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Abstract 
 

Hilbert’s Fourth Problem is one of the most important mathematical problems, formulated by Hilbert in 
1900. Unfortunately, attempts to solve this problem during 20th century did not lead to the generally 
recognized solution, and now modern mathematicians believe that the problem has been formulated by 
Hilbert "very vague" and therefore it can not be solved. The main purpose of this article is to develop a 
new view on authors’ original solution to this problem and to interpret this problem as MILLENNIUM 
PROBLEM in Geometry what has an interdisciplinary importance and affects not only on geometry, but 
also on all theoretical natural sciences. The source of a new approach to solving this problem is a new 
branch of mathematics, the Mathematics of Harmony, which goes back in its origins to Euclid’s Elements 
and has interdisciplinary importance for modern science. 

 

Keywords: Millennium problems; Hilbert’s fourth problem; the golden ratio; Fibonacci and Lucas 
numbers; Binet’s formulas; Bodnar’s geometry; Gazale’s formulas; recursive hyperbolic 
functions; original solution to Hilbert’s fourth problem.  

 

1 Introduction 
 
In the recent years, the so-called Millennium Problems became a big dragging of mathematicians and 
physicists. The outstanding mathematician David Hilbert  gave the beginning of this dragging. In 1900 he 
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presented twenty-three Great Mathematical Problems at the International Congress of Mathematicians in 
Paris. Explaining the purpose of the formulation of his "Mathematical Problems," David Hilbert  writes [1]:  
 

"For the close of a great epoch not only invites us to look back into the past but also directs our 
thoughts to the unknown future".  

 
Thus, Hilbert invites us not only to look to the past, but also to direct our efforts into the unknown future. 
 
As outlined in the article [2], “Hilbert's address of 1900 to the International Congress of Mathematicians in 
Paris is perhaps the most influential speech ever given to mathematicians, given by a mathematician, or 
given about mathematics. In it, Hilbert outlined 23 major mathematical problems to be studied in the coming 
century… Hilbert's address was more than a collection of problems. It outlined his philosophy of 
mathematics and proposed problems important to his philosophy”. 
 
Modern mathematicians decided to continue the great tradition of David Hilbert. In May 2000, by emulating 
to Hilbert, the Clay Mathematics Institute of Cambridge announced (in Paris, for full effect) about seven 
"Millennium Prize Problems," each with a bounty of $1 million [3]. 
 
Modern physicists have decided not lag from mathematicians. They have formulated 10 Physics Problems 
for the Next Millennium [4]. These physical problems are striking our imagination and therefore are called 
"Millennium Madness". 
 
The analysis of the list of the "Millennium Prize Problems" [3], leaves some dissatisfaction. For example, 
only one unsolved mathematical problem from Hilbert’s list of 23 Mathematical Problems has been included 
into the list of Clay Mathematics Institute Millennium Prize Problems. We are talking about the Riemann 
hypothesis, which is well-known as Hilbert’s Eighth Problem  [5].  
 
Of course, the authors do not have intention to doubt in the Riemann hypothesis, which has fundamental 
interest. However, it is surprising that Hilbert’s some unsolved mathematical problems, which have the same 
fundamental interest, are not included into the list of Millennium Problems, compiled by Clay Mathematics 
Institute. 
 
The authors simply would like to show that in Hilbert’s list there are important mathematical problems, 
which deserve to be called the MILLENIUM PROBLEMS. As an example, the authors chose Hilbert’s 
Fourth Problem, which concerns hyperbolic geometry and have interdisciplinary significance for many 
branches of mathematics and theoretical natural sciences.  
 
Hilbert's Fourth Problem is considered by modern mathematical community as unsolved. Wikipedia [5] has 
reflected the opinion of modern mathematical community on the solution of this problem as follows: “Too 
vague to be stated resolved or not.” This means that the modern mathematical community has placed all 
responsibility for solution (or rather, for the lack of solution) of this problem on Hilbert himself, who 
formulated this problem too vague. 
 
Our studies of this problem are set out in the publications [6-10]. The purpose of this article is to present the 
original solution to Hilbert’s Fourth Problem [6-10] in a popular form, accessible to all mathematicians, 
teachers and students of mathematics, as well as representatives of theoretical natural sciences, interested in 
new classes of non-Euclidean geometries. 
 

2 Hilbert’s Fourth Problem 
 
2.1 A Little of History 
 
In the lecture Mathematical Problems [1], presented at the Second International Congress of Mathematicians 
(Paris, 1900), the prominent mathematician David Hilbert (1862-1943) formulated his famous 23 
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mathematical problems. These problems determined considerably the development of mathematics in the 
20th century. This lecture is a unique event in mathematics history and in mathematical literature.  
 
In [1], this problem has been formulated as follows: 
 

“ The more general question now arises: Whether from other suggestive standpoints geometries may 
not be devised which, with equal right, stand next to Euclidean geometry”. 

 
Hilbert’s quote contains the formulation of very important mathematical problem, which touches, according 
to Hilbert, to the foundation of geometry, number theory, theory of surfaces and calculus. Hilbert’s Fourth 
Problem is of fundamental interest not only for mathematics, but also for all theoretical natural sciences:  
 

“Whether exist non-Euclidean geometries, which are close to Euclidean geometry and are interesting 
from the “other suggestive standpoints”?” 

 
If we consider this problem in the context of theoretical natural sciences, then the goal of Hilbert’s Fourth 
Problem is to search NEW HYPERBOLIC WORLDS OF NATURE, which are close to Euclidean geometry 
and reflect some new properties of Nature’s structures and phenomena. 
 
Hilbert considers Lobachevski’s geometry and Riemannian geometry as the nearest to Euclidean geometry. 
As it is noted in Wikipedia [11], “in mathematics, Hilbert’s Fourth Problem in the 1900 “Hilbert problems” 
was a foundational question in geometry. In one statement derived from the original, it was to find 
geometries whose axioms are closest to those of Euclidean geometry if the ordering and incidence axioms 
are retained, the congruence axioms weakened, and the equivalent of the parallel postulate omitted”.  
 
As follows from the Introduction to the "Mathematical Problems" [1], Hilbert pays special attention to this 
problem, emphasizing its interdisciplinary nature . 
 
The fact, that mathematicians for a century not been able to solve Hilbert's Fourth Problem, highlights the 
complexity of the problem and its undoubted importance for mathematics and theoretical science. 
 
It is clear that we cannot ignore this really outstanding mathematical problem, formulated by Hilbert 
in 1900.  
  
2.2 Critical Analysis of the Known Attempts to Solve Hilbert’s Fourth Problem 
 
In mathematical literature Hilbert’s Fourth Problem is sometimes considered as formulated very vague what 
makes difficult its final solution. As it is noted in Wikipedia article [11], “the original statement of Hilbert, 
however, has also been judged too vague to admit a definitive answer”. 
 
Unfortunately, the attempts to resolve Hilbert’s Fourth Problem, made by German mathematician Herbert 
Hamel (1901) and later by the Soviet mathematician Alexey Pogorelov [12] have not led to significant 
progress, as follows from Wikipedia. As mentioned above, in Wikipedia’s articles [5,11], the status of the 
problem is determined as “too vague” and Pogorelov’s book [12] even is not mentioned.    
 
Similar point of view on Pogorelov’s solution to Hilbert’s Fourth Problem [12] is presented in the 
remarkable book [13]. Thus, from the standpoint of modern mathematical community, Hilbert’s mistake was 
in the fact that he formulated this problem not clearly enough and this is the main reason, why Hilbert’s 
Fourth Problem is not solved until now. 
 
In spite of critical attitude of mathematicians to Hilbert’s Fourth Problem, we should emphasize a great 
importance of this problem for mathematics and theoretical natural sciences. Without doubts, Hilbert’s 
intuition led him to the conclusion that Lobachevski’s geometry and Riemannian geometry did not exhaust 



 
 
 

Stakhov and Aranson; BJMCS, 12(4): 1-25, 2016; Article no.BJMCS.21849 
 
 
 

4 
 
 

all possible variants of non-Euclidean geometries. Hilbert’s Fourth Problem directs researchers to searching 
of new non-Euclidean geometries, which are close to the traditional Euclidean geometry. 
 
2.3 From the “Game of Postulates” to the “Game of Functions” 
 
According to [14], the cause of the difficulties, arising at the solution of Hilbert’s Fourth Problem, lies 
elsewhere. All the known attempts to resolve this problem (Herbert Hamel, Alexey Pogorelov) were based 
on the traditional approach and have been reduced to the so-called “game of postulates” [14]. 
 
This “game” in geometry started from the works by Nikolai Lobachevski and Janos Bolyai, when Euclid’s 
5th postulate was replaced on the opposite one. This was the most major step in the development of the non-
Euclidean geometry, which led to Lobachevski’s geometry. This geometry is considered as the most 
important mathematical discovery of the 19th century and rightly can be named the MILLENNIUM 
PROBLEM. It changed the traditional geometric ideas and led to the creation of hyperbolic geometry. It 
must be emphasized that the title of hyperbolic geometry highlights the fact that this geometry is based on 
the hyperbolic functions. The use of hyperbolic functions for mathematical description of Lobachevski’s 
geometry is one of its “key” ideas. 
 
2.4 New Approach to the Solution of Hilbert’s Fourth Problem  
 
It is important to emphasize one more that the very title of hyperbolic geometry contains in itself the 
important idea of another approach to the resolution of Hilbert’s Fourth Problem. This idea consists in 
searching new classes of hyperbolic functions, which can be the basis for new hyperbolic geometries. Every 
new class of the hyperbolic functions “generates” new variant of hyperbolic geometry. By analogy with the 
game of postulates this approach to the solution of Hilbert’s Fourth Problem can be named the game of 
functions [14]. 
 

3 New Class of the Recursive Hyperbolic Functions as the Way to New 
Hyperbolic Geometries 

 
3.1 The “Extended” Fibonacci and Lucas Numbers  
 
The Fibonacci and Lucas numbers nF : 1,1,2,3,5,8,13,21,34,… and nL : 1,3,4,7,11,18,29,47, …, given by 
the following recurrence relations: 
 

1 2 1 2; 1n n nF F F F F− −= + = = ,                                                            (1) 

 

1 2 1 2; 1, 3n n nL L L L L− −= + = = ,                                                         (2) 

 
allow the following “extension” to the side of negative values of the index n (see Table 1). 
 

Table 1. The “Extended” Fibonacci and Lucas numbers 
 

n 0 1 2 3 4 5 6 7 8 9 10 
Fn 0 1 1 2 3 5 8 13 21 34 55 
F-n 0 1 -1 2 -3 5 -8 13 -21 34 -55 
Ln 2 1 3 4 7 11 18 29 47 76 123 
L-n 2 -1 3 -4 7 -11 18 -29 47 -76 123 
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As follows from Table 1, the “extended” Fibonacci and Lucas numbers are connected with the following 
simple relations: 

 

( ) 1
1

n

n nF F
+

− = − ;  ( )1
n

n nL L− = −                                                          (3) 

 
3.2 Cassini’s Formula  
 
There exists the following remarkable formula (Cassini’s formula), which connects the adjacent Fibonacci 
numbers:  
 

1
11

2 )1( +
+− −=− n

nnn FFF .                                                          (4) 

 
Partial cases: 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 2

2 3

2 4

2 5

1: 1 0 1 1 1;

2 : 1 1 2 1 1;

3: 2 1 3 1 1;

4 : 3 2 5 1 1

n

n

n

n

= − × = − =

= − × = − = −

= − × = − = +

= − × = − = −

 

 
3.3 Binet’s Formulas 
 
The “extended” Fibonacci and Lucas numbers (Table 1) can be represented explicitly through the “golden 

ratio” 1 5
2

+Φ =  [15]: 

 

for 2 1
5

for 2
5

n n

n n n

n= k +

F

n= k

−

−

Φ + Φ

= 

Φ − Φ


                                                                        (5) 

 

for 2

for 2 1

n n

n n n

n = k
L

n = k +

−

−

 Φ + Φ
= 

Φ − Φ
                                                                        (6) 

 
The formulas (5), (6) are called Binet’s formulas. These formulas were obtained by French mathematician 
Binet in 1843, although these formulas were known to Euler, Daniel Bernoulli, and de Moivre more than a 
century earlier. In particular, de Moivre obtained these formulas in 1718. 
 
3.4 Recursive Hyperbolic Fibonacci and Lucas Functions 
 
3.4.1 Classical hyperbolic functions 
 

: ( )
2

x xe esh x
−−=Hypebolic sine                                             (7) 
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: ( )
2

x xe ech x
−+=Hypebolic cosine                                             (8) 

 
2 2: 1ch x sh x− =Analog of Phythagoras theorem                                           (9) 

 

( ) ( ) ( ) ( ): ;sh x sh x ch x ch x− = − − =Parity property .                                       (10) 

 
3.4.2 Hyperbolic Fibonacci and Lucas functions  
 
Comparing Binet’s formulas, represented in the forms (5), (6), to the classical hyperbolic functions (7), (8), 
we can see a similarity between them. This similarity caused the Ukrainian mathematicians Alexey Stakhov 
and Ivan Tkachenko to introduce the first version of the hyperbolic Fibonacci and Lucas functions, 
described in 1993 article [16]. The improved version of the hyperbolic Fibonacci and Lucas functions, have 
been introduced in Stakhov and Rozin’s article [17], published in 2004.  
 

:

( )
5

x x

sF x
−−Φ Φ=

Hyperbolic Fibonacci sine

                                                        (11) 

 

:

( )
5

x x

cF x
−+Φ Φ=

Hyperbolic Fibonacci cosine

                                                       (12) 

 
:

( ) x xsL x −= Φ − Φ

Hyperbolic Lucas sine
                                                        (13) 

 
:

( ) x xcL x −= Φ + Φ

Hyperbolic Lucas cosine
                                                      (14) 

 
3.5 The Graphs of the Hyperbolic Fibonacci and Lucas Functions 
 
Comparing Binet’s formulas (5), (6) to the hyperbolic Fibonacci and Lucas functions (11) - (14), it is easy to 
see that for the discrete values of the variable x (x=0,±1,±2,±3,…) the functions (11) - (14) are reduced to the 
“extended” Fibonacci and Lucas numbers calculated according to Binet’s formula (5), (6), i.e., 
 

( )
( )

for 2

for 2 1n

sF n n k
F

cF n n k

 =
=  = +

;                                                        (15) 

 

( )
( )

for 2 1

for 2n

sL n n k
L

cL n n k

 = +
=  =

.                                                        (16) 

 
To demonstrate this property more clearly, we consider the graphs of the hyperbolic Fibonacci and Lucas 
functions, shown in Figs. 1 and 2.  
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Fig. 1. The graphs of the hyperbolic Fibonacci functions 
 

In Fig. 1, the graphs of the hyperbolic Fibonacci sine ( )y sF x=  and the hyperbolic Fibonacci cosine 

( )y cF x=  are shown.  

 

The points on the graph ( )y sF x=  correspond to the “extended” Fibonacci numbers with the even indexes 

2n :  
 

{ }2 8 6 4 2 0 2 4 6 8..., 21, 8, 3, 1, 0, 1, 3, 8, 21,...nF F F F F F F F F F− − − −= = − = − = − = − = = = = = . (17) 

 

The points on the graph ( )y cF x=  correspond to the “extended” Fibonacci numbers with the odd indexes 

2 1n + : 
 

{ }2 1 7 5 3 1 1 3 5 7..., 13, 5, 2, 1, 1, 3, 5, 13,...nF F F F F F F F F+ − − − −= = = = = = = = =
         

          (18) 

 

In Fig. 2, the graphs of the hyperbolic Lucas sine ( )y sL x=  and the hyperbolic Lucas cosine ( )y cL x=  

are shown.  
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Fig. 2. The graphs of the hyperbolic Lucas functions 
 

The points on the graph ( )y sL x=  correspond to the “extended” Lucas numbers with the odd indexes 

2 1n + :  
 

{ }2 1 7 5 3 1 1 3 5 7..., 29, 11, 4, 1, 1, 4, 11, 29,...nL L L L L L L L L+ − − − −= = − = − = − = − = = = =    (19) 

 

The points on the graph ( )y cL x=  correspond to the “extended” Lucas numbers with the even indexes 

2n : 
 

{ }2 6 4 2 0 2 4 6..., 18, 7, 3, 2, 3, 7, 18,...nL L L L L L L L− − −= = = = = = = =            (20) 

 
Here it is necessary to point out that in the point x=0 the hyperbolic Fibonacci cosine cF(x) takes the value 

2(0)
5

cF =  (Fig. 1), and the hyperbolic Lucas cosine cL(x) takes the value cL(0)=2 (Fig. 2). It is also 

important to emphasize that the “extended” Fibonacci numbers Fn with the even indexes (n = 0, ±2, ±4, ±6, 
…) are “inscribed” into the graph of the hyperbolic Fibonacci sine sF(x) in the discrete points (x = 0, ±2, ±4, 
±6, …) and the “extended” Fibonacci numbers with the odd indexes (n = ±1, ±3, ±5, …) are “inscribed” into 
the hyperbolic Fibonacci cosine cF(x) in the discrete points (x = ±1, ±3, ±5 …). On the other hand, the 
“extended” Lucas numbers with the even indexes are “inscribed" into the graph of the hyperbolic Lucas 
cosine cL(x) in the discrete points (x = 0, ±2, ±4, ±6 …), and the “extended” Lucas numbers with the odd 
indexes are “inscribed” into the graph of the hyperbolic Lucas cosine sL(x) in the discrete points (x = ±1, ±3, 
±5 …).  
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These arguments lead us to the conclusion that the property of recursiveness is the main distinctive feature 
of the hyperbolic Fibonacci and Lucas functions (11) - (14), compared to the classical hyperbolic functions 
(7), (8). Thus, the hyperbolic Fibonacci and Lucas functions (11) - (14) are a new class of hyperbolic 
functions described in [17]. And we have a right to name these functions as recursive hyperbolic functions. 
 
3.6 The Hyperbolic and Recursive Properties of the Hyperbolic Fibonacci and Lucas 

Functions  
 
Thus, the hyperbolic functions (11) - (14) have distinctive mathematical properties compared to the classical 
hyperbolic functions (7), (8). First of all, they retain all well-known properties of the classical hyperbolic 
functions (7), (8) (hyperbolic properties), secondly, they have new unusual properties inherent to the 
Fibonacci and Lucas numbers (recursive properties). 
 
We begin from the hyperbolic properties. First of them is parity property: 
 

( ) ( ) ( ) ( )

:

( ) ( ); ( ) ( )
;

sF x sF x cF x cF x
sL x sL x cL x cL x





− = − − =
− = − − =

Parity property

                                                       (21) 

The relationship ( ) ( )2 2
1ch x sh x− =        is possibly one of the most important properties of the classical 

hyperbolic functions (7), (8). For the recursive hyperbolic functions (11) - (14), this property is given by 
Theorem 1 [17]. 
 

Theorem 1. The following relationships, similar to the relationship ( ) ( )2 2
1ch x sh x− =       , are valid for 

the recursive hyperbolic Fibonacci and Lucas functions: 
 

( ) ( )2 2 4

5
cF x sF x− =       .                                                        (22) 

 

( ) ( )2 2
4cL x sL x− =       .                                                        (23) 

 
Let us consider the examples of the recursive properties of the functions (11) - (14) [17]. 
 
Theorem 2. The following relations, which are similar to the recursive relations for the Fibonacci and Lucas 

numbers 2 1n n nF F F+ += +  and 2 1n n nL L L+ += + , are valid for the recursive hyperbolic Fibonacci and 

Lucas functions: 
 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2 1

2 1

2 1

2 1

sF x cF x sF x

cF x sF x cF x

sL x cL x sL x

cL x sL x cL x

+ = + +

+ = + +

+ = + +

+ = + +

Recurrence relation for the Fibonacci hyperbolic functions :

Recurrence relation for the Lucas hyperbolic functions :
                          (24) 
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Theorem 3 (a generalization of Cassini’s formula for continues domain). The following relations, which 

are similar to Cassini’s formula ( ) 12
1 1 1

n

n n nF F F
+

+ −− = − , are valid for the recursive hyperbolic Fibonacci 

functions: 
 

( ) ( ) ( )
( ) ( ) ( )

2

2

1 1 1

1 1 1

sF x cF x cF x

cF x sF x sF x

− + − = −  

− + − =  

Cassini's formula :

                                          (25) 

 
3.7 Theory of Fibonacci Numbers as a “Degenerate” Case of the Theory of the 

Recursive Hyperbolic Fibonacci and Lucas Functions 
 
As follows from (15), (16), the two "continuous" identities for the recursive hyperbolic Fibonacci and Lucas 
functions (11) – (14) always correspond to one "discrete" identity for the “extended” Fibonacci and Lucas 
numbers (see Table 1). Conversely, we can obtain the "discrete" identity for the “extended” Fibonacci and 
Lucas numbers by using two corresponding “continuous” identities for the recursive hyperbolic Fibonacci 
and Lucas functions (11) – (14). As the “extended” Fibonacci and Lucas numbers, according to (15) and 
(16), are the "discrete" cases of the recursive hyperbolic Fibonacci and Lucas functions (11) – (14), this 
means that due the introduction of the recursive hyperbolic Fibonacci and Lucas functions (11) - (14) [17], 
the classical “theory of Fibonacci numbers" [18-20] as if "degenerates," because this theory is a partial 
("discrete") case of the more general ("continuous) theory of the recursive hyperbolic Fibonacci and Lucas 
functions (11) - (14). This conclusion is another unexpected result, which follows from the theory of the 
recursive hyperbolic Fibonacci and Lucas functions [17]. Such approach requires a revision of the existed 
“theory of Fibonacci numbers” [18-20] from the point of view of the theory of the recursive hyperbolic 
Fibonacci and Lucas functions (11) - (14).  
 
However, a new geometric theory of phyllotaxis, created by the Ukrainian researcher Oleg Bodnar [21,22], 
is the most brilliant confirmation of the uniqueness and fundamental nature of the recursive hyperbolic 
Fibonacci and Lucas functions (11) - (14).  
 

4 Phyllotaxis Phenomenon and Bodnar’s Geometry 
 
4.1 Mystery of Phyllotaxis 
 
As outlined in the chapter "Authority of Nature" of the book [23], the most important criterion for the 
evaluation of new mathematical results is “its value to the sciences.” What is the significance of the 
recursive hyperbolic Fibonacci and Lucas functions (11) - (14) for modern science? A new geometric theory 
of phyllotaxis, created by Ukrainian researcher Oleg Bodnar [21,22], gives the answer to this question. 
  
Among Nature’s phenomena, which surround us, perhaps, the botanical phenomenon of phyllotaxis [21] is 
the best known and most common.  
 
This phenomenon is inherent to many biological objects. The essence of phyllotaxis phenomenon consists in 
a spiral disposition of leaves on plant’s stems of trees, petals in flower baskets, seeds in pine cone and 
sunflower discs etc (Fig. 3). This phenomenon, known already since Kepler’s time, was a subject of 
discussion of many scientists and thinkers, including Leonardo da Vinci, Turing, Weil and others. In 
phyllotaxis phenomenon more complex concepts of symmetry, in particular, the concept of helical 
symmetry, are used. 
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On the surfaces of phyllotaxis' objects, their bio-organs (seeds on the sunflower's disks and pine cones etc.) 
are disposed in the form of the left-twisted and right-twisted spirals. For the evaluation of the symmetrical 
properties of such phyllotaxis' objects, it is used usually the number ratios for the left-twisted and right-
twisted spirals, observed on the surfaces of the phyllotaxis' objects. Botanists proved that these ratios are 
equal to the ratios of the adjacent Fibonacci numbers, i.e.,  
 

 
 

Fig. 3. Geometric models of phyllotaxis structures: (а) Pineapple; (b) Pine cone; (c) Head of sunflower 
 

1 2 3 5 8 13 21 1 5
: , , , , , ,...

1 2 3 5 8 13 2
n

n

F

F
+ +→ Φ = .                                         (26) 

 
The ratios (26) are called phyllotaxis orders [21,22]. They are various for different phyllotaxis’ objects. For 

example, the disc of sunflower can have the phyllotaxis orders, given by the Fibonacci ratios 
89

144
,

55

89  and 

even 
144

233. 

 
By observing phyllotaxis structures in the completed form and by enjoying the well organized pictures on 
their surfaces (Fig. 3), we always ask the question: how are the Fibonacci spirals are formed on their 
surfaces during their growth? It is proved [21] that during the growth of the phyllotaxis’ object, a natural 
modification (increasing) of symmetry orders happens and this modification of symmetry obeys to the law: 
 

...
13
21

8
13

5
8

3
5

2
3

1
2 →→→→→→                                                        (27) 
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The modification of the phyllotaxis orders according to (27) is named dynamic symmetry [21,22]. This 
problem, which has attracted the attention of Kepler, Leonardo da Vinci, Turing  and Weil, rightfully can 
be called MILLENIUM PROBLEM. 
 
4.2 Key Ideas of Bodnar’s Geometry 
 
Without going into the detailed description of Bodnar’s geometry and referring to Bodnar’s works [21,22], 
we will analyze only the key ideas of this geometry. According to (27), in the process of their growth, the 
phyllotaxis' objects pass through series of intermediate states, each of which corresponds to the certain order 
of symmetry (see (27)). Bodnar's geometry is based on the following assumptions: 
 

1. The geometry of phyllotaxis is hyperbolic geometry. 
2. A passage of phyllotaxis’ object from any state to another one is realized by means of hyperbolic 

rotation, which is the main transformation of hyperbolic geometry.  
3. The mathematical relations for phyllotaxis’ objects are described by the recursive hyperbolic 

Fibonacci functions (11), (12). This assumption is most unusual, but just this assumption led 
Bodnar to very simple explanation of the phyllotaxis mystery (27).  

 
A number of the important conclusions are following from Bodnar’s geometry: 
 

1. “Bodnar’s geometry” opened for modern science a new “hyperbolic world,” the world of 
phyllotaxis. The main feature of this world is the fact that the basic geometric relations of this world 
are described by the recursive hyperbolic Fibonacci functions (11), (12) what cause the appearance 
of the Fibonacci spirals on the surface of phyllotaxis’ objects.  

2. “Bodnar's geometry” showed that hyperbolic geometry is much more spread in the real world than 
it seemed before. The recursive hyperbolic Fibonacci and Lucas functions (11), (12) are not the 
"fiction" of mathematicians; they are the “natural” functions  of Nature. They appear in 
different botanical structures such, as pine cones, pineapples, cacti, discs of sunflower and so on.  

3. Bodnar's geometry is a new hyperbolic geometry of wildlife and this fact is of fundamental 
importance for the future development of such sciences as biology, botany, physiology, medicine, 
genetics, and so on.  

 

5 Fibonacci λλλλ-Numbers, Metallic Means, Gazale’s Formulas and 
General Theory of Recursive Hyperbolic Functions  

 
5.1 Fibonacci λλλλ-Numbers  
 
5.1.1 A brief of history  
 
In the late 20 th and early 21st centuries, several researchers from different countries –Argentinean 
mathematician Vera W. de Spinadel [24], French mathematician Midhat Gazale [25], American 
mathematician Jay Kappraff [26], Russian engineer Alexander Tatarenko [27], Armenian philosopher and 
physicist Hrant Arakelyan  [28], Russian researcher Victor Shenyagin [29], Ukrainian physicist Nikolai 
Kosinov [30], Spanish mathematicians Sergio Falcon and Angel Plaza [31] and others independently one to 
another began to study a new classes of the recurrence numerical sequences, which are a generalization of 
the classical Fibonacci numbers. These numerical sequences led to the discovery of a new class of 
mathematical constants, called "metallic means" by Vera W. de Spinadel [24]. 
 
The interest of many independent researchers from different countries (US, Canada, Argentina, France, 
Spain, Russia, Armenia, Ukraine) can not be accidental. This means that the problem of the generalization of 
Fibonacci numbers and “golden ratio” has matured in modern science. 
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5.1.2 The recurrence relation for the Fibonacci λλλλ-numbers 
 
Let us give an integer λ =1,2,3,...  and consider the following recurrence relation:  

 

( ) ( ) ( ) ( ) ( )2 1 ; 0 0, 1 1.F n F n F n F Fλ λ λ λ λ+ = λ + + = =                                          (28) 

 
The recurrence relation (28) generates an infinite number of new numerical sequences, because every integer 
λ = 1,2,3,...  generates its own recursive numerical sequence.  
 
Basing on the fact, that for the case λ=1 the recurrence relation (28) generates the classical Fibonacci 
numbers, we will name a general class of the numerical sequences, generated by the recurrence relation (28), 
the Fibonacci λ-numbers. 
 
Note that for the case λ=2 the recurrence relation (28) generates the so-called Pell numbers [32]: 
 

0,1,2,5,12,29,70,169,408,...                                                        (29) 
 

5.1.3 The generalized Cassini’s formula for the “extended” Fibonacci λλλλ-numbers  
 
Table 2 shows the examples of the “extended” Fibonacci λ -numbers 
 

Table 2. The “extended” Fibonacci λ -numbers for the cases λλλλ=1,2,3,4 
 

n 0 1 2 3 4 5 6 7 8 
F1(n) 0 1 1 2 3 5 8 13 21 
F1(-n) 0 1 -1 2 -3 5 -8 13 -21 
F2(n) 0 1 2 5 12 29 70 169 408 
F2(-n) 0 1 -2 5 -12 29 -70 169 -408 
F3(n) 0 1 3 10 33 109 360 1189 3927 
F3(-n) 0 1 -3 10 -33 109 -360 1189 -3927 
F4(n) 0 1 4 17 72 305 1292 5473 23184 
F4(-n) 0 1 -4 17 -72 305 -1292 5473 -23184 

 
In the article [33], the surprising mathematical formula, which is a generalization of Cassini’s formula (4) 
for the classical Fibonacci numbers, has been proved:   
 

( ) ( ) ( ) ( ) 12 1 1 1 ,
n

F n F n F n
+

λ λ λ− − + = −

Generalized Cassini's formula :uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu�
                                                       (30) 

 

where .1,2,3,..λ =  is a given integer, ( ) ( ) ( )1 , , 1F n F n F nλ λ λ− +  are the adjacent Fibonacci λ-

numbers. 
 
The formula (30) sounds as follows:  
 

“The quadrate of any Fibonacci λ-number ( )F nλ  are always different from the product of the two 

adjacent Fibonacci λ-numbers ( )1F nλ −  and ( )1F nλ + , which surround the initial Fibonacci               

λ-number ( )F nλ , by the number 1; herewith the sign of the difference of 1 depends on the parity of n: 

if n is even, then the difference of 1 is taken with the sign “minus,” otherwise, with the sign “plus”. 
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As is known, a study of integer sequences is the area of number theory. The Fibonacci λ -numbers, given by 
the recurrence relation (28), are integer sequences. Therefore, for many mathematicians in the field of 
number theory, the existence of the infinite number of the integer sequences, which satisfy to the surprising 
generalized Cassini’s formula (30) [33], may be a big surprise. 
 
5.2 The “Metallic Means” by Vera W. de Spinadel  
 
5.2.1 Definition 
 
The following characteristic equation follows from the recurrence relation (28):  
 

2 1 0x x− λ − = .                                                                         (31) 
 

The algebraic equation (31) has the following roots: 
 

2

1

4

2
x

λ + + λ=                                                                        (32)  

 
2

2

4

2
x

λ − + λ=                                                                        (33) 

 
Denote the positive root (32) through λΦ , i.e.,  

 
24

2λ
λ + + λΦ =                                                                        (34)  

 
Note what for the case 1λ =  the formula (34) is reduced to the formula for the golden ratio: 
 

2
51

1

+=Φ .                                                                        (35) 

 
This means that the formula (35) gives a wide class of the new mathematical constants, which are a 
generalization of the golden ratio (35).  
 
Basing on this analogy, the Argentinean mathematician Vera W. de Spinadel named in [24] the 
mathematical constants (34) the metallic means. If we take λ =1, 2, 3, 4 in (34), then we get the following 
mathematical constants having according to Vera de Spinadel the following special names:  
 

 
 
 
 
 
 
 
 
 
 

( )

( )

( )

( )

1

2

3

4

1 5
the Golden Mean, =1

2

1 2 the Silver Mean , = 2

3 13
the Bronze Mean, = 3

2

2 5 the Cooper Mean, = 4 .

+Φ = λ ;

Φ = + λ ;

+Φ = λ ;

Φ = + λ
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Other metallic means ( 5λ ≥ ) do not have special names:  
 

             
5 6 7 8

5 29 7 2 14
; 3 2 10; ; 4 17.

2 2

+ +Φ = Φ = + Φ = Φ = +  

 
5.2.2 The simplest algebraic properties of the “metallic means.”  
 
It follows from the algebraic equation (31) the following simple algebraic properties of the metallic means 
(34):   
 

1
λ

λ

λ = Φ −
Φ

,                                                                        (36) 

 

21
4λ

λ

Φ + = + λ
Φ

                                                                       (37) 

 
1 2n n n− −

λ λ λΦ = λΦ + Φ ,                                                                       (38) 

 
where n=0, ±1, ±2, ±3, … , 
 

1 1 1 1 ...λΦ = + λ + λ + λ +                                                        (39) 
 

1
1

1
...

λΦ = λ +
λ +

λ +
λ +

                                                        (40) 

 
Note that for the case 1λ =  the representations (39) and (40) coincide with the well known representations 
of the classical golden ratio in the forms: 
 

1
1 1 1 1 ... ; 1

1
1

1
1

1 ...

Φ = + + + + Φ = +
+

+
+

.                                         (41) 

 
The representations of the “metallic means” in the forms (39) and (40), similar to the surprising 
representations (41), are additional confirmations of the fact that the “metallic means” λΦ are new 

mathematical constants!  
 

5.3 Gazale’s Formulas  
 
5.3.1 Gazale’s formula for the Fibonacci λλλλ-numbers.  
 

The formula (28) defines the Fibonacci λ -numbers ( )F nλ  recursively. However, Midhat Gazale in the 

book [25] represents the “extended” Fibonacci λ -numbers ( )F nλ  in the explicit form through the 

“metallic mean” λΦ :  
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2

( 1/ )
( )

4

n n

F n λ λ
λ

Φ − − Φ=
+ λ

                                                        (42) 

 
Note that for the partial case 1λ = , the formula (42) is reduced to the Binet’s formula for Fibonacci 
numbers.  
 
5.3.2 Self-similarity and Gazale’s hypothesis  
 
A conception of self-similarity [34] is spread widely in Nature, sciences and mathematics. As pointed in the 
article [34], “in mathematics, a self-similar object is exactly or approximately similar to a part of itself (i.e. 
the whole has the same shape as one or more of the parts). Many objects in the real world, such as 
coastlines, are statistically self-similar: parts of them show the same statistical properties at many scales. 
Self-similarity is a typical property of fractals. Scale invariance is an exact form of self-similarity where at 
any magnification there is a smaller piece of the object that is similar to the whole”.  
 
All phyllotaxis’ objects [21] are brilliant examples of self-similarity. In particular, the ratios of Fibonacci 
numbers in the sequence (27) are examples of self-similarity. This means that a growth of phyllotaxis 
objects, according to the regularity (27), is based on the self-similarity principle. Also Bodnar’s geometry 
[21,22], which explains the growth of phyllotaxis objects, is based on self-similarity principle.  
 
In mathematics, self-similarity is expressed through recursive relations.  
 
The central notion of Gazale’s book [25] is the notion of self-similarity. Gazale was one of the first who 
begun to study Fibonacci λ-numbers. The derivation of mathematical formula (42), which expresses 
Fibonacci λ-numbers through the "metallic means," is one of the main Gazale's mathematical achievements, 
described in the book [25]. In the book [25], Gazale put forward the following unusual hypothesis, which 
has direct relation to mathematical models of self-similarity: 
 

Gazale’s hypothesis: “The numerical sequence ,, 2 , 1m nm n m nF F mF+ += + , which I call here the 

Fibonacci sequence of the order m, play a key role in the study of self-similarity”. 
  

If we take in this formula that m= λ , ( ), 2 2m nF F n+ λ= + , ( ),m nF F nλ=  ( ), 1 1m nF F n+ λ= + , then we 

get the recurrence relation (28) for the Fibonacci λ-numbers. 
 
This means that the recurrence relation (28), which gives the Fibonacci λ-numbers, according to Gazale’s 
hypothesis, expresses the self-similarity principle, which is one of the most important principles of Nature, 
sciences and mathematics.   
 

5.4 Hyperbolic Fibonacci and Lucas λλλλ-Functions 
 
5.4.1 Definition 
 
The researches by Vera de Spinadel [24], Midhat Gazale [25], Jay Kappraff  [26] and others have became 
for Alexey Stakhov a launching pad for the creation of the general theory of recursive hyperbolic functions, 
described in the works [35,36].  
 
In order to determine a new class of hyperbolic functions, Alexey Stakhov represent in [35,36] Gazale’s 
formulas for the Fibonacci and Lucas λ-numbers in the following form:  
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( )
2

2

for 2
4

for 2 1
4

n n

n n

n k

F n

n k

−
λ λ

λ −
λ λ

Φ − Φ =
+ λ= 

Φ + Φ = +
 + λ

                                         (43) 

 

( ) for 2 1

for 2

n n

n n

n k
L n

n k

−
λ λ

λ −
λ λ

Φ − Φ = +
= Φ + Φ =

                                         (44) 

 
Comparing Gazale’s formulas (43) and (44) to the classical hyperbolic functions (7), (8), we can see their 
similarity by mathematical structures. This similarity became a reason to introduce a general class of 
hyperbolic functions called in [35,36] the hyperbolic Fibonacci and Lucas λ -functions: 
 

Hyperbolic Fibonacci λλλλ-sine and λλλλ-cosine 
 

2 2

2 2

1 4 4
( )

2 24 4

x x
x x

sF x

−
−

λ λ
λ

    Φ − Φ λ + + λ λ + + λ    = == −
    + λ + λ     

            (45) 

 

2 2

2 2

1 4 4
( )

2 24 4

x x
x x

cF x

−
−

λ λ
λ

    Φ + Φ λ + + λ λ + + λ    = == +
    + λ + λ     

                         (46) 

 

Hyperbolic Lucas λλλλ-sine and λλλλ-cosine 
 

2 24 4
( )

2 2

x x

x xsL x

−

−
λ λ λ

   λ + + λ λ + + λ
   = Φ − Φ = −
   
   

                            (47) 

 

2 24 4
( )

2 2

x x

x xcL x

−

−
λ λ λ

   λ + + λ λ + + λ
   = Φ + Φ = +
   
   

 ,                          (48) 

 
where x is continuous variable and λ =1,2,3,...  is a given integer. 
 
It is easy to see that the functions (45), (46) and (47), (48) are connected by very simple relations: 
 

2 2

( ) ( )
( ) ; ( ) .

4 4

sL x cL x
sF x cF xλ λ

λ λ= =
+ λ + λ

                                        (49) 

 

5.4.2 An uniqueness of the hyperbolic Fibonacci and Lucas λλλλ-functions 
 
It should be noted the following unique properties of the hyperbolic Fibonacci and Lucas λ- functions (45)–
(48): 
 

1. The hyperbolic Fibonacci and Lucas λ-functions (45)–(48) are, on the one hand, a generalization of 
the classical hyperbolic functions (7), (8), but on the other hand, a generalization of the recursive 
hyperbolic Fibonacci and Lucas functions (11)–(14), which are a partial case of the functions (45)–
(48) for the case 1λ = . 
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2. Their uniqueness consists of the fact that they, on the one hand, retain all hyperbolic properties, 
inherent for the classical hyperbolic functions (7), (8). On the other hand, they have recursive 
properties, inherent to the recursive hyperbolic Fibonacci and Lucas functions (11)–(14). 

3. The next unique feature of the functions (45)–(48) is the fact that the general formulas (45)–(48) 
define theoretically infinite number of new classes of the recursive hyperbolic functions, because 
every integer λ =1,2,3,... generates a new, previously unknown class of the recursive hyperbolic 
functions. 

4. One more unique feature of the functions (45)–(48) is their deep connection to the “extended” 
Fibonacci and Lucas λ -numbers, defined by Gazale’s formulas (43), (44). This connection is 
determined identically by the following relations: 
 

( ), 2
( )

( ), 2 1

( ), 2
( )

( ), 2 1

sF n n k
F n

cF n n k

cL n n k
L n

sL n n k

λ
λ

λ

λ
λ

λ

 =
=  = + 


= =  = +

.                                                       (50) 

 
5. According to Gazale’s hypothesis, the recursive hyperbolic functions (45)–(48), following from 

Gazale’s formulas (43), (44), express the similarity principle, which is the most important principle 
of Nature, science and mathematics.   

 
5.4.3 Hyperbolic and recursive properties of the hyperbolic Fibonacci and Lucas λλλλ-functions 
 
As examples of hyperbolic properties of the functions (45)–(48), we consider the parity properties and the 
analog of the Pythagoras Theorem: 
 
Parity properties 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

;

;

sF x sF x cF x cF x

sL x sL x cL x cL x
λ λ λ λ

λ λ λ λ

− = − − =
− = − − =

.                                         (51) 

 
Analog of the Pythagoras Theorem 
 

( ) ( )

( ) ( )

2 2

2

2 2

4

4

4

cF x sF x

cL x sL x

λ λ

λ λ

  −   =    + λ

  −   =   

                                                                      (52) 

 
Some recursive properties of functions (45)–(48) are given by the following theorems, proved in [35,36]. 
 

Theorem 1. The following relations, which are similar to the recurrence relation for the Fibonacci λ -

numbers ( ) ( ) ( )2 1F n F n F nλ λ λ+ = λ + + , are valid for the hyperbolic Fibonacci λ -functions: 

 
( ) ( ) ( )
( ) ( ) ( )

2 1 ,

2 1 .

sF x cF x sF x

cF x sF x cF x
λ λ λ

λ λ λ

+ = λ + +
+ = λ + +

                                                       (53)  

 
Theorem 2. (the generalized Cassini’s formula for continuous domain). The following relations, which 
are similar to the generalized Cassini’s formula for the Fibonacci λ -numbers 

2 1( ) ( 1) ( 1) ( 1)nF n F n F n +
λ λ λ− − + = − , are valid for the hyperbolic Fibonacci λ -functions: 
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( ) ( ) ( )

( ) ( ) ( )

2

2

1 1 1,

1 1 1.

sF x cF x cF x

cF x sF x sF x

λ λ λ

λ λ λ

  − + − = − 

  − + − = 

                                                      (54)  

 

6 Original Solution to Hilbert’s Fourth Problem  
 
6.1 General Considerations 
 
The basis of the original solution to Hilbert’s Fourth Problem, resulting in the works [6-10], is the approach, 
named in [14] "the game of the functions." The essence of this approach consists in the fact that we are 
remaining in the framework of the classical hyperbolic geometry, that is, we do not change its postulates; 
however, for the description of the mathematical relationships of the new hyperbolic geometry, we use new 
classes of recursive hyperbolic functions, introduced in the works [17,35,36]. Note that the Ukrainian 
researcher Oleg Bodnar was the first scientist, who used this approach to create a geometric theory of 
phyllotaxis [21,22]. Until the publication of the articles [17,35,36], such approach to the creation of new 
hyperbolic geometries cannot be used, because the new classes of hyperbolic functions, having recursive 
properties, were unknown.  
 
In this connection, the creation of Bodnar’s geometry [21,22], which relates to a new kind of hyperbolic 
geometry, became a brilliant confirmation of fruitfulness of the new approach to the solution of Hilbert 
Fourth Problem, because the replacement of the classical hyperbolic functions (7), (8) on  the recursive 
hyperbolic Fibonacci functions (11)–(12) underlies Bodnar's geometry. 
 
6.2 An Original Solution of Hilbert’s Fourth Problem an d “Golden” Hyperbolic 

Geometry 
 
6.2.1 A general idea  
 
In the articles [35,36], the wide generalization of the recursive hyperbolic Fibonacci and Lucas functions 
(11)–(14) is presented. Here the recursive hyperbolic Fibonacci and Lucas λ-functions (45)–(48), which 
extend the class of the recursive hyperbolic functions ad infinitum, are described. These new classes of the 
surprising recursive hyperbolic functions, based on Spinadel’s metallic means [24] and Gazale’s formulas 
[25], became the basis of the original solution to Hilbert’s Fourth Problem [14–19].  
 
The following general idea underlies the original solution to Hilbert’s Fourth Problem [14–19]: 
 

Every class of the recursive hyperbolic functions (45)–(48) generates new hyperbolic geometry.  
 
It follows from this statement that the number of new hyperbolic geometries, following from such 
approach, is theoretically infinite. We will name these new recursive hyperbolic geometries, based on the 
self-similarity principle, with the common title of the “Golden” Hyperbolic Geometry. 
 
Thus, the "Golden" Hyperbolic Geometry has two distinctive features: 
 

1. This geometry is fractal geometry, based on the recursive Fibonacci λ-numbers (28). 
2. The principle of self-similarity  underlies this new hyperbolic geometry. 
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6.2.2 The metric λλλλ-forms of Lobachevski’s plane 
 
There exists in hyperbolic geometry a notion of the metric form of Lobachevski’s plane, which is based on 
the classical hyperbolic functions. Developing this concept, the following formula for the metric form of 
Lobachevski’s plane, based on the hyperbolic Fibonacci λ-functions (45), (46), has been derived in [6–10]: 
 

( ) ( )( ) ( ) ( )
2

22 2 22 4
ln

4
ds du sF u dvλ λ

+ λ= Φ +    ,                                         (55) 

 

where 
24

2λ
λ + + λΦ =  is the metallic means and ( )sF uλ  is the recursive hyperbolic Fibonacci λ -sine 

(45), λ=1,2,3,…. The forms (55) are called the metric λ -forms of Lobachevski’s plane [6–10]. 
 
The formula (55) gives an infinite number of new Lobachevski’s geometries (“golden,” “silver,” “bronze,” 
“cooper”  and so on ad infinitum) according to the used class of the recursive hyperbolic Fibonacci λ-
functions (45), (46). 
 
The formula (55) gives an infinite number of the metric forms of Lobachevski’s plane. This means that there 
is infinite number of the new hyperbolic geometries, which are based on the metallic means (34). These new 
hyperbolic geometries “with equal right, stand next to Euclidean geometry” (David Hilbert ). Thus, the 
formula (55) can be considered as the original solution to Hilbert’s Fourth Problem, based on the “game of 
functions” [14]. There are an infinite number of the new hyperbolic geometries, described by the formula 
(55), which are close to Euclidean geometry. Every of these geometries manifests itself in Fibonacci λ-
numbers (28), which can appear in physical world similarly to Bodnar’s hyperbolic geometry [21,22], where 
the classical Fibonacci numbers appear at the surface of phyllotaxis’ objects.  
 

6.3 A New Challenge to Theoretical Natural Sciences 
   
Thus, the main result of the research, described in [6-10], is a proof of the existence of an infinite number of 
the recursive hyperbolic λ-functions (45) - (48), based on the metallic means (34). In addition, for the given 
λ=1,2,3,.. every class of the recursive hyperbolic λ-functions, given by (45) - (48), generates its own 
recursive hyperbolic geometry, which leads to the appearance of the “physical worlds” with specific 
properties, which are determined by the metallic means (34). The new geometric theory of phyllotaxis, 
created by Oleg Bodnar [21,22], is the striking example of this. Bodnar proved that the “world of 
phyllotaxis” is a specific “hyperbolic world,” in which the hyperbolicity manifests itself in the Fibonacci 
spirals on the surface of phyllotaxis’ objects.  
 
However, the “golden” hyperbolic Fibonacci functions (11), (12), which underlie the “hyperbolic world of 
phyllotaxis” [21], are a special case of the recursive hyperbolic Fibonacci λ-functions (45), (46) for λ=1. In 
this regard, we have all reasons to suppose that other types of the recursive hyperbolic λ-functions (45), (46), 
based on the metallic means, can be good models for the new “hyperbolic worlds” that can really exist in 
Nature. Modern science cannot find these special “hyperbolic worlds,” because the recursive hyperbolic 
functions (45), (46) were unknown until now [16,17,35,36]. Basing on the success of Bodnar’s hyperbolic 
geometry [21,22], we can put forward in front to theoretical physics, chemistry, crystallography, botany, 
biology, genetics and other branches of theoretical natural sciences the challenge for searching of the new 
hyperbolic worlds of Nature, based on the new classes of the recursive hyperbolic λλλλ-functions (45), (46). 
 
Studying the recursive hyperbolic functions (45), (46), we can assume that the recursive hyperbolic λ-
functions with the bases  
 



 
 
 

Stakhov and Aranson; BJMCS, 12(4): 1-25, 2016; Article no.BJMCS.21849 
 
 
 

21 
 
 

 
 
 
 

 
 
 
 
 
 
are of the of greatest interest for theoretical natural sciences.  
 
A class of the “golden” recursive hyperbolic Fibonacci functions  
 

( ) ; ( ) ,
5 5

x x x x

sF x cF x
− −− +Φ Φ Φ Φ= =                           (56) 

 
based on the classical golden ratio, plays the leading role among them. These functions underlie Bodnar’s 
geometry [21,22], a new hyperbolic geometry of phyllotaxis.  
 
The next candidate for the new “hyperbolic world” of Nature (after “Bodnar’s hyperbolic geometry” 
[21,22]) may be, for example, silver hyperbolic functions: 
 

( ) ( )

( ) ( )

2 2
2

2 2
2

1
( ) 1 2 1 2 ;

8 2 2

1
( ) 1 2 1 2 ,

8 2 2

x x x x

x x x x

sF x

cF x

− −

− −

Φ − Φ  = = + − +  

Φ + Φ  = = + + +  

                                        (57) 

 

which are connected with Pell numbers [32] and are based on the silver proportion 2 1 2Φ = + , 

connected with the fundamental mathematical constant 2 . 
 

7 Conclusion: Whether are New Classes of Hyperbolic Functions and 
the Following from Them Original Solution to Hilbert’s Fourth 
Problem Fundamental Scientific Result? 

 
In his classic work The Analytical Theory of Heat (1822), the prominent French mathematician and physicist 
Jean-Baptiste Joseph Fourier (1768 - 1830) expressed his opinion about the application of mathematics to 
physical problems (the quote is taken from [23]): 
 

“The profound study of nature is the most fertile source of mathematical discoveries. This study offers 
not only the advantages of a well determined goal but the advantage of excluding vague questions and 
useless calculations. It is a means of building analysis itself and of discovering the ideas which matter 
most and which science must always preserve. The fundamental ideas are those which represent the 
natural happenings… 

 
Its chief attribute is clarity; it has no symbols to express confused ideas. It brings together the most 
diverse phenomena and discovers hidden analogies which unite them”. 

 

( )

( )

( )

( )

1

2

3

4

1 5
the Golden Mean, =1

2

1 2 the Silver Mean , = 2

3 13
the Bronze Mean, = 3

2

2 5 the Cooper Mean, = 4 .

+Φ = λ ;

Φ = + λ ;

+Φ = λ ;

Φ = + λ
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The above quote of the eminent mathematician and physicist has direct relevance to the researches, 
described in this article.  
 
We begin from the articles [16,17]. These articles contain a description of very important mathematical 
discovery, the recursive hyperbolic functions, based on the golden ratio, Fibonacci and Lucas numbers. 
 
In Bodnar’s works [21,22], the similar functions have been used for the creation of new geometric theory of 
phyllotaxis what is a botanical phenomenon, well-known since Johannes Kepler’s time. 
 
Bodnar's geometry is a new kind of Lobachevski's geometry. This geometry uncovers a mystery of 
phyllotaxis, that is, describes how the dynamic symmetry of phyllotaxis’ object is changing in the process of 
its growth. This is expressed in changing the structure of Fibonacci’s spirals on the surface of phyllotaxis’ 
object. 
 
Thus, Bodnar's geometry showed that the world of phyllotaxis is the hyperbolic world, based on 
hyperbolic Fibonacci and Lucas functions. That is, these functions are not "fiction" of 
mathematicians; they are natural functions that are used in natural objects during millions, and 
perhaps billions of years. 
 
In Stakhov’s articles [35,36], the new classes of the recursive hyperbolic functions based on Spinadel’s 
metallic means [24] and Gazale’s formulas [25] have been introduced. The new classes of the recursive 
hyperbolic functions are a generalization of "golden" recursive hyperbolic functions (11) - (14). In 
Stakhov&Aranson’s works [6-10], these functions have been used to produce the unexpected solution to 
Hilbert's Fourth Problem, which relates to the “Golden” Hyperbolic Geometry . This solution puts forward 
in front to theoretical natural sciences the fundamental challenge searching new "hyperbolic worlds of 
nature". 
 
As follows from the above arguments; all of these studies relate directly to Nature and theoretical natural 
sciences. That is why, the new classes of the recursive hyperbolic functions [16,17,35,36] together with 
Bodnar’s geometry [21,22] and the original solution to Hilbert's Fourth Problem [6-10], according to 
Fourier , rightfully can be attributed to the category of fundamental scientific discoveries and, as such, 
they will remain in modern and future sciences. 
 
Taking into consideration the importance of Hilbert's Fourth Problem not only for geometry, but also for the 
entire theoretical natural sciences, the authors of this article take the courage to assert that Hilbert’s Fourth 
Problem was not included into the list of the MILLENNIUM PROBLEMS, by mistake (the modern 
mathematicians could not understand and evaluate this problem) and therefore Hilbert's Fourth Problem 
deserves to be recognized as the MILLENNIUM PROBLEM in geometry. 
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