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Abstract
The traditional empirical wavelet transform (EWT) based on the Meyer wavelet and scale-space
method can decompose a signal into several empirical modes. However, this method is not
effective in dealing with strong noise and non-stationary signals, which may lead to modal
mixing or even decompose too many invalid components. For this purpose, a method based on
the combination of enhanced empirical wavelet transform (EEWT) and correlation kurtosis
(CK) is proposed in this paper. Firstly, the EEWT is used to segment the spectrum based on the
characteristics of the spectrum fluctuations. It uses the minimum points of the envelope as the
boundaries of the segmented spectrum. Secondly, a filter bank is constructed based on these
boundaries and a maximum value order statistics filter segments the Fourier spectrum with the
adaptive decomposition of the signals. Finally, the envelope spectrum generated by CK is used
to screen the bearing fault information, which belongs to the decomposition of a signal into
empirical modes, so that the rolling bearing fault can be accurately diagnosed. The method’s
effectiveness is verified by simulated signal experiments and rolling bearing fault signals. The
results show that the performance of the proposed method in this paper is better than that of the
traditional EWT. Therefore, the method can be applied to the field of bearing faults or other
mechanical fault diagnosis directions.

Keywords: empirical wavelet transform, correlation kurtosis, order statistics filter,
non-stationary signal, fault diagnosis

(Some figures may appear in colour only in the online journal)

1. Introduction

Rotating machinery, which has been developing rapidly in the
research of rolling bearing fault diagnosis, is widely used in
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industrial systems, such as fans, turbines, lathes, propellers,
engines, centrifuges and so on. However, rolling bearings per-
form an indispensable role in rotating machinery [1].

According to research, the rolling bearing under constant
speed has rhythm when it fails. When the inner ring or outer
ring of the rolling bearing is damaged, the balls will hit the
damaged position one by one. Since the bearing is a stand-
ard part in mechanical equipment, there are standards and
requirements for the number and size of balls inside the bear-
ing of the same type, so the period or frequency of balls
hit the damaged location can be calculated. When analyzing
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the vibration acceleration signal during bearing operation, it
is found that the signal will contain many pulses and these
pulses will show a certain periodicity. Signal processing meth-
ods for rotating machinery have been vigorously developed
[2]. Huang et al [3] proposed an empirical mode decomposi-
tion (EMD) method that relies on signal extreme points which
can decompose a signal into several intrinsic mode compon-
ents. Feng and Chu [4] combined EMD and Hilbert transform
demodulation to realize the frequency demodulation analysis
of the vibration signal of the planetary gearbox. Lei et al [5, 6]
combined EMD, Hilbert transform and wavelet packet trans-
form to extract additional fault feature information in order
to identify different damage modes of gears. However, the
preconditions of EMD execution are difficult to be satisfied
by noise signals and non-stationary signals, which leads to
a series of data-driven modal decomposition methods, such
as local mean value decomposition, which are prone to end-
point effect and modal aliasing. Rehman et al [7–9] proposed
multivariate EMD and added white noise to the bearing vibra-
tion signal. This noise-assisted multivariate EMD method can
effectively suppress modal aliasing. Li et al [10] construc-
ted the envelope mean value function and envelope estim-
ation function through the Hermite interpolation method to
calculate the mean value of adjacent extreme points, which
can restrain modal aliasing to a certain extent. The analytical
modal decomposition method proposed by Chen and Wang
[11] can divide a signal into high-frequency and low-frequency
components according to the selected frequency in Wang et al
[12]. The method proposed by Zhang et al [13] can avoid over-
lapping high-frequency components and low-frequency com-
ponents in the frequency domain, but it cannot guarantee that
all components in a signal are completely separated. Wei et al
[14] proposed a new method termed optimal variational mode
decomposition to extract rolling bearing fault features, which
is more effective and demonstrates superiority over empirical
mode decomposition, local mean decomposition and wavelet
packet decomposition.

A method of effective feature extraction plays an import-
ant part in realizing fault diagnosis of rolling bearings. Since
rolling bearings generally operate in an environment with a
lot of noise and redundant components that can easily lead
to band breakage, empirical wavelet transform (EWT) is used
to extract features. Gilles [15] proposed EWT based on the
Meyer wavelet can split a signal from the frequency spec-
trum and the midpoint or the minimum value of the adjacent
maximum value is used as the boundary to construct the fil-
ter bank. EWT was utilized by Cao et al [16] to diagnose
faults in railway bearings with non-stationary signals. Zhu
and Feng [17] improved EWT by constructing an orthogonal
wavelet filter bank and it can better overcome the interference
of noise components on sub-band division. Duan and Zhang
[18] improved the EWT by pre-setting the number of single
components and applying it to the fault diagnosis of planetary
gearboxes. Moreover, EWT is also used in bearing fault dia-
gnoses. Cao et al [16] used EWT in wheel bearing fault detec-
tion and verified a good performance of EWT in the detec-
tion of outer race fault, roller fault, and the compound fault
of outer race and roller. Chen et al [19] proposed an EWT

based compound fault diagnosis is method for generator bear-
ing of wind turbine, which showed its effectiveness in weak
fault and compound fault diagnosis method. Jiang et al [20]
uses EWT to separate the inner ring fault portion of the bearing
signal from the outer ring fault portion and uses the Duffing
oscillator to identify the fault information. Early fault detec-
tion of rolling bearings is a challenging task since weak fault
features are disturbed by heavy background noise, therefore
Yao et al [21, 22] proposed a periodicity-enhanced sparse rep-
resentation method to address this issue. Futhermore, He et al
[23] proposed maximum correlation kurtosis deconvolution as
an effective means to identify periodic pulses of faulty sig-
nals, because correlation kurtosis (CK) can measure the index
of periodic transient pulse in the vibration signal and gener-
ate envelope spectrum. With this envelope spectrum, the bear-
ing fault information can be filtered out. The fault information
belongs to a signal decomposition into empirical modes.

Although the method in the above reference implements
the application of EWT, it does not reduce the number of
invalid components of the original method segmentation, nor
does it consider the relationship between the fluctuation char-
acteristics of spectrum and signal. Aiming at the characterist-
ics of bearing faults, this paper proposes a new method that
combines enhanced empirical wavelet transform (EEWT)with
CK. On the one hand, the fault information in a signal is separ-
ated from a noise. On the other hand, the components contain-
ing the fault information are screened. Finally, the research
results show that the new method can be applied to bearing
fault diagnosis.

The rest of the paper is organized as follows. Section 2
briefly reviews the theoretical background the EWT and the
CK. Subsequently, section 3 establishes the proposed method
in detail and shows the flow chart. In section 4, the proposed
method is used to analyze the simulated signal and the CK
is used to generate the envelope spectrum to filter the bear-
ing fault information from the decomposition of a signal into
empirical modes. In section 5, experimental vibration signals
are used to verify the effectiveness of the proposed method.
Finally, conclusions are given in section 6.

2. Fundamental theories

2.1. Steps of empirical wavelet transform

The implementation steps of EWT are as follows [15].
Step1: The frequency domain of the Fourier transformed

signal f(t) is normalized to [0,π], which is divided into N fre-
quency bands of unequal bandwidth to obtain its correspond-
ing spectrum f(ω).

Step2: The local maximum point of f(ω) is found in the
spectrum of the signal and arranged in descending order. The
frequency domain of the signal is segmented according to
the maximum value points. Setting that ω is the boundary
between each frequency band, the left boundary is ω0 = 0, the
right boundary ωN = 0, and the remaining boundaries can be
expressed as ω1, ω2,…, ωN. Therefore, each frequency band
can be recorded as Λn = [ωn−1,ωn], n= 1,2,…N. It is obvious
that ∪N

n=1Λn = [0,π]. At this time, a transition segment with a
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width of Tn = 2τn is defined with each boundary as the center
to construct the window base.

Step3: According to the definition of empirical wavelet,
a suitable band-pass filter is constructed for each frequency
band. Based on theMeyer wavelet, a set of trigonometric func-
tions that are orthogonal to each other is designed at the two
boundaries of a frequency band, and a constant is designed at
the frequency band. The empirical scale function ϕn (ω) and
empirical wavelet function ψn (ω) are constructed according
to the frequency segmentation in step 2 as follows

ϕn (ω) =


1; |ω| ≤ (1− γ)ωn;

cos
[
π
2 β

(
1

2γωn
(|ω| − (1− γ)ωn)

)]
(1− γ)ωn ≤ |ω| ≤ (1+ γ)ωn;

0; other;

; (1)

ψn (ω) =



1; (1+ γ)ωn ≤ |ω| ≤ (1− γ)ωn+1;

cos

[
π

2
β

(
1

2γωn+1
(|ω| − (1− γ)ωn+1)

)]
;

(1− γ)ωn+1 ≤ |ω| ≤ (1+ γ)ωn;

sin

[
π

2
β

(
1

2γωn
(|ω| − (1− γ)ωn+1)

)]
;

(1− γ)ωn ≤ |ω| ≤ (1+ γ)ωn;

0; other;

(2)

where the transition function β (ω) and the coefficient γ with
respect to partial parameter are respectively

β (ω) = ω4
(
35− 84ω+ 70ω2 − 20ω3

)
, (3)

γ <min
(

ωn+1−ωn

ωn+1+ωn

)
, τn = γωn,0< γ < 1 . (4)

Step4: The inner product of the original signal and the
empirical wavelet function and scale function respectively is
defined as the detail correlation coefficient Wε

f (n, t) and the
approximate correlation coefficientWε

f (0, t) and the Fourier to
transform and the inverse transform are set to F(·) and F−1 (·)

Wε
f (n, t) = ⟨ f(t) ,ψn (t)⟩ = ∫ f (τ)ψn (τ − t)dτ

= F−1
(̂
f(ω) ψ̂n (ω)

)
(5)

Wε
f (0, t) = ⟨ f(t) ,ϕ1 (t)⟩= ∫ f (τ)ϕ1 (τ − t)dτ

= F−1
(̂
f(ω) ϕ̂1 (ω)

)
. (6)

In the above equation: ψn (t) is the empirical wavelet func-
tion; ϕ1 (t) is the empirical scale function; ψn (τ − t) is the
complex conjugate of ψn (t). Where f̂(ω),ϕ̂1 (ω) and ψ̂n (ω)
represent the Fourier transforms of f(t), ϕ1 (t) and ψn (t)
respectively. Then the signal can be reconstructed as:

f(t) =Wε
f (0, t) ∗ ∅1 (t)+

N∑
n=1

Wε
f (n, t) ∗ψn (t)

= F−1

(
Ŵε
f (0,ω) ∅̂1 (ω)+

N∑
n=1

Ŵε
f (n,ω) ψ̂n (ω)

) (7)

where Ŵε
f (0,ω) and Ŵ

ε
f (n,ω) represent the Fourier transforms

of Ŵε
f (0, t) and Ŵε

f (n, t) respectively. Finally, the empirical
wavelet function of the original signal is defined as follows{

f0 (t) =Wε
f (0, t) ∗ϕ1 (t)

fk (t) =Wε
f (k, t) ∗ψk (t)

(8)

2.2. Correlation kurtosis

When the inner ring or outer ring of a bearing fails, a signal
usually exhibits the characteristics of cyclic stability, which
encompasses the common properties of pulse and periodic sig-
nals. Therefore, when detecting bearing faults, it is necessary
to identify automatically the cyclic stationary information of
components. The correlation kurtosis based on the squared
envelope of the demodulated signal is sensitive to the periodic
impact characteristics of related bearing faults [24].

For signal f (t), the signal in the nth frequency band Λn is
fn (t), n= 1,2, . . . ,N. The squared envelope in Λn is |fn (t)|2,
and the squared envelope is autocorrelated:

R̂ff (τ) = 1
L−q

L−q∑
i=1

| fn (ti)|2 · | fn (ti+ τ)|2 (9)

where τ = q/fs represents the delay factor, q= 0,1, . . .L− 1,
fs is the sampling frequency, and L is the length of the signal.

The correlation kurtosis in the frequency bandΛn is defined
as:

CKn =
∑L/2

i=1 [R̂ff(i)−min(R̂ff(τ))]
4[∑L/2

i=1 [R̂ff(i)−min(R̂ff(τ))]
2
]2 . (10)

3. Improvement of EWT

Different components in a signal will generally be found
in different frequency bands in the frequency spectrum, and
information related to bearing failure will be concentrated near
the center frequency. When separating strong noise and non-
stationary signals, the traditional EWTmay separate too many
invalid components or break the same component into several
sections, making it difficult to locate the fault information [25].
The EEWT is to use order statistics filter, which can calculate
the upper envelope based on the characteristics of spectrum
fluctuations. In this paper, the minimum value of the envelope
is used as a boundary to construct a filter bank. The bearing
fault simulation test presented in this research demonstrates
that the method of dividing boundaries by the characteristics
of spectral fluctuations and energy distribution is simpler and
faster than using scale-space representation. The flowchart of
the enhanced EWT for rolling bearing fault diagnosis is shown
in figure 1.

In the enhanced empirical wavelet transform, the most
important is the order statistics filter, which has three modes:
maximum filter, median filter, and minimum filter. This paper
uses themaximumfilter to calculate the envelope of f(t).When
the length of signal f(t) is L,i ∈ [1,L], its basic steps are as
follows.

3
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Figure 1. Flowchart of the enhanced empirical wavelet transform
for rolling bearing fault diagnosis.

Step1: The sliding window will divide the signal into L−
WOSF + 1 groups and the window width WOSF is an odd num-
ber with a minimum of 3.

Step2: The data in the window will be extracted. The max-
imum value in [f1 (t) , f2 (t) . . . , fWOSF (t)] will be extracted and
stored in Eu (1).

Step3: The window will be moved in steps of 1. The max-
imum value in [f2 (t) , f3 (t) . . . , fWOSF+1 (t)]will be extracted and
stored in Eu (2).

Step4: After the above steps are repeated, the new array can
be obtained

Eu =
L−WOSF+1∑

j=1
max{Fj (t) ,Fj+1 (t) . . . ,Fj+WOSF−1 (t)} .

(11)
Since the new array approximates the upper envelope of

the spectrum, the minimum point of the envelope will be con-
sidered as the dividing point between different components.
After normalizing the minimum point to [0,π], it will be used
to construct a filter bank.

4. Simulation verification

There is a non-stationary periodic shock signal with Gaus-
sian white noise defined by taking the simulated signal as an
example:

sc1 = 5cos(2π · f1t)× sin(2π · f2t+ sin(2π · f3t))

sc2 =
M∑
i=1

6e−g×2πf int× sin
(
2πf int×

√
1− g2

)
s1 = sc1 + sc2 + ζ

(12)
The simulation signal s1 contains three components: the first
component sc1 is the modulation signal with the center fre-
quency of 1000 Hz, where f1 = 50 Hz, f2 = 1000 Hz, f3 = 100
Hz. The second component sc2 is the periodic shock signal
of fault information with the center frequency of 3000 Hz,
its natural frequency is fn = 1600 Hz, the damping coefficient
g= 0.02 and the period of the shock is T= 0.03 s. The third
component ζ is noise with a Signal Noise Ratio of−2 dB. The
waveform, frequency spectrum and envelope spectrum of the
simulated signal are shown in figure 2.

It can be found from figure 2 that the periodic impact of
the signal waveform (figure 2(a)) is not obvious and it is
impossible to judge whether the impact is periodic. It can be
seen from the frequency spectrum (figure 2(b)) that the signal
contains a lot of noise, the fault information is concentrated
around 3000 Hz and the amplitude is very low. The character-
istic frequency of the fault and its harmonics cannot be found
in the envelope spectrum (figure 2(c)). As shown in figure 3,
the upper envelope of the frequency spectrum can be calcu-
lated through the order statistical filter. The wave character-
istic of the envelope is like the wave character of the frequency
spectrum and the part with the center frequency of 1000 Hz
and the part with 3000 Hz are included.

If the minimum value of the upper envelope is used as the
boundary and substituted into the EWT for segmentation and
filtering, the spectrum will be divided into eight parts. The
modulation component is the second component and the fault
component is the fifth component. The correlation kurtosis of
each component is calculated as shown in figure 4.

According to the correlation kurtosis, it can be predicted
that the fifth component may contain the most fault informa-
tion. Extracting this component and displaying its waveform
(figure 5(a)) and envelope spectrum (figure 5(b)) are as shown
in figure 5.

There is impulse information in the waveform of this com-
ponent and these shocks are periodic. Compared with the ori-
ginal signal, the noise is suppressed and the component with
a center frequency of 1000 Hz is separated. There are charac-
teristic frequencies and their harmonics in the envelope spec-
trum of this component and it can be considered that the fault
information has been successfully extracted.

Using the original EWT to process the signal, it can be
found from figure 6 that the signal is divided into 14 parts,
where the third part is modulation information. A boundary

4
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Figure 2. The waveform (a), its spectrum (b), and its envelope
spectrum (c).

Figure 3. Calculating the upper envelope by order statistics filter.

Figure 4. Boundaries and CK of each component.

appears at 3000 Hz and the fault information is divided into
two parts which brings trouble to the identification of the fault
information.

After calculating the kurtosis of each component, the rela-
tionship between the kurtosis and the frequency band is shown
in figure 7. It can be found that the kurtosis of the fault inform-
ation separated into two parts is not the largest, while the part
with the largest kurtosis is in the frequency band with higher
frequency and the frequency band is very narrow. In addition,
single pulse or random pulse is easy to appear in narrow band
and this information exerts a great impact on the kurtosis.

As shown in figure 8, the component is extracted and its
waveform is displayed. This component is a component of

Figure 5. The component with maximum CK (a) and its envelope
spectrum (b).

Figure 6. Boundaries decomposed by EWT.

Figure 7. Boundaries and CK of each component.

high-frequency and low-frequency phase modulation and it is
impossible to determine whether it contains periodic impact
information.

5
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Figure 8. The component with maximum kurtosis.

Figure 9. Bearing fault test stand (a) and the installation locations
of sensors (b).

5. Engineering application

Figure 9 shows the bearing fault test stand of Japan’s National
Mie University, on which the bearing failure simulation exper-
iment was carried out.

The bearing model selected in this experiment is NU204
with outer ring damage width of 0.3 mm and depth of
0.05 mm. Figure 10 shows the location of outer ring dam-
age (figure 10(a)) and the size of outer ring (figure 10(b)).
There exists that the static load is 150 kg, the shaft speed is
1500 rpm s−1, the characteristic frequency of the outer ring is
fO = 100Hz, and the period is TO = 0.01 s.

Figure 11 shows the collected one of signals (figure 11(a))
and its spectrum (figure 11(b)). The large amount of noise
contained in the waveform masks the impact information in
the signal and the waveform in the frequency spectrum is also
masked by strong noise.

Figure 10. Location of outer ring damage (a) and size of outer ring
(b).

Figure 11. Bearing outer ring fault signal (a) and its spectrum (b).

Figure 12. Boundaries and CK of each component.

The method proposed in this article is used to process the
mentioned signal. It can be seen from figure 12 that the sig-
nal is divided into 8 parts. Although the amplitude of the fre-
quency spectrum of the first component is higher, the correla-
tion kurtosis value of the second part is the highest, so the fault
information of the bearing outer ring could be concentrated in
the part with a center frequency of 11 000 Hz.

6
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Figure 13. The component with maximum CK (a) and its envelope
spectrum (b).

From figure 13, extracting the component with the largest
correlation kurtosis (figure 13(a)) and calculating its envelope
spectrum (figure 13(b)) reveals that although this component
contains noise, it also contains very distinct periodic shocks.
Through calculation, it can be known that this period coin-
cides with the fault period of the bearing outer ring. From the
envelope spectrum (b) of the figure 13, we can also find the
fault characteristic frequency and its multiple frequency of the
bearing outer ring. Therefore, the outer ring of the bearing is
damaged. Themethod proposed in this paper can be effectively
applied to the fault diagnosis of bearing outer ring.

6. Conclusion

In this paper, with respect to the problem that the conven-
tional wavelet transform does not work well when dealing
with strong noise and non-smooth signals, which may lead to
modal mixing or even decomposition of toomany invalid com-
ponents. A rolling bearing fault diagnosis method combining
EEWT and CK is proposed to effectively extract fault informa-
tion from strong noise signals. The proposed method provides
an effective scheme that can be used for successful practical
applications in rolling bearing fault diagnosis and gives direc-
tions for future signal research and analysis for bearing fault
diagnosis.

The results of the simulated and experimental signals show
that, compared with the conventional EWT method, The

proposed method not only obtains fewer components and the
largest number of frequency bands when filtering the fault
information by extracting the component with the largest
CK, but also successfully extracts the obvious periodic shock
information present in the component, and the period of this
periodic shock information is consistent with the period of the
bearing outer ring fault. At the same time, this method which
employs an effective combination of EWT and CK can not
only make full use of their respective advantages, but also
extract the characteristic frequency and its frequency doubling
of bearing outer ring fault, making it applicable to the field of
bearing failure or other mechanical fault diagnosis directions.
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