each with a bounty of $liom [3].

Modern physicists have decided not lag from mathemasci@ahey have formulated 10 Physics Problems
for the Next Millennium [4]. These physical problems aré&inig our imagination and therefore are called
"Millennium Madness".

The analysis of the list of the "Millennium PrizeoBlems" [3], leaves some dissatisfaction. For example,
only one unsolved mathematical problem from Hilbert’sdis23 Mathematical Problems has been included
into the list of Clay Mathematics Institute Millennium RriProblems. We are talking about fRRiemann
hypothesis,which is well-known a#lilbert’s Eighth Problem [5].

Of course, the authors do not have intention to doubt in theaRierhypothesis, which has fundamental
interest. However, it is surprising that Hilbert's sommsalved mathematical problems, which have the same
fundamental interest, are not included into the list of Miliem Problems, compiled by Clay Mathematics
Institute.

The authors simply would like to show that in Hilbertist there are important mathematical problems,
which deserve to be called the MILLENIUM PROBLEMS. As example, the authors chosd@bert’s
Fourth Problem, which concerns hyperbolic geometry and have interdiseipli significance for many
branches of mathematics and theoretical natural sciences.

Hilbert's Fourth Problem is considered by modern mathematicaineinity as unsolved. Wikipedia [5] has
reflected the opinion of modern mathematical community orstheation of this problem as follow§Too
vague to be stated resolved or nof.his means that the modern mathematical community feeglall
responsibility for solution (or rather, for the lack of smn) of this problem on Hilbert himself, who
formulated this problertoo vague

Our studies of this problem are set out in the publicat[6rl0]. The purpose of this article is to present the
original solution to Hilbert's Fourth Problem [6-10] in apular form, accessible to all mathematicians,

teachers and students of mathematics, as well as retatges of theoretical natural sciences, interested in
new classes of non-Euclidean geometries.

2 Hilbert’s Fourth Problem

2.1 A Little of History

In the lectureMathematical ProblemEl], presented at the Second International Congress of Matloéamnati
(Paris, 1900), the prominent mathematiciBxavid Hilbert (1862-1943) formulated his famous 23
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mathematical problems. These problems determined consiglélee development of mathematics in the
20" century. This lecture is a unique event in mathematitsrigiand in mathematical literature.

In [1], this problem has been formulated as follows:

“The more general question now arised’hether from other suggestive standpoints geometriey ma
not be devised which, with equal right, stand next to Euclidegeometry”.

Hilbert’s quote contains the formulation of very importargthematical problem, which touches, according
to Hilbert, to the foundation ajeometry, number theory, theory of surfaaesd calculus.Hilbert's Fourth
Problem is of fundamental interest not only for mathessatiut also for all theoretical natural sciences:

“Whether exist non-Euclidean geometries, which are cldseEuclidean geometry and are interesting
from the “other suggestive standpoints™?”

If we consider this problem in the context of theoreticalra sciences, then the goal of Hilbert's Fourth
Problem is to search NEW HYPERBOLIC WORLDS OF NATURMjch are close to Euclidean geometry
and reflect some new properties of Nature’s structurephedomena.

Hilbert considerd_obachevski’'s geometignd Riemannian geomet@s the nearest to Euclidean geometry.
As it is noted in Wikipedia [11]in mathematics, Hilbert’'s Fourth Problem in the 1900 “Hiltbgoroblems”
was a foundational question in geometry. In one statementedefrom the original, it was to find
geometries whose axioms are closest to those of Eanligeometry if the ordering and incidence axioms
are retained, the congruence axioms weakened, and the equightbe parallel postulate omitted”.

As follows from the Introduction to the "Mathematical Bleoms" [1], Hilbert pays special attention to this
problem, emphasizing itaterdisciplinary nature .

The fact, that mathematicians for a century not beentaldelve Hilbert's Fourth Problem, highlights the
complexity of the problemand itsundoubted importance for mathematics and theoretical gence.

It is clear thatve cannot ignore this really outstanding mathematical problemformulated by Hilbert
in 1900.

2.2 Critical Analysis of the Known Attempts to Sole Hilbert's Fourth Problem

In mathematical literature Hilbert's Fourth Problem is stimes considered as formulateety vaguewvhat
makes difficult its final solution. As it is noted inikipedia article [11],"the original statement of Hilbert,
however, has also been judged too vague to admit a defiaitsxeer”.

Unfortunately, the attempts to resolve Hilbert's Fourtbem, made by German mathematictderbert
Hamel (1901) and later by the Soviet mathematicklaxey Pogorelov[12] have not led to significant
progress, as follows from WikipedidAs mentioned above, in Wikipedia’s articles [5,11], theéustaf the
problem is determined &wo vagu€ and Pogorelov'$ook [12] even is not mentioned.

Similar point of view on Pogorelov’'s solution to Hilbert's FduriProblem [12] is presented in the
remarkable book [13]. Thus, from the standpoint of modertm@naatical community, Hilbert's mistake was
in the fact that he formulated this problem not clearly encugh this is the main reason, why Hilbert’s
Fourth Problem is not solved until now.

In spite of critical attitude of mathematicians to Hiltls Fourth Problem, we should emphasize a great
importance of this problem for mathematics and theoiletiaetural sciences. Without doubts, Hilbert's
intuition led him to the conclusion thabbachevski's geometgnd Riemannian geometrgid not exhaust
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all possible variants of non-Euclidean geometries. Hibbéourth Problem directs researchers to searching
of new non-Euclidean geometries, which are close to dditinal Euclidean geometry.

2.3 From the “Game of Postulates” to the “Game of &nctions”

According to [14], the cause of the difficulties, arisiagthe solution of Hilbert's Fourth Problem, lies
elsewhere. All the known attempts to resolve this problderl{iert Hamel, Alexey Pogorelov) were based
on the traditional approach and have been reduced to tedled“game of postulates]14].

This “game” in geometry started from the worksNikolai Lobachevski andJanos Bolyaj whenEuclid’s

5" postulatewas replaced on the opposite one. This was the most stafpin the development of then-
Euclidean geometrywhich led toLobachevski's geometryThis geometry is considered as the most
important mathematical discovery of the™®8entury and rightly can be named the MILLENNIUM
PROBLEM. It changed the traditional geometric ideas anddetthe creation ohyperbolic geometrylit
must be emphasized that the titlehyfperbolic geometrhighlights the fact that this geometry is based on
the hyperbolic functionsThe use of hyperbolic functions for mathematical desoripdf Lobachevski’s
geometry is one of its “key” ideas.

2.4 New Approach to the Solution of Hilbert’s Fourh Problem

It is important to emphasize one more that the very tfldwyperbolic geometrncontains in itself the
important idea of another approach to the resolution dfektis Fourth Problem. This idea consists in
searching new classes of hyperbolic functjamsich can be the basis for new hyperbolic geometriesyEver
new class of the hyperbolic functions “generates” naviant of hyperbolic geometry. By analogy with the
game of postulatethis approach to the solution of Hilbert's Fourth Problem cam@eed thegame of
functions[14].

3 New Class of the Recursive Hyperbolic Functionssathe Way to New
Hyperbolic Geometries

3.1 The “Extended” Fibonacci and Lucas Numbers

The Fibonacci and Lucas numbeFs,: 1,1,2,3,5,8,13,21,34,... anl,: 1,3,4,7,11,18,29,47, ..., given by
the following recurrence relations:

F.=F.+F. F=F,=1 @)
+L,.,; L =1L,=3 (2
allow the following “extension” to the side of negatiedues of the inder (see Table 1).

Table 1. The “Extended” Fibonacci and Lucas numbers

n 0 1 2 3 4 5 6 7 8 9 10
Fn 0 1 1 2 3 5 8 13 21 34 55
Fa 0 1 -1 2 -3 5 -8 13 -21 34 -55
Ln 2 1 3 4 7 11 18 29 a7 76 123
L. 2 -1 3 -4 7 -11 18 -29 47 -7€ 122
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As follows from Table 1, the “extended” Fibonacci anacas numbers are connected with the following
simple relations:

F.=(-)"F,; L,=(-1)"L, 3)
3.2 Cassini's Formula

There exists the following remarkable formu@aésini’s formul® which connects the adjacent Fibonacci
numbers:

I:n2 - I:n—an+1 = (_1) n+l. (4)

Partial cases

3.3 Binet’s Formulas

The “extended” Fibonacci and Lucas numbers (Table 1) can beseaped explicitly through the “golden

ratio” ® :l+£/T5’ [15]:
%for n=2k+1
F” - n5 -n (5)
ufor n=2k
J5
_| @"+d " forn=2k ©)
" ld"-d "forn=2k+1

The formulas (5), (6) are calldinet’'s formulasThese formulas were obtained by French mathematician
Binet in 1843, although these formulas were knowEuder, Daniel Bernoulli, andde Moivre more than a
century earlier. In particulade Moivre obtained these formulas in 1718.

3.4 Recursive Hyperbolic Fibonacci and Lucas Funaiins

3.4.1 Classical hyperbolic functions

Hypebolic sine: sh( ¥ :g 7
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5 X
Hypebolic cosine ch(X) = & +2e (8)
Analog of Phythagoras theorem ch? x— si x=1 9)

Parity property :sh(-X)=-st{ }; ck- k= chp ). (10)
3.4.2 Hyperbolic Fibonacci and Lucas functions

Comparing Binet's formulas, represented in the forms(69),to the classical hyperbolic functions (7), (8),
we can see a similarity between them. This simjlar@tused the Ukrainian mathematicigiexey Stakhov
and lvan Tkachenko to introduce the first version of the hyperbolic Fibonaand Lucas functions,
described in 1993 article [16]. The improved version ofttiygerbolic Fibonacci and Lucas functions, have
been introduced i8takhov andRozin’s article [17], published in 2004.

Hyperbolic Fibonacci sine:

o (11)
SF(y = &~ @
J5
Hyperbolic Fibonacci cosine
" - (12)
CF(X) = u
J5
Hyperbolic Lucas sine:
(13)
sl(x) =d* -

Hyperbolic Lucas cosine
cL(X) =* +P~*

(14)

3.5 The Graphs of the Hyperbolic Fibonacci and Luca Functions

Comparing Binet's formulas (5), (6) to the hyperbolicdfibcci and Lucas functions (11) - (14), it is easy to
see that for the discrete values of the varialfle=0,£1,+2,3,...) the functions (11) - (14) are reduced to the
“extended” Fibonacci and Lucas numbers calculated accotdiBmet's formula (5), (6), i.e.,

_{ sF(n) for n=2k

= : 15

" |cF(n)for n=2k+1 (15)

L= sL(n) for n=2k+1. (16)
cL(n) for n=2k

To demonstrate this property more clearly, we condigergraphs of the hyperbolic Fibonacci and Lucas
functions, shown in Figs. 1 and 2.
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Fig. 1. The graphs of the hyperbolic Fibonacci functions

In Fig. 1, the graphs of the hyperbolic Fibonacci sie SF( X) and the hyperbolic Fibonacci cosine
y= CF( X) are shown.

The points on the graply = SF( X) correspond to the “extended” Fibonacci numbers witletlemindexes
2n:

Fpn ={...F4=-21F;=-8F ,=-3F ,=- IF,= OF,= £,= &= &~ 21}..(17

The points on the graply = CF( X) correspond to the “extended” Fibonacci numbers wittotidlindexes
2n+1:

Fonun ={.-..F.;=13F = 5F ,= 2F_ = IF = .= F .= F,= 13}. (18)

In Fig. 2, the graphs of the hyperbolic Lucas sih& SL( X) and the hyperbolic Lucas cosing= CL( X)
are shown.
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Fig. 2. The graphs of the hyperbolic Lucas functions

The points on the graply = SL( X) correspond to the “extended” Lucas numbers withathe indexes
2n+1:

Lyper ={-- L, ==29L =-11 ,=-4L =-1.,= 1L,= 4= 1L,= 29} (19)

The points on the graply = CL( X) correspond to the “extended” Lucas numbers withelenindexes
2n:

Ly, ={...L¢=18L,= 7L ,=3L,= 2L,= 3.,= A= 18}. (20)

Here it is necessary to point out that in the pgirat the hyperbolic Fibonacci cosigé(x) takes the value
cF(O):% (Fig. 1), and the hyperbolic Lucas cosiogx) takes the valuelL(0)=2 (Fig. 2). It is also

important to emphasize that the “extended” Fibonacci nunthensth theevenindexes f = 0, 2, +4, +6,
...) are “inscribed” into the graph of the hyperbolic FibanainesH(x) in the discrete pointx( 0, +2, +4,
16, ...) and the “extended” Fibonacci numbers withdbdindexes if = £1, £3, 5, ...) are “inscribed” into
the hyperbolic Fibonacci cosird=(x) in the discrete pointsx(= 1, £3, +5 ...). On the other hand, the
“extended” Lucas numbers with tlevenindexes are “inscribed" into the graph of the hyperbolicalsu
cosinecL(x) in the discrete pointx(= 0, £2, +4, +6 ...), and the “extended” Lucas numbers with ¢ialel
indexes are “inscribed” into the graph of the hyperbblicas cosinsL(x) in the discrete pointx (= £1, £3,
15 ..).
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These arguments lead us to the conclusion that the propegguwsivenesss the main distinctive feature
of the hyperbolic Fibonacci and Lucas functions (11) - (édmpared to the classical hyperbolic functions
(7), (8). Thus, the hyperbolic Fibonacci and Lucas fienst (11) - (14) are a new class of hyperbolic
functions described in [17]. And we have a right to name thestions asecursive hyperbolic functions

3.6 The Hyperbolic and Recursive Properties of thélyperbolic Fibonacci and Lucas
Functions

Thus, the hyperbolic functions (11) - (14) have distugctnathematical propertiemmpared to the classical
hyperbolic functions (7), (8). First of all, they retaith well-known properties of the classical hyperbolic
functions (7), (8) Hyperbolic properties secondly, they have new unusual properties inherent to the
Fibonacci and Lucas numbergdgursive properties

We begin from théwyperbolic propertiesFirst of them iparity property

Parity property :

{sF(—x)=—SF( ¥; CcR- X= cK X 1)
sL(-X¥=-sU ¥ clf- %= cl Xk

The relationship{ch( x)]2 —[ sl”( >)]2 =1 is possibly one of the most important properties of thesital

hyperbolic functions (7), (8). For the recursive hyperbflicctions (11) - (14), this property is given by
Theorem 1 [17].

Theorem 1. The following relationships, similar to the relationshigh( x)]2 [ s ﬂz =1, are valid for
the recursive hyperbolic Fibonacci and Lucas functions:

[eF ()] ~[sF(4] =2 (22)

[eL()] -[sY 3] =4 (23)

Let us consider the examples of tkeursive propertiesf the functions (11) - (14) [17].

Theorem 2.The following relations, which are similar to the recuedielations for the Fibonacci and Lucas
numbersF, ., =F +F, and L, =L, +L,, are valid for the recursive hyperbolic Fibonacci and
Lucas functions:

Recurrence relation for the Fibonacci hperbolic functions :
SF(x+2)=cF( x+1)+ sH }

CF(x+2)=sF( x+1)+ cH 3

Recurrence relation for the Lucas hyperbolic functons :
sL(x+2)=cl x+1)+ sl{ ¥

cL(x+2)=sl x+1)+ cl( 3

(24)
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Theorem 3 (a generalization of Cassini's formula for contines domain).The following relations, which

are similar to Cassini’'s formuIEn2 -FF = (—1)n+ , are valid for the recursive hyperbolic Fibonacci
functions:

Cassini's formula:
[sF(x)}2 - cF( x+1) cH *-1)

[CF(X)T - sF( x+1) sH x1)=1

-1 (25)

3.7 Theory of Fibonacci Numbers as a “Degenerate” &e of the Theory of the
Recursive Hyperbolic Fibonacci and Lucas Functions

As follows from (15), (16), the twécontinuous"identities for the recursive hyperbolic Fibonacci anddsuc
functions (11) — (14) always correspond to 8discrete"identity for the “extended” Fibonacci and Lucas
numbers (see Table 1). Conversely, we can obtaifidierete" identity for the “extended” Fibonacci and
Lucas numbers by using two correspondiagntinuous” identities for the recursive hyperbolic Fibonacci
and Lucas functions (11) — (14). As the “extended” Fibonaccilawds numbers, according to (15) and
(16), are the'discrete" cases of the recursive hyperbolic Fibonacci and Lucastiins (11) — (14), this
means that due the introduction of tleeursive hyperbolic Fibonacci and Lucas functigh$) - (14) [17],
the classicaltheory of Fibonacci numbers{18-20] as if"degenerates,'because this theory is a partial
("discrete”) case of the more generdtdntinuou theory of therecursive hyperbolic Fibonacci and Lucas
functions(11) - (14). This conclusion is another unexpected restilighwfollows from the theory of the
recursive hyperbolic Fibonacci and Lucas functions [17]. Sapgroach requires r@vision of the existed
“theory of Fibonacci numbers” [18-20] from the point of wi®f the theory of theecursive hyperbolic
Fibonacci and Lucas functior{¢l) - (14).

However, a new geometric theory of phyllotaxis, createthbyUkrainian researcher Oleg Bodnar [21,22],
is the most brilliant confirmation of theniquenessand fundamental naturef the recursive hyperbolic
Fibonacci and Lucas functior{¢1) - (14).

4 Phyllotaxis Phenomenon and Bodnar's Geometry

4.1 Mystery of Phyllotaxis

As outlined in the chapter "Authority of Nature" of tbeok [23], the most important criterion for the
evaluation of new mathematical results‘iis value to the sciences.What is the significance of the
recursive hyperbolic Fibonacci and Lucas functi¢b$) - (14) for modern science? A new geometric theory
of phyllotaxis, created by Ukrainian researcher @ednar [21,22], gives the answer to this question.

Among Nature’s phenomena, which surround us, perhapfotiaaical phenomenon of phyllotafil] is
the best known and most common.

This phenomenon is inherent to many biological objects. Téenes of phyllotaxis phenomenon consists in
a spiral disposition of leaves on plant's stems of treemlgpé flower baskets, seeds in pine cone and
sunflower discs etc (Fig. 3). This phenomenon, known alresidge Kepler's time, was a subject of
discussion of many scientists and thinkers, includiegnardo da Vinci, Turing, Weil and others. In
phyllotaxis phenomenon more complex concepts of symmatryparticular, the concept ofielical
symmetryare used.

10



Stakhov and Aranson; BJMCS, 12(4): 1-25, 2016;chetho.BIJIMCS.21849

On the surfaces gdhyllotaxis' objectstheir bio-organs (seeds on the sunflower's disks and pmesaetc.)

are disposed in the form of the left-twisted and righisted spirals. For the evaluation of the symmetrical
properties of such phyllotaxis' objects, it is used usualyrtumber ratios for the left-twisted and right-
twisted spirals, observed on the surfaces of the phyistobjects. Botanists proved that these ratios are
equal to the ratios of the adjacent Fibonacci numbers, i.e.,

(b)

Fig. 3. Geometric models of phyllotaxis structures:a) Pineapple; (b) Pine cone; (c) Head of sunflower

C
Fan, 23581321 - 1“/_‘. (26)
F ' 1'2'35 813 2

n

The ratios (26) are callgghyllotaxis orderd21,22] They are various for different phyllotaxis’ objects. For

example, the disc of sunflower can have the phyllotaxis srdgven by the Fibonacci rati&'% and
55 89
even 233,
144

By observing phyllotaxis structures in the completed fond by enjoying the well organized pictures on
their surfaces (Fig. 3), we always ask the question: hmvthe Fibonacci spirals are formed on their
surfaces during their growth? It is proved [21] that duringgievth of the phyllotaxis’ object, a natural
modification (increasing) of symmetry orders happens asdhbidification of symmetry obeys to the law:

2.3
1

8 13 21
2

5_ 8
3

5 8 13 @D

11
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The modification of the phyllotaxis orders according 23)(is nameddynamic symmetry21,22]. This
problem, which has attracted the attentiorKepler, Leonardo da Vinci, Turing andWeil, rightfully can
be called MILLENIUM PROBLEM.

4.2 Key ldeas of Bodnar's Geometry

Without going into the detailed description of Bodnar’s getoynand referring to Bodnar’s works [21,22],
we will analyze only the key ideas of this geometry. gkding to (27), in the process of their growth, the
phyllotaxis' objects pass through series of intermeditates, each of which corresponds to the certdar o
of symmetry (see (27)). Bodnar's geometry is based cioltbe/ing assumptions:

1. The geometry of phyllotaxis ig/perbolic geometry.

2. A passage of phyllotaxis’ object from any stateriother one is realized by meanshgperbolic
rotation, which is the main transformation of hyperbolic geometry.

3. The mathematical relations for phyllotaxis’ objecte described by theecursive hyperbolic
Fibonacci functions(11), (12). This assumption is most unusual, but just this gdsamled
Bodnar to very simple explanation of thieyllotaxis myster{27).

A number of the important conclusions are following frondBar’'s geometry:

1. “Bodnar's geometry” opened for modern science a new “hyperbebrld,” the world of
phyllotaxis The main feature of this world is the fact that thedgsometric relations of this world
are described by threcursive hyperbolic Fibonacci functio$l1), (12) what cause the appearance
of the Fibonacci spirals on the surface of phyllotaxis’ dbjec

2. “Bodnar's geometry” showed that hyperbolic geometry ishmmore spread in the real world than
it seemed beford@ he recursive hyperbolic Fibonacci and Lucas functiongll), (12) are not the
"fiction" of mathematicians; they are the “natural” functions of Nature. They appear in
different botanical structures such, as pine cones, pinegmaleti, discs of sunflower and so on.

3. Bodnar's geometry is a new hyperbolic geometry of vidldind this fact is of fundamental
importance for the future development of such sciences agypidbotany, physiology, medicine,
genetics, and so on.

5 Fibonacci A-Numbers, Metallic Means, Gazale’'s Formulas and
General Theory of Recursive Hyperbolic Functions

5.1 FibonacciA-Numbers

5.1.1 A brief of history

In the late 20 th and early 2Icenturies, several researchers from different cosntri@rgentinean
mathematicianVera W. de Spinadel [24], French mathematiciaMidhat Gazale [25], American
mathematiciaday Kappraff [26], Russian engineglexander Tatarenko [27], Armenian philosopher and
physicistHrant Arakelyan [28], Russian research¥fictor Shenyagin [29], Ukrainian physicisiNikolai
Kosinov [30], Spanish mathematiciaBgrgio FalconandAngel Plaza[31] and others independently one to
another began to study a new classes of the recurrenuerioal sequences, which are a generalization of
the classical Fibonacci numbers. These numerical sequéede the discovery of a new class of
mathematical constants, calladetallic means'by Vera W. de Spinadel[24].

The interest of many independent researchers from diffemmtries (US, Canada, Argentina, France,

Spain, Russia, Armenia, Ukraine) can not be accidenta.rmbans that the problem of the generalization of
Fibonacci numbers and “golden ratio” has matured in modgence.

12
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5.1.2 The recurrence relation for the Fibonacch-numbers

Let us give an integeh =1,2,3,... and consider the following recurrence relation:

R (n+2)=AR (n+)+ K (n): K (0=0.F()=1 (28)

The recurrence relation (28) generates an infinite nunfbreew numerical sequences, because every integer
A =1,2,3,... generates its own recursive numerical sequence.

Basing on the fact, that for the casel the recurrence relation (28) generates the classicah&dioo
numbers, we will name a general class of the numeseglences, generated by the recurrence relation (28),
theFibonacciA-numbers

Note that for the casie=2 the recurrence relation (28) generates the sodda#é numberg32]:

0,1,2,5,12,29,70,169,408 (29)

5.1.3 The generalized Cassini's formuléor the “extended” FibonacciA-numbers

Table 2 shows the examples of the “extended” Fibonaeoumbers

Table 2. The “extended” Fibonacci\ -numbers for the case=1,2,3,4

n 0 1 2 3 4 5 6 7 8

Fi(n) 0 1 1 2 3 5 8 13 21
Fi(n) O 1 -1 2 -3 5 -8 13 -21

F(n) 0 1 2 5 12 29 70 16 40¢

Fo(n) 0 1 -2 5 12 29 -70 169 -408
Fan) O 1 3 10 33 109 360 1189 3927
Fs(n) O 1 -3 10 -33 109 360 1189  -3927
Fon) O 1 4 17 72 305 1292 5473 23184
Fon) O 1 4 17 72 305 1292 5473 -23184

In the article [33], the surprising mathematical formwiich is a generalization of Cassini’'s formula (4)
for the classical Fibonacci numbers, has been proved:

Generalized Cassini's formula :
F2(n)-F (n-1) R (n+) =(-)"",

(30)

where A =1,2,3,.. is a given integer,F, (n-2 R (n) F (n+2 are the adjacent Fibonacak
numbers.

The formula (30) sounds as follows:
“The quadrate of any Fibonacci-number F; (n) are always different from the product of the two

adjacent Fibonaccid-numbers F, (n=1) and F, (n+1), which surround the initial Fibonacci

A-number K, (n) , by the number 1; herewith the sign of the differenced&pknds on the parity of n:
if n is even, then the difference of 1 is taken with the“signus,” otherwise, with the sign “plus”.

13
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As is known, a study of integer sequences is the area dferuimeory. The Fibonacai -numbers, given by
the recurrence relation (28), are integer sequences. foteeréor many mathematicians in the field of
number theory, the existence of the infinite number ofinteger sequences, which satisfy to the surprising
generalized Cassini's formula (30) [33], may be a big &epr

5.2 The “Metallic Means” by Vera W. de Spinadel
5.2.1 Definition
The following characteristic equation follows from theugence relation (28):
x> =Ax-1=0. (31)

The algebraic equation (31) has the following roots:

Xl:)\+\/4+)\2

32
5 (32)
A=Va+\?
= (33)
2
Denote the positive root (32) through, , i.e.,
A +y4+)\?
P, =— (34)
2
Note what for the casg =1 the formula (34) is reduced to the formula for goéden ratio
1+
CDl = \/g ) (35)

2

This means that the formula (35) gives a wide class ofntwe mathematical constants, which are a
generalization of the golden ratio (35).

Basing on this analogy, the Argentinean mathematidi@na W. de Spinadel named in [24] the
mathematical constants (34) theetallic meanslf we take A =1, 2, 3, 4 in (34), then we get the following
mathematical constants having accordinyéoa de Spinadelthe following special names:

® = 1+f (the Golden Mean\ 51

®, =1++/2( the Silver Mean) =)

_3+4/13

A 5 (the Bronze Meard, =)3

®, =2++/5(the Cooper Mean, )4 .

14
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Other metallic means\(=5) do not have special names:

5+/29 7+ 2/14
2 2

®, = , ®g=3+2/10; @, = P Dg= 44417

5.2.2 The simplest algebraic properties of the “metallimeans.”

It follows from the algebraic equation (31) the follogisimple algebraic properties of thretallic means
(34):

A=, —— (36)

L
(D)\

ON +¢%:\/4+)\2 (37)

A
O =AD+ D, (38)

wheren=0, +1,+2,+3, ...,

0N :\/1+)\\/1+)\\/ I+AV I+ . (39)

®, =A ot (40)

A+ 11
A+
A

Note that for the casd =1 the representations (39) and (40) coincide with the well kmepresentations
of the classical golden ratio in the forms:

q):\/1+ 141+ 1+ .. d= H;l. (41)
I+ ——r—
1+—1
1+..

The representations of the “metallic means” in the fori®8) (and (40), similar to the surprising
representations (41), are additional confirmations of flet that the “metallic means®, are new
mathematical constants!

5.3 Gazale's Formulas

5.3.1 Gazale's formula for the Fibonacch-numbers.

The formula (28) defines the Fibonacki-numbers F, (n) recursively. HoweverMidhat Gazale in the

book [25] represents the “extended” Fibonadcinumbers Fx(n) in the explicit form through the

“metallic mean” ®, :

15
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®F - (-1/d,)"

VA+A?

Note that for the partial cask =1, the formula (42) is reduced to the Binet's formula Fdbonacci
numbers.

F.(n)= (42)

5.3.2 Self-similarity and Gazale's hypothesis

A conception ofself-similarity[34] is spread widely in Nature, sciences and mathemaggpointed in the
article [34], ‘in mathematicsa self-similar object is exactly or approximately similar to a part tskif (i.e.

the whole has the same shape as one or more of the parts). Mawys dhjehe real world, such as
coastlines, are statistically self-similar: parts of thehmow the same statistical properties at many scales.
Self-similarity is a typical property of fractals. Scafeariance is an exact form of self-similarity where at
any magnification there is a smaller piece of the objedtithsimilar to the whole”.

All phyllotaxis’ objects [21] are brilliant examples sélf-similarity. In particular, the ratios of Fibonacci
numbers in the sequence (27) are examplesetfsimilarity. This means that a growth of phyllotaxis
objects, according to the regularity (27), is based orséffesimilarity principle. Also Bodnar's geometry
[21,22], which explains the growth of phyllotaxis objects,asdd orself-similarityprinciple.

In mathematicsself-similarityis expressed througkcursive relations.

The central notion of Gazale’s book [25] is the notiorself-similarity Gazale was one of the first who
begun to study Fibonacdi-numbers. The derivation of mathematical formula (42), whéslpresses
FibonacciA-numbers through the "metallic means," is one of the maraléa mathematical achievements,
described in the book [25]. In the book [25], Gazale put faivthe following unusual hypothesis, which
has direct relation to mathematical models of self-siriti:

Gazale's hypothesis:“The numerical sequencd- =Fp,n+tmF which | call here the

mnt2 — mn+l’
Fibonacci sequence of the order m, play a key role in thaysif self-similarity”.

If we take in this formula tham=X, F_ ., =F, (n+2), F,,=F(n) F

get the recurrence relation (28) for the Fibonaenumbers.

=F (n+1) , then we

m, n+2 m, n+1

This means that the recurrence relation (28), whichsgilie Fibonacch-numbers, according tGazale's
hypothesisexpresses theelf-similarity principle,which is one of the most important principles of Nature,
sciences and mathematics

5.4 Hyperbolic Fibonacci and Lucas\-Functions

5.4.1 Definition

The researches Byera de Spinadel[24], Midhat Gazale [25], Jay Kappraff [26] and others have became
for Alexey Stakhova launching pad for the creation of the general theorgafrsive hyperbolic functions,
described in the works [35,36].

In order to determine a new class of hyperbolic functidtsxey Stakhovrepresent in [35,36zazale’s
formulasfor the Fibonacci and Lucasnumbers in the following form:
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-%%;2%- for n=2k
F.(n)= n4+7\_n (43)
Pt for n=2k+1

Va+)\?

LA(n)={¢A_q); for n=2k+1

(44)
®F+d;" for n=2k

ComparingGazale’s formulag43) and (44) to the classical hyperbolic functions (7), \(&),can see their
similarity by mathematical structures. This simikaribtecame a reason to introduce a general class of
hyperbolic functions called in [35,36] thgperbolic Fibonacci and Luca -functions:

Hyperbolic Fibonacci A-sine andA-cosine

X =X
sF(@=¢;_¢V== 1 A+VA+N2 | [ A+ 442 (45)
’ Jasr® 442 2 2
N A N [ PSR G I A+Jaa? ) )
' Va+aZ Ja+)? 2 2
Hyperbolic Lucas A-sine andA-cosine
/ 2\ / 2\ "
s (9 =) -y =| ATVATA | | AEVAER @)
2 2
2\ 2%
oL, (X) = B} + D% = A+VA+A + A+ 4+ ’ (48)
2 2
wherex is continuous variable andl =1, 2,3, ... is a given integer.
It is easy to see that the functions (45), (46) and (48),are connected by very simple relations:
SF)\(X) = L(X) CF)\()§ = M (49)

a2 Jaen?

5.4.2 An unigueness of the hyperbolic Fibonacci and Lucasfunctions

It should be noted the following unique properties of the hypierbibonacci and Lucas- functions (45)—
(48):

1. The hyperbolic Fibonacci and Lucadunctions (45)—(48) are, on the one hand, a generalization o
the classical hyperbolic functions (7), (8), but on theeothand, a generalization of the recursive
hyperbolic Fibonacci and Lucas functions (11)—(14), wiaicha partial case of the functions (45)—
(48) for the case\ =1.
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2. Their uniqueness consists of the fact that they, on the one retaoh allhyperbolic properties
inherent for the classical hyperbolic functions (7), @ the other hand, they havecursive
properties inherent to the recursive hyperbolic Fibonacci and Léwactions (11)—(14).

3. The next unique feature of the functions (45)—(48) is thetfadtthe general formulas (45)—(48)
define theoretically infinite number of new classedhaf recursive hyperbolic functions, because
every integerA =1,2,3,... generates a new, previously unknown class of the recurgperibolic

functions.

4. One more unique feature of the functions (45)—(48) is ttie@p connection to the “extended”
Fibonacci and Lucas\ -numbers, defined bysazale’'s formulag(43), (44). This connection is
determined identically by the following relations:

F) = {sﬁ(n), n=2k

A cF (n), n=2k+1 )
L@ {cLA(n), n=2k (

A sL (M, n=2k+1

5. According toGazale's hypothesighe recursive hyperbolic functions (45)—(48), following from
Gazale's formulag43), (44), express th@milarity principle,which is the most important principle
of Nature, science and mathematics

5.4.3 Hyperbolic and recursive properties of the hyperbad Fibonacci and Lucash-functions

As examples of hyperbolic properties of the functiegHg-{(48), we consider thgarity properties and the
analog of the Pythagoras Theorem

Parity properties

sF (-x) =-sk (; ck(- ¥= cf( X

sl (=X =-sL(%; ci(-x= c( X (51)
Analog of the Pythagoras Theorem
2 2 _ 4
[ch (9] ~[ R (3] =57 n

[l (] [ sk (] =4

Somerecursive propertiesf functions (45)—(48) are given by the following theoreprsved in [35,36].

Theorem 1. The following relations, which are similar to the reemce relation for the Fibonacai -
numbersF, (n+2) =AF, (n+1)+ F, (n), are valid for the hyperbolic Fibonacki-functions;

sk (x+2)=Ack (x+ D)+ sE( 3,

53
oF, (x+2)=AsF (x¢ D)+ cF( 3. 3

Theorem 2. (the generalized Cassini’s formula for continuoudomain). The following relations, which
are similar to the generalized Cassini's formula for e th Fibonacci A -numbers

FZ(n)-F (n-1)F, (n+1)= (-1)"", are valid for the hyperbolic Fibonacki-functions:
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[sF (0] - ck (x+1) cE( x1)=-1,

(54)
[cF (0] - sk (x+1) sE( xD=1.

6 Original Solution to Hilbert’'s Fourth Problem

6.1 General Considerations

The basis of the original solution to Hilbert's Fourtiolitem, resulting in the works [6-10], is the approach,
named in [14]'the game of the functionsThe essence of this approach consists in the factwhare
remaining in the framework of the classical hyperbolic gegomeéhat is, we do not change its postulates;
however, for the description of the mathematical retethips of the new hyperbolic geometry, we use new
classes of recursive hyperbolic functions, introducedhi works [17,35,36]. Note that the Ukrainian
researcher Oleg Bodnar was the first scientist, who tisisdapproach to create a geometric theory of
phyllotaxis [21,22]. Until the publication of the articlek7[35,36], such approach to the creation of new
hyperbolic geometries cannot be used, because the newsctdssgperbolic functions, havingcursive
properties were unknown.

In this connection, the creation of Bodnar's geometry [21,2R]ch relates to a new kind of hyperbolic
geometry, became a brilliant confirmation of fruitfulnessttef new approach to the solution of Hilbert
Fourth Problem, because the replacement of the classiparbolic functions (7), (8) on the recursive
hyperbolic Fibonacci functions (11)—(12) underlies Bodnar's g&gm

6.2An Original Solution of Hilbert's Fourth Problem and “Golden” Hyperbolic
Geometry

6.2.1 A general idea

In the articles [35,36], the wide generalization of the réeerkyperbolic Fibonacci and Lucas functions
(11)—(14) is presented. Here the recursive hyperboborfécci and Luca&-functions (45)—(48), which
extend the class of the recursive hyperbolic functamhénfinitum, are described. These new classes of the
surprising recursive hyperbolic functions, based on Spinad@tsllic meang24] and Gazale's formulas
[25], became the basis of the original solution to Hillsefburth Problem [14-19].

The followinggeneral ideaunderlies the original solution to Hilbert's Fourth Peohl[14-19]:
Every class of the recursive hyperbolic functions (45)—8) generates new hyperbolic geometry.

It follows from this statement thahe number of new hyperbolic geometries, following fromsuch
approach, is theoretically infinite. We will name these nevecursive hyperbolic geometrielsased on the
self-similarity principle with the common title of theGolden” Hyperbolic Geometry.

Thus, the "Golden" Hyperbolic Geometry has two distinctiaduies:

1. This geometry idractal geometry, based on the recursive Fibonaxeiumbers (28).
2. Theprinciple of self-similarity underlies this new hyperbolic geometry.
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6.2.2 The metricA-forms of Lobachevski's plane

There exists in hyperbolic geometry a notion of tetric form of Lobachevski’'s planehich is based on
the classical hyperbolic functionBeveloping this concept, the following formula for thestric form of
Lobachevski's planébased on the hyperbolic Fibonakeiunctions (45), (46), has been derived in [6-10]:

(05 =i (@) 0" + X s (9 ( o e

A+J4+)\2
2

(45),A=1,2,3,... The forms (55) are called tieetric A -forms of Lobachevski’'s plarfé—10].

where @, = is themetallic meansnd sF, (u) is the recursive hyperbolic Fibonacki-sine

The formula (55) gives an infinite number of newbachevski’'s geometrig&yolden,” “silver,” “bronze,”
“cooper” and so on ad infinitum) according to the used class ofrghersive hyperbolic Fibonacai-
functions (45), (46).

The formula (55) gives an infinite number of tinetric forms ot.obachevski's planeThis means that there
is infinite number of the new hyperbolic geometries, Wtdce based on thmetallic meang34). These new
hyperbolic geometrieéwith equal right, stand next to Euclidean geometrfDavid Hilbert). Thus, the
formula (55) can be considered as the original solution to H#bEourth Problem, based on tfgame of
functions” [14]. There are an infinite number of the new hyperbolic gelesetdescribed by the formula
(55), which are close to Euclidean geometry. Every ofdhgeometries manifests itself in Fibonakei
numbers (28), which can appear in physical world similarBddnar’s hyperbolic geometf21,22], where
the classical Fibonacci numbers appear at the surfgaeytébtaxis’ objects.

6.3 A New Challenge to Theoretical Natural Sciences

Thus, the main result of the research, described if[6ida proof of the existence of an infinite number of
the recursive hyperbolik-functions (45) - (48), based on theetallic meang34). In addition, for the given
A=1,2,3,.. every class of the recursive hyperbalitunctions, given by (45) - (48), generates its own
recursive hyperbolic geometry, which leads to the appearaf the “physical worlds” with specific
properties, which are determined by tmetallic meanq34). The new geometric theory of phyllotaxis,
created by Oleg Bodnar [21,22], is the striking example hig. tBodnar proved that the “world of
phyllotaxis” is a specific “hyperbolic world,” in which theyperbolicity manifests itself in thé&ibonacci
spiralson the surface of phyllotaxis’ objects.

However, the “golden” hyperbolic Fibonacci functions (11R)( which underlie théhyperbolic world of
phyllotaxis” [21], are a special case of the recursive hyperltfationaccii-functions (45), (46) foh=1. In
this regard, we have all reasons to suppose that other tyfressretcursive hyperbolie-functions (45), (46),
based on thenetallic meansgcan be good models for the new “hyperbolic worlds” tlaat really exist in
Nature. Modern science cannot find these special “hyperbolitdsydibecause the recursive hyperbolic
functions (45), (46) were unknown until now [16,17,35,36]. Bagin the success &odnar’s hyperbolic
geometry[21,22], we can put forward in front to theoretical physidsemistry, crystallography, botany,
biology, genetics and other branches of theoretical riagai@nces thehallenge for searching of thenew
hyperbolic worlds of Naturebased on the new classes of the recursive hyperbolidunctions (45), (46).

Studying the recursive hyperbolic functions (45), (46), we assume that the recursive hyperbadlic
functions with the bases
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1++/5
2
®, =1++/2(the Silver Mean) =R

_3+413

3
2
®, =2++/5(the Cooper Mean, )4 .

® = (the Golden Mean\, 91

(the Bronze Mear) =)3

are of the of greatest interest for theoretical nagaig@nces.

A class of the golden” recursive hyperbolic Fibonacci functions

X -X X 4 -X
Fy = TP Ry = St 0

based on the classicgblden ratiq plays the leading role among them. These functions undeotiear’s
geometny[21,22], anew hyperbolic geometry of phyllotaxis

The next candidate for the new “hyperbolic world” oftita (after “Bodnar’s hyperbolic geometry”
[21,22]) may be, for examplsilver hyperbolic functions

sF,(%) =—¢2;§¢5 :Zi\/_z[(hfz)x —(1+f2)_x} :

cR(%) :—cpgqu;;x :2%/_2[(1+ V2) (1 \/_2)_1 ,

(57)

which are connected witfPell numbers[32] and are based on trglver proportion @, =1+\/§,

connected with the fundamental mathematical cons{éﬂ

7 Conclusion: Whether are New Classes of Hyperboli€unctions and
the Following from Them Original Solution to Hilbert's Fourth
Problem Fundamental Scientific Result?

In his classic worlhe Analytical Theory of Heé1822), the prominent French mathematician and physicist
Jean-Baptiste Joseph Fourie(1768 - 1830) expressed his opinion about the applicatioratiiematics to
physical problems (the quote is taken from [23]):

“The profound study of nature is the most fertile source of mattieah discoveries. This study offers
not only the advantages of a well determined goal but the advantagelofling vague questions and
useless calculations. It is a means of building analysis iselfof discovering the ideas which matter
most and which science must always preserhe. fundamental ideas are those which represent the
natural happenings...

Its chief attribute is clarity; it has no symbols to expreesfused ideas. It brings together the most
diverse phenomena and discovers hidden analogies which unite them”.
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The above quote of the eminent mathematician and physiastdhiect relevance to the researches,
described in this article.

We begin from the articles [16,17]. These articles congaptescription of very important mathematical
discovery, theecursive hyperbolic functionbased on thgolden ratiq Fibonacci and Lucas humbers

In Bodnar’s works [21,22], the similar functions have been fizethe creation of new geometric theory of
phyllotaxis what is a botanical phenomenon, well-knoimeesJohannes Kepler’s time.

Bodnar's geometrys a new kind of Lobachevski's geometry. This geometry unsosemystery of
phyllotaxis, that is, describes how ttgnamic symmetrgf phyllotaxis’ object is changing in the process of
its growth. This is expressed in changing the structurebwngicci’s spirals on the surface of phyllotaxis’
object.

Thus, Bodnar's geometryshowed that the world of phyllotaxis is the hyperbolic worlg based on
hyperbolic Fibonacci and Lucas functions. That is, these ufictions are not "fiction" of
mathematicians; they are natural functions that are sed in natural objects during millions, and
perhaps billions of years.

In Stakhov’s articles [35,36], the new classes of theirsdee hyperbolic functions based &pinadel’s
metallic meang24] and Gazale's formulag25] have been introduced. The new classes of the recursive
hyperbolic functions are a generalization 'gfolden” recursive hyperbolic functionéll) - (14). In
Stakho& Aranson’s works [6-10], these functions have been usedadupe the unexpected solution to
Hilbert's Fourth Problem, which relates to tiBolden” Hyperbolic Geometry. This solution puts forward

in front to theoretical natural sciences the fundamentallesigd searching new "hyperbolic worlds of
nature".

As follows from the above arguments; all of these stidiate directly to Nature and theoretical natural
sciences. That is why, the new classes ofrdwairsive hyperbolic functiong6,17,35,36] together with
Bodnar's geometry[21,22] and the original solution tblilbert's Fourth Problem[6-10], according to
Fourier, rightfully can be attributed to the categoryfohdamental scientific discoveriesand, as such,
they will remain in modern and future sciences.

Taking into consideration the importance of Hilbert's Fourttblem not only for geometry, but also for the
entire theoretical natural sciences, the authors ofattlisle take the courage to assert that Hilbert's Fourth
Problem was not included into the list of the MILLENNIUM PBIEMS, by mistake (the modern

mathematicians could not understand and evaluate this problenthemeforeHilbert's Fourth Problem
deserves to be recognized as the MILLENNIUM PROBLEM ingeometry.
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