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Abstract
A generalized two-component Camassa-Holm equation is introduced as a model for shallow water
waves moving over a linear shear flow. Bifurcations of traveling wave solutions are studied.
Phase portraits of the traveling wave system are given. By using the method of planar dynamical
systems, the existence of solitary wave solutions, smooth and non-smooth periodic traveling wave
solutions is presented in different parametric conditions. Numerical simulations are made to agree
the theoretical analysis. It shows that the existence of singular straight lines for the generalized
two-component Camassa-Holm equation is the original cause of the non-smooth solutions. The
existence of uncountably infinitely many breaking traveling wave solutions are given.
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1 Introduction
In this study, we consider the following generalized two-component Camassa-Holm equation

ut − utxx −Aux + 3uux − σ(2uxuxx + uuxxx) + ϵρρx = 0, (1.1a)

ρt + (ρu)x = 0. (1.1b)

where the variable u(x, t) represents the horizontal velocity of the fluid and the variable ρ(x, t) is
related to the free surface elevation from equilibrium, the constant A ≥ 0 characterizes a linear
underlying shear flow, σ is a real parameter and ϵ = ±1. When ϵ = 1, system (1.1) was derived
by Chen and Liu from shallow water theory with nonzero constant vorticity [1]. The case ϵ = −1
corresponds to the situation in which the gravity acceleration points upwards.
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The generalization in Eq. (1.1) can be seen from the point of view of both a single equation
and a two-component system. Firstly, Eq. (1.1) is a two-component generalization of the interesting
Camassa-Holm (CH) equation [2]

ut − uxxt + 3uux = 2uxuxx + uuxxx. (1.2)

When ρ ≡ 0 and A = 0 , the CH equation (1.2) can be recovered from (1.1). The CH equation
is used to model many nonlinear phenomena such as the propagation of unidirectional irrotational
shallow water waves over a flat bed [2] and water waves moving over an underlying shear flow [5].An
important feature of the CH equation is the presence of the “peakons” [2]: u(x, t) = ce|x−ct|, c ̸= 0,
which are smooth except at the crests, where they are continuous, but have a jump discontinuity in
the first derivative.

When ρ ≡ 0, system (1.1) turns to be

ut − uxxt + 3uux = σ(2uxuxx+ uuxxx), (1.3)

which models finite length, small amplitude radial deformation waves in cylindrical hyperelastic rods
( [3],[4]). The authors showed the appearance of supersonic solitary shock waves because there is a
vertical singular line in the phase plane [4]. Those waves have discontinuous first-order derivative at
the peak and we point out that they are actually peakons. We will point out that this feature is kept in
system (1.1) since there are two vertical singular lines.

Secondly, Eq. (1.1) is a generation of some two-component Camassa-Holm equations. There are
many integrable two-component Camassa-Holm equations ( [6],[7],[8],[9],[10],[11], [12],[13],[14],[15]).
The most popular one is {

mt + 2mux + umx + ϵρρx = 0,

ρt + (ρu)x = 0.
(1.4)

where m = u − uxx. System (1.4) is integrable[9] as it can be written as a compatibility condition of
two linear systems (Lax pair ) with a spectral parameter.

For ϵ = −1, the integrability of (1.4) was proved in [16]. Global existence and blow-up phenomena
of (1.4) were studied in [6]. Bifurcation of traveling wave solutions of (1.4) was given in [10]. The
geometry of (1.4) was studied in [17]. The local well-posedness for a periodic two-component
Camassa-Holm equation was established in [18]. Wave breaking phenomenon is of special interest (
[14],[15]).

Compared with (1.4), there is a new free parameter σ in (1.1). Clearly, when σ = 1, (1.1) turns to
be (1.4).

It was shown in [10] that when σ = 1, the two component system (1.1) has many interesting
traveling wave solutions such as smooth solitary waves, kink and anti-kink wave solutions. But no
peakon solutions were found. We point out that peakon solutions exists when σ > 1.

In this work, we are interested in finding the dynamical behavior of the traveling wave solutions
of (1.1). We will show that the new parameter σ has some matters to the type of traveling wave
solutions. Noticing that the term Aux can be canceled by a Galileo transformation, we assume A = 0
in the rest of the text.

Let
u(x, t) = ϕ(ξ), ρ(x, t) = ψ(ξ), ξ = x− ct, (1.5)

where c is the wave speed. Substituting (1.5) into (1.1b), we have

− cψ′ + (ϕψ)′ = 0, (1.6)

where “′” is the derivative with respect to ξ. Integrating (1.6) once and setting the integration constant
as r, r ̸= 0, we get

ψ =
r

ϕ− c
. (1.7)
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Substituting (1.5) into (1.1a) we have

− cϕ′ + cϕ′′′ − σ ϕϕ′′′ − 2σ ϕ′ϕ′′ + 3ϕϕ′ + ϵψψ′ = 0. (1.8)

Noticing (1.7), integrating (1.8) once with respect to ξ and setting the integrating constant as zero,
we have

3

2
ϕ2 − cϕ− 1

2
σ(ϕ′)2 + (−σ ϕ+ c)ϕ′′ +

ϵr

2(ϕ− c)2
= 0. (1.9)

Eq. (1.9) is equivalent to the planar system

dϕ

dξ
= y,

dy

dξ
=

−σ(ϕ− c)2y2 + ϕ(ϕ− c)2(3ϕ− 2c) + ϵr2

2(ϕ− c)2(σϕ− c)
.

(1.10)

Since a phase orbit defined by the vector fields of system (1.10) determines a traveling wave
solution of (1.1), we shall investigate the bifurcations of the phase portraits of (1.10) in the phase
plane as the parameters are changed. Without loss of generality, we assume c > 0 and σ > 0. Here
we only consider the bounded solutions. We shall apply the bifurcation theory of dynamical systems
( [19],[20] ) in this study.

The rest of the paper is organized as follows. Section 2 gives bifurcations conditions of (2.1) and
different phase portraits associated with different parameters. Section 3 concerns the existence of
smooth and non-smooth traveling wave solutions of (1.1). Section 4 devotes to the conclusions.

2 Bifurcation conditions and possible phase portraits
In this section, we will first transfer the singular system (1.10) to its equivalent non-singular system.
Then we will determine the number and type of possible equilibrium points of the non-singular system.
Finally, we will present possible phase portraits of the non-singular system.

Clearly, system (1.10) has two singular line ϕ = ϕs = c and ϕ = ϕσ = c
σ
. On those two

straight lines of the phase plane (ϕ, y), ϕ′′ is not well defined. To avoid the singularity, let dξ =
2(ϕ− c)2(σϕ− c)dτ for ϕ ̸= c and ϕ ̸= ϕσ. Then system (1.10) becomes

dϕ

dτ
= 2(ϕ− c)2(σϕ− c)y,

dy

dτ
= −σ(ϕ− c)2y2 + ϕ(ϕ− c)2(3ϕ− 2c) + ϵr2.

(2.1)

For system (2.1), the singular straight lines ϕ = c and ϕ = ϕσ become two invariant straight
line solutions. In the sense of the theory of geometric singular perturbation, the variable τ is a fast
variable near the straight lines, while the variable ξ is a slow variable.

System (2.1) has the first integral as system (1.10)

H = (σϕ− c)y2 − ϕ2(ϕ− c)2 − ϵr2

ϕ− c
. (2.2)

We now investigate the bifurcations of phase portraits of system (2.1). Let

f(ϕ) = ϕ (ϕ− c)2 (3ϕ− 2 c) + ϵr2.

Then f ′(ϕ) = −2 (c− ϕ)
(
6ϕ2 − 6 cϕ+ c2

)
has three roots ϕ∗ = c, ϕ± = ( 1

2
±

√
3

6
)c.It follows that

f(c) = ϵr2, f(ϕ+) =
(
− 1

12
+

√
3

18

)
c4+ϵr2,f(ϕ−) =

(
− 1

12
−

√
3

18

)
c4+ϵr2,f(ϕσ) =

c4(σ−1)2(3−2σ)+ϵr2σ4

σ4 .

Equilibrium points of (2.1) include regular and singular points. Clearly, on the ϕ−axis, system
(2.1) has at most 4 equilibrium points Ei(ϕi, 0), i = 1, 2, 3, 4. On the straight line ϕ = c, there is no
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equilibrium point. On the straight line ϕ = c
σ

there are at most two singular equilibrium points. If Ys >

0, then there exist two singular equilibrium points Q±(ϕσ,±
√
Ys) where Ys = c4(3−2σ)(σ−1)2+ϵr2σ4

c2σ3(σ−1)2
.

No other equilibrium points are found.
Let M(ϕi, 0) be the coefficient matrix of the linearized system of (2.1) at an equilibrium point

Ei(ϕi, 0). Then we have

J(ϕi, 0) = detM(ϕi, 0) = −2σ (c− ϕ)2 (ϕi − ϕσ ) f ′(ϕi). (2.3)

By the theory of planar dynamical systems [20], for an equilibrium point of a planar integral
system, if J < 0, then the equilibrium point is a saddle point; if J > 0, then it is a center; if J = 0 and
the Poincaré index of the equilibrium point is zero, then it is a cusp.

From (2.3) we see that the types of the equilibrium pointsEi(ϕi, 0) of system (2.1) are determined
by the sign of f ′(ϕi) and the relative positions of the equilibrium points with respect to the singular
straight line ϕ = ϕσ.

Letting ϕ− = ϕσ we have the parameter condition σ = σ∗ = 3 +
√
3. Letting ϕ+ = ϕσ we get

another condition σ = σ0 = 3−
√
3.

2.1 Phase portraits of system (2.1) when f(ϕ−) < 0, f(ϕ+) > 0, ϵ = −1

Proposition 1. When f(ϕ−) < 0, f(ϕ+) > 0, ϵ = −1, there are four regular equilibrium points for
system (2.1).

1. If 0 < σ < 1 and f(ϕσ) < 0, then ϕ1 < ϕ− < ϕ2 < ϕ+ < ϕ3 < c < ϕσ < ϕ4. E1, E3 and E4

are saddle points while E2 is a center. There is a homoclinic orbit to E3 enclosing the center
E2. There is a family of closed orbits surrounding the center E2.

2. If 0 < σ < 1 and f(ϕσ) > 0, then ϕ1 < ϕ− < ϕ2 < ϕ+ < ϕ3 < c < ϕ4 < ϕσ. E2 and E4

are centers while E1 and E3 are saddle points. There are two equilibrium points Q± on the
singular line ϕ = ϕσ. There is a homoclinic orbit to E3 enclosing the center E2. There are two
families of closed orbits surrounding the center E2 and E4, respectively.

3. If 1 < σ < σ0 and f(ϕσ) < 0, then ϕ1 < ϕ− < ϕ2 < ϕ+ < ϕ3 < ϕσ < c < ϕ4. E2 is a centers
E1, E3 and E4 are saddle points. There is a homoclinic orbit to E3 enclosing the center E2.
There is a family of closed orbits surrounding the center E2.

4. If 1 < σ < σ0 and f(ϕσ) > 0, then ϕ1 < ϕ− < ϕ2 < ϕ+ < ϕσ < ϕ3 < c < ϕ4. There are two
equilibrium points on the singular line ϕ = ϕσ. E2 and E3 are centers, E1 and E4 are saddle
points.

5. If σ0 < σ < σ∗ and f(σ) < 0 then ϕ1 < ϕ− < ϕσ < ϕ2 < ϕ+ < ϕ3 < c < ϕ4. E1 , E2 and E4

are saddle points while E3 is a center. There is a homoclinic orbit to E2 enclosing the center
E3. There is a family of closed orbits surrounding the center E3.

6. If σ0 < σ < σ∗ and f(σ) > 0 then ϕ1 < ϕ− < ϕ2 < ϕσ < ϕ+ < ϕ3 < c < ϕ4. There are two
equilibrium points on the singular line ϕ = ϕσ. E1 and E4 are saddle points. E2 and E3 are
centers.

7. If σ > σ∗ then ϕ1 < ϕσ < ϕ− < ϕ2 < ϕ+ < ϕ3 < c < ϕ4. E1, E2 and E4 are saddle points
while E3 is a center. There is a homoclinic orbit to E2 enclosing the center E3. There is a
family of closed orbits surrounding the center E3.

In this case, phase portraits of system (2.1) are shown in Fig.1.
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Figure 1: Phase portraits of (2.1) when f(ϕ−) < 0, f(ϕ+) > 0, ϵ = −1

2.2 Phase portraits of system (2.1) when f(ϕ−) < 0, f(ϕ+) > 0,ϵ = 1

Proposition 2. When f(ϕ−) < 0, f(ϕ+) > 0,ϵ = 1, there are two regular equilibrium points for system
(2.1). No other equilibrium points exist.

1. If 0 < σ < 1, then ϕ1 < ϕ− < ϕ2 < ϕ+ < c < ϕσ. E1 is a saddle point and E2 is a center.
There is a homoclinic orbit to E1 enclosing the center E2.

2. If 1 < σ < σ0, then ϕ1 < ϕ− < ϕ2 < ϕ+ < ϕσ < c. E1 is a saddle point and E2 is a center.
There is a homoclinic orbit to E1 enclosing the center E2.

3. If σ0 < σ < σ∗ and f(ϕσ) > 0, then ϕ1 < ϕ− < ϕ2 < ϕσ < ϕ+ < c. E1 is a saddle point while
E2 is a center.

4. If σ0 < σ < σ∗ and f(ϕσ) < 0, then ϕ1 < ϕ− < ϕσ < ϕ2 < ϕ+ < c. Both E1 and E2 are
saddle points.

5. If σ > σ∗ and f(ϕσ) < 0, then ϕ1 < ϕσ < ϕ− < ϕ2 < ϕ+ < c. Both E1 and E2 are saddle
points.

6. If σ > σ∗ and f(ϕσ) > 0, then ϕσ < ϕ1 < ϕ− < ϕ2 < ϕ+ < c. E1 is a center and E2 is a
saddle point.

In this case, phase portraits of system (2.1) are shown in Fig. 2.

1820



Fan & Li; JSRR, Article no. JSRR.2014.13.010

–2

–1

0

1

2

y

–0.5 0.5 1 1.5

phi

(a) 0 < σ < 1

–3

–2

–1

1

2

3

y

–0.5 0.5 1 1.5

phi

(b) 1 < σ < σ0

(c) σ0 < σ < σ∗, f(σ) > 0 (d) σ0 < σ < σ∗, f(σ) < 0 or σ > σ∗, f(ϕσ) <
0

(e) σ > σ∗, f(σ) > 0

Figure 2: Phase portraits of system (2.1) when f(ϕ−) < 0, f(ϕ+) > 0,ϵ = 1
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2.3 Phase portraits of system (2.1) when f(ϕ−) < 0, f(ϕ+) < 0, ϵ = −1

Proposition 3. When f(ϕ−) < 0, f(ϕ+) < 0, ϵ = −1, there are two regular equilibrium points for
system (2.1). No other equilibrium points exist.

1. If 0 < σ < 1 and f(σ) < 0, then ϕ1 < ϕ− < ϕ+ < c < ϕσ < ϕ2. Both E2 and E1 are saddle
points.

2. If 0 < σ < 1 and f(σ) > 0, then ϕ1 < ϕ− < ϕ+ < c < ϕ2 < ϕσ. E2 is a center, E1 is a saddle
point.

3. If σ > 1 then ϕ1 < ϕσ < ϕ− < ϕ+ < c < ϕ2. Both E2 and E1 are saddle points.

In this case, phase portraits of system (2.1) are shown in Fig. 3.
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Figure 3: Phase portraits of (2.1) when f(ϕ−) < 0, f(ϕ+) < 0, ϵ = −1
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3 The existence of smooth and non-smooth traveling wave
solutions

We will discuss the existence of smooth and non-smooth traveling wave solutions. We first consider
the existence of smooth wave solutions of (1.1).

We denote that hi = H(ϕi, 0), H∗ = H(ϕσ,±
√
Ys) defined by (2.2).

Usually, a solitary wave solution of (1.1) corresponds to a homoclinic orbit of system (1.10). A
periodic orbit of system (1.10) corresponds to a periodically traveling wave solution of (1.1). Thus, we
need to find all periodic annuli and homoclinic orbits of system (1.10).

From Propersition 1 (1)-(3), we see the following theorem holds.

Theorem 1. Suppose that ϵ = −1 and 0 < σ < 1 (or 1 < σ < σ0, f(ϕσ) < 0) . Then, corresponding
to H(ϕ, y) = h3, (1.1) has a smooth solitary traveling wave solution of valley type. Corresponding to
the closed curves H(ϕ, y) = h, h ∈ (h3, h2) defined by (2.2), Eq. (1.1) has a family of smooth periodic
wave solutions ( see Fig. 1(a),1(b),1(c) ).

The homoclinic orbit H(ϕ, y) = h3 to the saddle point E3 intersects the ϕ−axis at the point
(ϕm, 0). Let ϕa and ϕb be zeroes of the polynomial (ϕ− c)H3 + ϕ2(ϕ− c)2 − ϵr2 besides ϕ3. We see
from (2.2) that the homoclinic orbit to the saddle point E3 can be expressed by

y = ±
(ϕ3 − ϕ)

√
(ϕ− ϕa)(ϕ− ϕb)√

(ϕ− c)(σϕ− c)
, ϕm < ϕ < ϕ3, (3.1)

By using the first equation of (1.10) and taking initial value ϕ(0) = ϕ0, on a branch of the
homoclinic orbit to do integration, we have the implicit expression of the smooth solitary solution∫ ϕ

ϕ0

√
(s− c)(σs− c)

(ϕ3 − s)
√

(s− ϕa)(s− ϕb)
ds = ±ξ. (3.2)

We carry numerical simulations to draw the portrait of the solution. Taking parameters c = 2, σ =
0.95, r2 = 0.1, ϵ = −1, the one-dimensional portrait of the smooth solitary traveling wave solution is
shown in Fig. 4(c)

Next we will consider the non-smooth solutions. Because of the existence of singular lines ϕ = c
and ϕ = ϕσ, system (1.1) sometimes has non-smooth traveling wave solutions. This phenomenon
has been studied by some authors (see [20, 21]).

Take Fig.1(b) as an example. Denote the closed orbit H(ϕ, y) = h, h ∈ (H∗, h4) as Γh. From
Lemma 4.1 in Ref. [21], we see that for h < h4, as h decreases and approachesH∗, a segment of the
arcs of the orbits of perotic families surrounding the center E4(ϕ4, 0) will accumulate into a segment
S1S2 on the straight line ϕ = ϕσ. It means that in a very short time interval of ξ, y = ϕ′ changes its
sign rapidly and ϕ rapidly changes its motion direction to form a profile of cusp wave. Then, we have
the following conclusion.

Theorem 2. Suppose that ϵ = −1, 0 < σ < 1 and f(ϕσ) > 0. Then, corresponding to the closed
curves H(ϕ, y) = h, h ∈ (H∗, h4) defined by (2.2), Eq. (1.1) has a family of periodic traveling wave
solutions. When h decreases from h4 to H∗, these periodic traveling wave will gradually lose their
smoothness, and evolve from smooth periodic traveling wave to periodic cusp traveling wave. ( see
Fig. 1(b) ).

Remark 3.1. Similar conclusions can be made for Figs. 1(d), 1(f), 2(c),2(e) and 3(b). For simplicity,
we only give the scope of the constant h in the expression of the closed curves H(ϕ, y) = h. In Fig.
1(d), smooth periodic becomes periodic cusp waves as h increases from h3 to H∗. In Fig.1(f), there
are two families of smooth periodic waves turning to non-smooth periodic cusp waves. One is as h
decreases from h2 to H∗, another is as h increases from h3 to H∗. In Fig. 2(e), smooth periodic
becomes periodic cusp waves as h increase from h1 to H∗. In Figs.2(c) and 3(b), smooth periodic
becomes periodic cusp waves as h decreases from h2 to H∗.
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For Fig. 1(e), the homoclinic orbit has an intersection point (ϕM , 0) near the singular line. Thus,
we have the following theorem:

Theorem 3. Suppose that f(ϕ−) < 0, f(ϕ+) > 0, ϵ = −1,σ0 < σ < σ∗, f(ϕσ) < 0. Then, H(ϕ, y) =
h2 has a zero ϕM satisfying ϕ3 < ϕM < c, and there is a smooth solitary wave of bell type of (1.1). For
h ∈ (h3, h2), there is a family of periodic traveling wave solutions defined by a branch of H(ϕ, y) = h.
When h increase from h3 to h2, these periodic traveling waves will gradually lose their smoothness,
and evolve from smooth periodic traveling wave to periodic cusp traveling wave and approach to a
peakon (see Fig.1(e) ).

Remark 3.2. Similar conclusions can be made for Figs. 1(g), 2(a) and 2(b) because every homoclinic
orbit has an intersection point on the ϕ−axis near one of the singular line ϕ = c or ϕ = ϕσ. We point
out that the scope of the constant h are different. In Fig. 2(a), h decrease from h2 to h1. In Fig. 1(g),
h increase from h3 to h2. In Fig. 2(b), h decrease from h2 to h1.

As a numerical simulation result, we show the above mentioned smooth and on-smooth traveling
wave solutions in Fig. 4. Parameters are taken as c = 1, σ = 0.5, r2 = 0.001 for the periodic wave
to periodic cusp wave case. For the peakon case, parameters are c = 1, σ = 5, r2 = 0.05, ϵ = −1.
We only show the smooth solitary wave with valley form since the bell type can be seen as the
upside-down of it.

We will study the bounded breaking wave solutions of (1.1) in the end. A breaking wave is a
solution which remains bounded while its slope becomes unbounded in finite time. As Lemma 5 in
Ref. [10] shows, if along an open orbit of system (2.1), ϕ approaches to the vertical line ϕ = c or
ϕ = ϕσ in positive and negative directions, respectively, then the wave slope becomes unbounded in
finite time.

If an open orbit has an intersection point on the ϕ−axes and stretches up and down vertically,
then the corresponding solution is a break wave. Corresponding to those phase portraits in Fig.1-3,
we see when ϵ = 1,if σ > 1, there exist uncountably infinitely many bounded breaking wave solutions
of the generalized Camassa-Holm equation (1.1); if 0 < σ < 1, there are only smooth wave solutions.
When ϵ = −1, (1.1) has uncountably infinitely many bounded breaking wave solutions for both σ > 1
and 0 < σ < 1.

Generally we have the following theorem:

Theorem 4. If system (2.1) has only two regular equilibrium points Ei(ϕ1, 0), i = 1, 2 satisfying ϕ1 <
c < ϕ2 or ϕ1 < ϕσ < ϕ2 , then, these equilibrium are saddle points and (1.1) has uncountably infinitely
many bounded breaking wave solutions.

Remark 3.3. When system (2.1) has four equilibrium points (like Figs. 1(e) and 1(f), Eq. (1.1) also
has uncountably infinitely many breaking wave solutions.

4 Conclusions

A generalized two-component Camassa-Holm equation was been presented in this paper. The
modification of the sign of ρρx as well as the free new parameter σ played an important role in the
type of traveling wave solutions. Taking plus sign, there were only smooth traveling wave solutions
when σ < 1. In other cases, non smooth traveling wave solutions, such as peakon, periodic cusp
solutions appeared. It is interesting to see that just like the remarkable Camassa-Holm equation, the
generalized two-component Camassa-Holm equation posses both peakons and the wave breaking
phenomena. However the affection of the sign on the integrability of the two-component equation
remains further study.
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Figure 4: Different kind of traveling wave solutions of (1.1)
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