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The concepts of left (right) fuzzy derivations of d-ideals of Received 11 November 2022
d-algebra is introduced. The cartesian product of left (right) Accepted 7 December 2022
fuzzy derivations of d-ideals are investigated. Different charac-

terizations of right (left) fuzzy derivation of ideals of d-algebra

are discussed.

1. Introduction

After the introduction of fuzzy set theory by Zadeh (1965), different fuzzifica-
tion of the concepts of crisp set to fuzzy set become the major results. Jana
et al. (2017) introduced t-derivations on a complicated subtraction algebras
and Mostefa, Abd-Elnaby, and Yousef (2011) initiated the concept of fuzzy left
(right) derivations of Ku-ideal of Ku-algebras. Senapati et al. (2019, 2021)
initiated the idea of cubic intuitionistic sub-algebras and closed cubic intui-
tionistic ideals of B-algebras and cubic intuitionistic structures applied to
ideals of BCI-algebra. The notion of fuzzy left (right) derivations of BCC-
ideals in BCC-algebras, and the Cartesian product of fuzzy left (right) deriva-
tions of BCC-ideals introduced by Jun et al. (1999). Gerima and Fasil (2020)
introduced the concept of derivations in a BF-algebra. In addition, a left-right
and a right-left derivation of BF,-algebra, left and right derivation of ideal in
BF-algebras were discussed. The notion of d-algebras and d-ideals was intro-
duced by Neggers and Kim (1999). Left (right)-derivation of d-ideal of d-alge-
bra was discussed by Young Hee kim (1018), and Akram and Dar (2005)
introduced the idea of fuzzy d-algebras. This concept was extended to struc-
ture of Fuzzy dot d-sub-algebras by Gerima Tefera (2020). The concept of
Py — almost distributive fuzzy lattices with different characterization was
introduced by Berhanu et al. (2022) and characterization of homomorphism
in implication algebra intiated by Tefera (2022). The concepts of fuzzy deriva-
tions of ideals of BF-algebra with different properties discussed by Gerima and
Tsige (2022). These mentioned ideas motivated us to introduced the concepts
fuzzy derivation in d-algebra as a new concept.
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2. 2.Preliminaries

Definition 2.1. Mostefa, Abd-Elnaby, and Yousef (2011) An Algebra
(X, *,0) of type (2,0) is called a BCK — algebra if it satisfies the following
conditions:

1 xxx=0

(i) 0xx=0

(iii) x*y =0and y*x = 0 implies x =y forall x,y € X
(iv) ((x*xy)* (x*x2))*(zxy) =0,

(V) ((xx(xxy))*xy=0.

Definition 2.2. Neggers and Kim (1999) A nonempty set X with a constant 0
and a binary operation * is called a d-algebra, if it satisfies the following
axioms:

(i) x*xx=0
(i) O0xx=0
(iii) x*y =0and y*x =0 implies x =y forall x,y € X
Let S be a non-empty subset of a d-algebra X, then S is called a sub-algebra of X
if x x y € Sforall x,y € S (Gerima Tefera 2020).

Definition 2.3. (Neggers, Jun, and Kim 1999) Let X be a d — algebra and I be
a subset of X, then I is called d-ideal of X if it satisfies following conditions:

(@0el
(b) x*xy€Iandye€ I, implies x € I.
(c)xe€landy e Ximpliesxxy eI, ie IxX C I

Definition 2.4. (Zadeh 1965) Let X be a non-empty set. A fuzzy (sub)set 4 of
the set X is a mapping y : X — [0, 1].

Definition 2.5. (Akram and Dar 2005) A fuzzy set p in d-algebra X is called
a fuzzy sub-algebra of X if it satisfies p(x *y) > min{u(x),u(y)}, for all
x,yeX.
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Definition 2.6. (Hee Kim 2018) Let (X, *,0) be a d — algebra and let x A y :
=y« (y*xx) for all x,y€X. The mapd: X — X is said to be an
(r,1) — derivation if d(x*y) = (xxd(y)) A (d(x)*y) for all x,ye€X.
Similarly, a map d: X — X said to be an (I,r) — derivation if d(x*y) =
(d(x) x y) A (x x d(y)) for allx,y € X.

Definition 2.7 (Akram and Dar 2005) A fuzzy set u in X is called fuzzy
d — ideal of X if it satisfies the following inequalities:

(Ed1) p(0) = u(x),
(Fd2) u(x) = min{p(x+y),u(y)},
(Fd3) p(x * y) > min{u(x),u(y)} forall x,y € X.

Definition 2.8. (Jun and Xin 2004) Let (X, *,0) be BCC — algebra a fuzzy set
p in X is called fuzzy derivation of BCC — ideal of X if it satisfies the following
conditions:

(@) u(0) > u(x)vx € X
(b) u(d(x*z)) > min{u(d(x* y) * y),u(d(y)) Horallx,y € X

Definition 2.9. (Akram and Dar 2005) Let u be the fuzzy set of a set X. For
a fixed s € [0, 1], the set y, = {x € X : u(x) > s} is called an upper level of p.

A fuzzy subset y is called fuzzy relation on a set S, if y is a fuzzy subset u :
SxS§ — [0,1] (Akram and Dar 2005) .

Definition 2.10. (Akram and Dar 2005) If y is a fuzzy relation on a set S and
B is fuzzy subset of S, then u is a fuzzy relation on f if

u(x,y) < min{B(x), B(y)} Vx,y € S.

3. Main Results

3.1. Fuzzy Derivatives of D-Ideals of D-Algebra

Definition 3.1.1. Let be X a d — algebra and d: X — X be a self-map.
A fuzzy subset y : X — [0, 1] in X called a fuzzy right derivation of d — ideal
of X, if it satisfies the following conditions:

a. u(0) > pu(x) Vx € X.
b u(d(x)) = minfu(xd(y)), u(d(y)}Vx, y € X.
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Example 3.1.1. Let X = {0,1,2,3,4} be a set and * be defined by the table
below:

A WN-—=O

hAwWwN-—O|O
A wWNOO|—
ANO—,O|N
—_ OWNO|W
oOwo —=0oO|hN

Table 3.1 Fuzzy right derivation of d-ideal of d-algebra

Then (X, *,0) is d — algebras. 1, if x=10,3

Now define self-map d: X — X by d(x) =< 0, if x= 2, 4
2, ifx=1

And define a fuzzy derivation p:d(x) — [0,1] by u(d(0))

=u(d(3)) = p(1) = t1,u(d(2)) = u(d(4)) = u(0) = to, p(d(1)) =p2) =10
where to>t;>t, and ty, t1, 1, € [0,1].

iu(0) >pu(x)Vx e X

Since j(0) = u(x + x) > min{u(x), u(x)} = u(x)

ii. p(d(x)) = min{p(x * d(y)), u(d(y))}

Thenletx =1,y =1.So

u(d(1) > min{u(1 xd(2))},u(d(2))} = min{p(1+0)}, 4(0)}
= min{u(1), u(0)} = 1.

Thus, w(d(1)) > (1) = &
Let x =2, y =1 then

#(d(2)) = min{u(2 * d(1)), u(d(1))}-
= min{p(2 *2),4(2)} = min{u(0), u(2)} =
Thus, u(d(2)) > p(2) = t,
Let x = 3, y =1 then

u(d(3)) > mingp(3 + (1)), u(d(1))}-

= min{u(3 *2), 4(2)} = min{u(2), u(2)} = u(2) =t
But p(d(3)) = u(1) = t;>t,. Thus, u(d(3)) > u(2) =t,
Let x =3, y = 2 then

u(d(3)) > min{pu(3 + d(2)), u(d(2))}-
— min{u(3 « 0),u(0)} = min{u(3), 4(0)} = u(3) = b
Note: p(x + d(y)) =1 — u(d(y))
Let x =3, y = 3 then

u(d(3)) = min{u(3 + d(3)), u(d(3))}
— min{u(3 1), (1)} = min{(3), p(1)} = u(3) = 1 — u(d(3))

Let x = 3, y = 4 then
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u(d(3)) = min{u(3 * d(4)), u(d(4))}
= min{p(3 % 0),u(0)} = min{u(3),u(0)} = u(3) =1 —u(d(3))
Let x =2, y = 3 then
u(d(2)) = min{u(2 * d(3)), u(d(3))}
= min{p(2 x 1),pu(1)} = min{u(2),u(1)} = u(3) = u(2) =&

In any case, uis fuzzy right derivation of d — ideal of d — algebra of X.

Remark 3.1.1. In the above example (3.1.1) u is not fuzzy left derivation of
d — ideal of d — algebra of X.

Definition 3.1.2. Let X be a d — algebra and d : X — X be a self--map.
A fuzzy set y : X — [0, 1] in X called a fuzzy left derivation of d — ideal, if it
satisfies the following conditions:

a. u(0) > p(x)Vx € X
b. u(d(x)) > min{u(d(x) * y),u(d(y))} forall x,y € X

Example 3.1.2. Let X ={0,1,2} be a set and * be defined by the table
below:

N = o *
N —oofo
—moo|a
onvol|N

Table 3.2 Fuzzy left derivation of d-ideal of d-algebra.
Then (X, *,0) is d — algebras.

0, ifx=0,1

Now define self-map d : X — Xby d(x) = { 1. ijfcx _
And define a fuzzy derivation g d(X) — [0, 1]by
u(d(0)) = u(d(1)) = u(1) = top(d(2)) =u(1) =t where  fh>t>1h
and by, I, b € [0, 1]

Now by using the definition of fuzzy left derivations of d — ideal of
d — algebra X we can show that y : d(X) — [0, 1] is fuzzy left derivation of
d — ideal of d — algebra X as follows:

Lu(0) > u(x)vVx e X
Since u(0) = (x + x) > min{u(x), u(x)} = p(x)
ii. p(d(x)) > min{u(d(x) * y),u(d(y))}
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Then letx =1, y = 2. So

p(d(1)) > min{p(d(1) *2), u(d(2))}

= min{u(0 2), u(1)} = min{p(0),u(1)} = u(1) = &
Thenletx =1,y =1.So

#(d(1)) > min{p(d(1) * 1),u(d(1))}
= min{u(0* 1), u(0)} = min{u(0), u(0)} = u(0) =t

Then let x =0, y = 1. So

#(d(0)) = min{u(d(0) + 1), u(d(1))}
= min{u(0 + 1), 4(0)} = min{u(0),u(0)} = u(0) = to

Letx=10,y=2.50

u(d(0)) > min{u(d(0) * 2), u(d(2))}
= min{p(0 % 2), u(1)} = min{p(0), u(1)} = p(1) = 1

Letx=2,y=1.So

p(d(2)) = min{u(d(2) 1), u(d(1))}

= min{u(1 1), 4(0)} = min{u(0), u(0)} = u(0) = fo

But u(d(2)) = u(1) = t; <t,. Which is contradiction with u(d(2)) = pu(1)
=t >t

Thus, y is not fuzzy left derivation of d — ideal of d — algebra of X.

Example 3.1.3. Let X = {0,a,b,c} be a set with* given by the following
table:

Nnoo o *
noo o

NnnNnoolo
ToOn o|T
oo Tol|n

Table 3.3 Left derivation of d - ideal of d - algebra
Then (X, ,0) is d — algebras. .
_ _J0,ifx=0,a
Now define self-map d : X — Xby d(x) = { b, if x=b,c
And define a fuzzy derivation y:d(X) — [0,1] by wu(d(0)) = u(d(a))

= p(0) = to,u(d(b)) = u(d(b)) = u(b) = t1,u(c) = t, ~where tH>t>t
and ty, t;,t, € [0,1].

i u(0) > u(x)vx € X.
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Since p(0) = p(x * x) > min{u(x), u(x)} = u(x)
In the same method it is easy to show the remaining part.

Hence pis fuzzy left derivation of d — ideal of d — algebra of X.

Definition 3.1.3. Letyu : X — [0, 1] be fuzzy subset of X and X is d — algebra.
Let & € [0, 1], then pu, = {x € X/u(d(x)) > a} is level subset of u.

Definition 3.1.4. [4] Let u be fuzzy set of a set X. For a fixed s € [0, 1], the set
p, = {x € X/u(x) > s} is called an upper level of p.

Theorem 3.1.1. Let u be a fuzzy set in X then u is a fuzzy left derivations of
d — ideal of X if and only if it satisfies : For all a € [0, 1], u, #0 implies u,, is
d — ideal of X where u, = {x € X/u(d(x)) > a}.

Proof. Let ube a fuzzy subset in X

(=) : (1). Assume that pbe a fuzzy left derivations d — ideal of X.

Let p be a fuzzy left derivations of d — ideal of X and & € [0, 1] such that
u,#0 and for x,y € Xwith u(d(x))#0 and u(d(x)) > « then d(x) € u,
and d(y) € u,.

u(d(0)) = p(d(x + x)) > min{u(d(x) * (y x x)), u(d(y))} > a.
= u(d(0)) > «
= d(0) € ,
Hence, 0 € p, = U(y, )
(2). d(x) *y € u, and d(y) € p,
Then p(d(x) x y) = a and p(d(y)) > «

= min{u(d(x) *y), u(d(y))} = &
Since, p is a fuzzy left derivation of d — ideal of d-algebra X,

u(d(x)) > min{u(d(x) * ), u(d(y))} > «

= pu(d(x)) > «
And hence, d(x) € u,.

(3). Let d(x) € u, and y € X we have to show d(x) x y € p,
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Now u(d(x) * y) = p(d(x % 0) x y) > min{p(d(x) * (y x 0) * y), u(d(y)) }
= min{u(d(x) * (y * ), u(d(y)) }

= min{u(d(x) * 0),u(d(y))}

= min{u(d(x)), u(d(y))} = «
Therefore, pu(d(x) *y) >0
= d(x) xy € p = U, a)

And hence, y, is a d — ideal of X.
Conversely, assume that p satisfies U (y,a) = {x € X/u(d(x)) > a}.
Letx,y € X

w(d(x)) < min{u(d(x) * y), u(d(y))}

By taking 8, = 3 [u(d(x)) + min{u(d(x) * y), u(d(y))}]
IWF ﬁave /3% € [0,1] and p(d(x)) < B, < min{u(d(x) * y), u(d(y))}
t tollows that:

d(x) *y € U(p,)and d(x) € U(y,ﬁo)

It contradicts and therefore y is a fuzzy left derivations d — ideal of X.

Theorem 3.1.2. Let y be a fuzzy set in X, then y is a fuzzy right derivations of
d — ideal of X if and only if it satisfies : For all a € [0, 1], u, #0 implies y,, is
d — ideal of X where y, = {x € X/u(d(x)) > a}.

Proof. It is similar with the prove of the above theorem (3.1.1). So, we omitted

the proof.

Proposition 3.1.1. The intersection of any family of fuzzy derivation of
d-ideal of fuzzy left derivations d — ideal of d — algebra Xis also fuzzy left
derivations d — ideal.

Proof. Let {/"i}iel be a family of fuzzy left derivations d — ideals of
d — algebraX, then for any x,y € X.

(Nu;) (d(x)) = inf (u,(d(x)))

> inf(min{yi(d(x) *)’)n“i(d()’))})
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= min{inf(yi(d(x) * y)) , inf(yi(d(y)))}

= min{ (N, (d(x) * y), (Ny;) (d(y)) }

Lemma 3.1.1. The intersection of any family of fuzzy derivation of right
derivations d — ideals of d — algebra X is also fuzzy right derivations d — ideal.

Definition 3.1.5. Let y and f3 be fuzzy left derivations subset of a set S, the
Cartesian product of u and B is defined by

(1 x B)(d(x), d(x) = min{u(d(x), B(d(x)}, ¥ x. y € S.

Definition 3.1.6 . If y is a fuzzy left derivations on a set S and f3 is a fuzzy left
derivation on f if u(d(x),d(y)) < min{B(d(x)),B(d(y))} Vx,y € S.

Definition 3.1.7. Let y and f be fuzzy left derivations subset of a set S. Then
the  Cartesian  product of u and B is defined by

(4 x B)(d(x), d(y)) = min{u(d(x)), u(d(y))} Y,y € S.

Theorem 3.1.3. Let yu and f3 be fuzzy left derivations d — ideals of d — algebra
X, then y x [ is a fuzzy left derivations d — ideal of X x X.

Proof. for any (x,y) € X x X, we have

(> B)(d(0),d(0)) = min{u(d(0)), B(d(0))}
= min{u(0), B(0)} (- f(d(x)) < B(d(0)) = B(0))
> min{u(d(x)), B(d(x))}

= (4 x P)d(x),d(x))

Now let  (x1,x2),(y1,02) € X x X,  then, (uxf)(d(x1),d(x2))
= min{u(d(x), f(d(x2) }

> min{min{u(d(x1) * p(d(y1))) }, min{B(d(x2) * y2), f(d(y2)) } }
= min{min{u(d(x1) * y1), u(d(x2) * y2) }, min{u(d(y1)), B(d(y2)) } }
= min{ (¢ x B)(d(x1) * y1, d(x2) * y2), (u x B)(d(y1),d(r2))}

Hence, y x f is a fuzzy left derivation d — ideal of X x X.
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Definition 3.1.8. If is a fuzzy left derivations subset of a set S, the strongest
fuzzy relation on S, that is a fuzzy derivation relation on f is g, given by

pp(d(x,y)) = min{B(d(x)), B(d(y))} Vx,y € S.

Proposition 3.1.2.  For a given fuzzy subset § of d — algebra X, let y; be the
strongest left fuzzy derivation relation on X. If 4 is fuzzy left derivation

d — ideal of X x X, then B(d(x)) < B(d(0)) = B(0) for all x € X.

Theorem 3.1.4. Let 5 be a fuzzy subset of d — algebra Xand let y; be the
strongest fuzzy left derivation X, then f3 is a fuzzy left derivation d — algebra of
X if and only if ygs left derivation d — algebra of X x X.

Proof. Assume that 8 a fuzzy left derivation d — algebra X, we note from (F)
that

#5(0,0) = min{B(d(0)), (d(0))}
= min{$(0), 3(0)}
> min{(d(x)), B(d(y))}

= ug(d(x),d(y))
Now, for any (x1,x2), (y1,¥2) € XxX we have from (F,):

pg(d(x1), d(x2)) = min{B(d(x1)), B(d(x2))}
> min{min{f(d(x1) * y1), B(d(y1))}, min{B(d(x2) * y2), B(d(y2)) } }
= min{min{f(d(x1) * y1), B(d(x2) * y2) }, min{B(d(y1)), B(d(y2)) } }

= min{ug(d(x1) 1, (d0x2) * 32)), g dn), d(72) }

Hence, y; is fuzzy left derivation d — ideal of X x X.
Conversely, for all (x,y) € X x X, we have

min{B(0), B(0)} = ug(x,y) = min{(x), B(y)} it follows:
B(0) > B(x) Vx € X which prove (F;).
Let (x1,%2), (y1,52) € X x Xthen

min{B(d(x1)), (d(x2))} = us(d(x1), d(x2))

> min{ug(d() # 70) (), (7)) |
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= min{yﬁ(d(xl) * y1,d(x2) * y2), pg(d(n1), d()’Z))}

= min{min{f(d(x1) * y1), B(d(x2) * y2) }, min{B(d(y1)), B(d(y2)) } }

= min{min{B(d(x1) * y1), B(d(y1)) }, min{B(d(x,) * y>), B(d(y2)) }}
In particular, if we take x, =y, = 0 then, B(d(x;)) > min{S(d(x1) * y1),
Bld())}

This prove (FL;)and complete the prove.

4. Conclusion

The notion of left (right) fuzzy derivations of d-ideals of d-algebra is intro-
duced. The Cartesian product of left (right) fuzzy derivations of d-ideals is
discussed. Strong fuzzy relations with illustrative examples are explained.
Different characterizations theorems are proved. As a future work the authors
indicate these idea can be extend to contra derivation of fuzzy ideals of
d-algebra, Cubic intuitionistic sub algebras on d-algebra.
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