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ARTICLE

A Collaborative Beetle Antennae Search Algorithm Using 
Memory Based Adaptive Learning
Tamal Ghosh and Kristian Martinsen

Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology, 
Gjøvik, Norway

ABSTRACT
Recently developed Beetle Antennae Search algorithm (BAS) 
mimics the odor sensing mechanism of the longhorn beetles. 
The beetles have many species and many of these are advanta-
geous to the nature as well as the mankind. Excepting the odor 
sensing activity, the beetles are naturally strong insects, and 
some of them have storage memory for adaptive learning and 
showcase social behavior. These natural mechanisms make 
them intelligent enough to perform the routine tasks for exis-
tence. This article proposes a novel Storage (Memory) Adaptive 
Collaborative BAS (SACBAS) algorithm, which incorporates the 
memory stored adaptive learning. This helps exploit the Group 
Extreme Value (GEV) instead of the Individual Extreme Values in 
swarm for faster convergence. Further, the SACBAS uses the 
reference points based on non-dominated sorting to diversify 
the state space. To test the data-driven performance of SACBAS, 
the Support Vector Machine (SVM) algorithm with linear kernel 
is used in this study. First, the SACBAS algorithm is tested on the 
multi-objective ZDT and DTLZ test-suites and compared with 
two recent techniques, the reference points based Non- 
dominated Sorting Genetic Algorithm (NSGA III) and Multi- 
Objective Evolutionary Algorithm based on Decomposition 
(MOEA/D). Second, the data-driven SACBAS is tested with real- 
world cases based on offline data. The proposed SACBAS is 
shown to handle the offline data efficiently and obtains promis-
ing results. The Friedman Test is carried out to differentiate the 
SACBAS from other two techniques and the Post Hoc Test 
confirms that the SACBAS obtains better HyperVolume indicator 
scores and outperforms the NSGA III and MOEA/D.
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Introduction

The process of optimization is grounded on attaining the trade-off among 
several conflicting criteria for a given decision problem. In today’s world, every 
discipline of Science, Engineering, and Technology (SET) encounters such 
decision problems, which are characterized as computationally expensive 
problems. The main motive is to identify the viable trade-off points (solutions) 
with minimum computational effort. For such problems, Evolutionary 
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Algorithms (EA) are identified as the ideal tools (Knowles and Nakayama 
2008). The EAs are commonly classified as metaheuristic algorithms, which 
are being employed heavily in various Multi-Criteria Decision-Making 
(MCDM) problems of SET. These include building design and energy effi-
ciency (Brownlee and Wright 2015; Delgarm et al. 2016), wireless sensory 
network design (Hacioglu et al. 2016; Murugeswari, Radhakrishnan, and 
Devaraj 2016), manufacturing system design (Azadeh et al. 2017; Dahane 
and Benyoucef 2016), parametric design of production processes (Li et al. 
2016), software design, and analysis (Malhotra et al. 2018; Mkaouer et al. 
2015), tuning and feature selection of machine learning techniques (Bouraoui, 
Jamoussi, and Ayed 2018; Geethanjali, Slochanal, and Bhavani 2008) etc.

Many metaheuristic algorithms are being evolved in the MCDM related 
literature, which include Multi-Objective Genetic Algorithm (MOGA) (Murata 
and Ishibuchi 1995), Non-dominated Sorting Genetic Algorithm II (NSGA II) 
(Deb et al. 2000), Multiple Objective Particle Swarm Optimization (MOPSO) 
(Coello and Lechuga 2002), Multi-Objective Evolutionary Algorithm based on 
Decomposition (MOEA/D) (Zhang and Li 2007), Archived Multi-objective 
Simulated Annealing (AMOSA) (Bandyopadhyay et al. 2008), Non-dominated 
Sorting Genetic Algorithm III (NSGA III) (Deb and Jain 2014). These techni-
ques are iterative and aimed at attaining the trade-off points (also known as 
Pareto-optimal fronts) in the objective space with minimal computational effort.

Wolpert and Macready (1997) developed the theory of ‘no free lunch’ that 
explains the fact that it is not feasible to declare one optimization algorithm as 
most efficient for every problem being solved. The problem-specific knowl-
edge or information is an important aid to the algorithmic design. That is the 
reason why it is harder to solve the black-box model (no information available 
about the problem) than the gray-box model (little information available 
about the problem). This theorem of optimization has inspired the experts 
to design many novel evolutionary and nature-inspired techniques in recent 
years. One such technique is the Beetle Antennae Search (BAS), which is 
a state-of-the-art metaheuristic algorithm developed based on the natural 
odor sensing activities of the longhorn beetles (Jiang and Li 2017). The BAS 
is a single solution-based search technique, which proceeds with the move-
ment of a beetle depending upon the smell sensing using their long antennae. 
The BAS is a simple and fast algorithm, which does not consider any other 
complicated biological mechanisms apart from the smell or odor sensing 
activity. However, it is a proven fact that the beetles can manipulate their 
storage memory and learning skills while performing daily tasks for living 
(Alloway and Routtenberg 1967; Xue, Egas, and Yang 2007). Based on the 
above fact, the following contributions are made in this paper:

● It introduces the memory stored adaptive learning mechanism of beetles 
and proposes a multi-objective swarm-based collaborative BAS algorithm. 
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The proposed algorithm is developed on the reference points-based non- 
dominated sorting technique (Deb and Jain 2014) with modified adaptive 
normalization and extended as a data-driven evolutionary optimization 
algorithm for the computationally expensive problems.

● The Collaborative BAS (SACBAS) is successfully tested on various pub-
lished Multi-Objective test suites and the offline data-driven real-world 
cases collected from the literature. The overall performance of the 
SACBAS is compared with the NSGA III and MOEA/D.

● The algorithmic performances are analyzed using the Friedman test and 
the paired comparison test. The significant statistical differences among 
the algorithmic performances are portrayed and the proposed SACBAS is 
shown to obtain improvements over the NSGA III and MOEA/D.

The rest of this paper is structured as following, the literature review is 
presented in section 2; the proposed SACBAS algorithm is demonstrated in 
section 3; the computational results and an in-depth analysis are presented in 
section 4 and the concluding remarks are displayed in section 5.

Related Works

Recently computationally expensive optimization problems are trailing atten-
tion of many researchers, which demand many objective evaluations and 
consume higher CPU time. Such problems are being developed massively in 
the area of cross-disciplinary optimization (Shan and Wang 2010). The 
domain-specific mathematical functions must be derived as the objective 
functions for such problems, which is computationally expensive. However, 
alternative approach such as data-driven evolutionary optimization is evolving 
as the powerful methodology, which has become a state-of-the-art topic 
(Gröger, Niedermann, and Mitschang 2012). When the metaheuristic techni-
ques are being used for the MCDM problems, the best practice is to employ the 
data-driven surrogate fitness functions. These are developed using existing 
Machine Learning (ML) functions. It often facilitates the use of traditional or 
existing optimization algorithms, such as the non-EA, EA. This type of 
optimization could also be classified as response surface optimization where 
only arbitrary set of input and output data samples are in hand (Simpson et al. 
2008). This approach is highly capable of approximating the functional rela-
tionships among the sampled data obtained using Design of Experiment 
(DOE) techniques (An, Lu, and Cheng 2015). The exactness of the ML- 
based surrogate training would be an important issue for the data-driven 
meta-models. Therefore, the Mean Square Error (MSE), Root Mean Square 
Error (RMSE), Mean Absolute Error (MAE) could be used as the performance 
metrics. The lower value of the error indicates the higher accuracy of the 
model. Once the ML function is trained, an appropriate metaheuristic 
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algorithm could be employed to find optimal set of solutions (Messac 2015). 
Data-driven evolutionary optimizers are quick and efficient; therefore, these 
are computationally inexpensive. The DOE techniques, such as the central 
composite design (CCD), Box-Behnken Design (BBD), D-Optimal Design 
(DOD), Latin Hypercube Sampling (LHS), Full Factorial Design (FFD), and 
Orthogonal Array Design (OAD) etc. could be employed to obtain the empiri-
cal sample points as the initial solution(s) to the metaheuristic algorithms. The 
DOE techniques usually enhance the design robustness for the process using 
the limited sample points (Giunta, Wojtkiewicz, and Eldred 2003).

Three types of surrogates/meta-models are available for the metaheuristic 
optimization algorithms, (1) global surrogate, (2) local surrogate, and (3) 
ensemble or combined surrogate (Sun et al. 2017). Global surrogate considers 
the absolute objective space, which causes more computational efforts. It is 
suitable for the low-dimensional or unconstrained problems. Therefore, this 
approach was suitable for the early studies (Sun et al. 2015). Haftka, Villanuev, 
and Chaudhuri (2016) published a detailed survey based on the global surro-
gate-based optimization. Recently the high-dimensional constrained problems 
are evolving with real-world data. The local surrogate modeling is being 
adopted for such problems. However, the local surrogates are intended to 
converge prematurely with the local optimal solutions. Krempser et al. (2017) 
depicts a similarity-driven additional local surrogate to enhance the perfor-
mance of metaheuristic algorithm for structural optimization. A local dis-
tance-based surrogate is developed by Pilát and Neruda (2011), which is 
employed in a Memetic Algorithm (MA) and compared with other multi- 
objective EAs and global surrogate-assisted algorithms. It is often a good 
practice to use mixed forms of the global and local surrogates since the hybrid 
model can speed up with the small number of objective evaluations with 
exploration and exploitation (Wang et al. 2019). This hybrid model is 
known as ensemble surrogate. Tenne and Armfield (2009) proposes a MA 
framework with combined global and local surrogate for selection of the 
model based on the global and the local models. The trust-region approach 
and the RBF are used for the local surrogate. Zhou et al. (2007) combines the 
Gaussian Process-based global surrogate to the EA for population filtration 
and the RBF-based local surrogate to the Lamarckian evolution for fast con-
vergence. The hybrid model consumes less CPU time.

Further, based on the type of data, the ML/surrogate-assisted metaheuristics 
could be classified as, (1) offline data-driven and (2) online data-driven 
techniques (Jin et al. 2018). The offline data-driven metaheuristics rely on 
the historical data, which implies that the new data are not available during the 
process of optimization. Therefore, the data quality and quantity, both are 
important factors for the offline data-driven metaheuristics (Wang et al. 2018). 
Whereas, online data-driven metaheuristics show more flexibilities since the 
new data could be added during the ML model training and optimization. It is 
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thus said that the online methods are an extension or enhancement of the 
offline versions.

Recently various research on data-driven ML-Assisted optimization tech-
niques are being works are being carried out by experts. Sun et al. (2015) 
developed a two-stage Particle Swarm Optimization (PSO) algorithm by 
incorporating a global and some local surrogate functions. The proposed 
technique is tested with some popular unimodal and multimodal problems 
from literature. Wang, Jin, and Jansen (2016) demonstrated the online and off- 
line based classifications of the ML-assisted EA techniques and developed an 
EA to optimize the offline data-driven trauma system. The CPU time is 
reduced using a multi-fidelity surrogate-management strategy. Haftka, 
Villanuev, and Chaudhuri (2016) performed a survey based on the surrogate- 
based global optimization with a focus on the balance between the exploration 
and exploitation search and Kriging-based models are reviewed primarily. 
Further, Sun et al. (2017) studied the combined effect of the ML-assisted 
PSO and a social learning PSO (SL-PSO) algorithm. SL-PSO worked on 
exploration and PSO worked on exploitation. The proposed method is suc-
cessfully tested on the benchmark problems. Allmendinger et al. (2017) pre-
sented another survey and discussed the complexities in the ML-assisted 
multi-objective EAs. Authors found these complexities from the different real- 
world problems and analyzed them. This study pointed out multiple future 
scopes and demonstrated the applicability of the surrogate-assisted optimiza-
tion in the industrial settings. Chugh et al. (2018) proposed a kriging-assisted 
reference vector guided EA (RVEA) and tested on some benchmark problems. 
Jin et al. (2018) considered five real-world cases of Blast Furnace Optimization, 
Trauma System Design Optimization, Optimization of Fused Magnesium 
Furnaces, Optimization of Airfoil Design, and Air Intake Ventilation System 
optimization where the ML-assisted EAs have shown promising solutions. Yu 
et al. (2018) developed a hierarchical combined algorithm based on PSO and 
SL-PSO, where the SL-PSO converges in the current search space for local 
optima and the PSO performs incremental search for global optima. The SL- 
PSO executes hierarchically within the scope of PSO and uses the RBF as 
fitness function. Pan et al. (2019) depicts a ML-assisted many-objective EA 
with the neural network, which approximates the correlation between target 
values and obtained values, i.e., training using the function-less data-driven 
model. The stated algorithm is shown to outperform the other EAs. Recently 
Chatterjee, Chakraborty, and Chowdhury (2019) surveyed various novel algo-
rithms within the scope of robust design optimization and analyzed the 
performance of the ML models. Authors have picked up the best performing 
ML model and solved a large-size real-world problem.

It could be observed that the ML/surrogate-assisted metaheuristics are 
mostly based on the EAs such as genetic algorithm (GA), particle swarm 
optimization (PSO) etc. However, recently introduced EAs are believed to be 
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competitive and capable of outperforming the earlier EAs (Sun et al. 2017, 
2015). Many new metaheuristics have been proposed lately. These include the 
Cuckoo search (CS) (Gandomi, Yang, and Alavi 2013), Mine blast algorithm 
(MBA) (Sadollah et al. 2013), Krill Herd (KH) (Gandomi and Alavi 2012), 
Grey Wolf Optimization (GWO) (Mirjalili, Mirjalili, and Lewis 2014), African 
Buffalo Optimization (ABO) (Odili, Kahar, and Anwar 2015), Beetle Antennae 
Search (BAS) algorithm (Jiang and Li 2017), Ant-Lion Optimization (ALO) 
(Mirjalili 2015), which are yet to be explored for the data-driven optimization. 
Hence, there exists a missing link between the machine-learning and the 
optimization literature, which could help to evolve many new data-driven ML- 
assisted optimizers in coming days. This study aims to contribute to filling the 
abovementioned gap and introduce a novel data-driven evolutionary algo-
rithm called the SACBAS algorithm. The SACBAS is developed using the 
memory stored adaptive learning and the reference points-based non- 
dominated sorting approach. The proposed technique is restricted to offline 
data-driven mode to improve the robustness of solution search and employed 
as a global-surrogate approach since the Group Extreme Value (GEV) based 
global search is solely considered in the SACBAS design. Since the SACBAS is 
developed using NSGA III framework, hence the algorithmic complexity is O 
(MN2) or O(N2logM−2N) depending on the higher score (Deb and Jain 2014).

SACBAS Algorithm Framework

This paper introduces a data-driven storage adaptive collaborative BAS algo-
rithm, which uses collaborative approach of the beetles using their memory 
stored adaptive learning and builds on the reference point-based non- 
dominated sorting concept (Deb and Jain 2014). The details of the BAS 
algorithm and the proposed extension are discussed in the following 
subsections.

Beetle Antennae Search Algorithm

The BAS algorithm is a recently proposed technique, which is inspired from 
the odor sensing mechanism of the beetles using their long antennae (Figure 1) 
(Jiang and Li 2017). The twin antennae work as the sensors with complex 
mechanism. Fundamental functions of such sensors are to follow the smell of 
the food and to sense the pheromone produced by the potential opposite 
gender for the reproduction. The Beetles can move their antennae 360° to 
sense the food or opposite genders. These movements are random in the 
neighborhood area and directed according to the concentration of odor. 
This implies that the beetles turn to the right or the left depending upon the 
higher concentration of the odor data gathered by the antennae sensor. 
Gradually, the step size between the previous position and the current position
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of the beetle reduces and the beetles move toward the most promising area of 
the search space. The initial version of the BAS algorithm is portrayed in 
Algorithm 1 (Wang and Chen 2018).

Algorithm 1: BAS
Input: Establish an objective function f(xt), where
Variable xt = [x1, . . ., xi]T, initialize the
Parameters x0, d0, δ0.
Output: xbst, fbst.
Step 1: While (t < Tmax) or (stopping condition) do
Step 2: Generate the direction vector unit ~b according to Eq. (3.1)
Step 3: Search in variable space with two kinds of antennae according to Eq. 

(3.2) or (3.3)
Step 4: Update the state variable xt according to Eq. (3.4)
Step 5: if f(xt) < fbst then
Step 6: fbst = f(xt), xbst = xt
Step 7: End if
Step 8: Update sensing diameter d and step size δ using Eq. (3.5) and (3.6)
Step 9: End While
Step 10: Return xbst, fbst.
The BAS algorithm starts with a randomly generated position vector xt at tth 

time (t = 1, 2, . . ., T) and the position is evaluated using the fitness function f, 
which determines the smell or odor concentration (Zhu et al. 2018). The beetle 

Figure 1. Antennae search mechanism with the storage memory operation: di is the distance between 
two antennae, δi is step length, (xi, yi) denotes the beetle position, XGEV

i is the GEV of the ithiteration, and  
f(x, y) is the fitness function (odor).
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decides the further move based on the smell concentration by generating the 
next promising position in the neighborhood of previous position using the 
exploration and exploitation. The directional move is determined by Eq. (3.1), 

~b ¼
rnd k; 1ð Þ

rnd k; 1ð Þ k
3:1ð Þ

Where, rnd is a random function, and k is the dimension of the solution 
vector. The exploration is performed on the right (xr) or the left (xl) using Eq. 
(3.2) or Eq. (3.3), 

xr ¼ xt þ dt �~b 3:2ð Þ

xl ¼ xt � dt �~b 3:3ð Þ

Where dt is the distance between the antennae at time t. Value of dt must 
enfold the solution space. This guides the algorithm to escape from being stuck 
at local optima and improves the convergence speed. The next move is decided 
using the following rule, 

xt ¼ xt� 1 þ δt~bsign f xrð Þ � f xlð Þð Þ 3:4ð Þ

Where δt is the step size at time t, which follows a decreasing function of t, and 
sign represents a sign function. The antennae distance dt and the step size δt 

are updated using Eq. (3.5) and Eq. (3.6) respectively, 

dt ¼ 0:95dt� 1 þ 0:01 3:5ð Þ

δt ¼ 0:95δt� 1 3:6ð Þ

Collaborative Multi-Objective BAS Algorithm

The original BAS algorithm is a developed as a single solution-based 
technique, which is similar to the Simulated Annealing (SA) algorithm. It 
starts with one random solution and iteratively improves it toward the 
global convergence. However, this version of the BAS is not suitable for 
the high-dimensional or multi-objective problems needing an initial popu-
lation or swarm of initial solutions. To achieve that purpose, a collaborative 
form of BAS is developed in this paper. This collaborative BAS is comple-
tely different from the Beetle Swarm Optimization (BSO) developed using 
the PSO approach (Wang, Yang, and Liu 2018). Do the beetles share 
information with each other? Do they have significant velocity factors 
(like birds) to control their moves? These questions are not yet answered 
in literature. Therefore, the concept of BSO algorithm is not acceptable 
while describing the activities of the beetle swarm. The proposed 
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collaborative BAS of this paper starts with a randomly generated N beetles 
(solutions) X = [X1, X2, . . ., Xn] walking collaboratively to the next posi-
tions. In the proposed technique, the agent beetles move individually in the 
swarm without passing information to each other. This phenomenon exe-
cutes N single solution-based BAS in parallel. However, the beetles are 
assumed to have memories. Therefore, the beetles remember the GEV 
XGEV

i−1 for the swarm and learn using the learning factors c1 and c2 in 
every iteration of the algorithm. The GEV is the best beetle of the swarm 
which is the closest to the global optima.

The multi-objective SACBAS is a surrogate-assisted collaborative BAS 
algorithm, which diversifies in the swarm using a set of reference points. 
These reference points are updated adaptively and distributed uniformly 
over the state space. In ith iteration, the beetle swarm is denoted by swarmi. 
With memory stored sequential movement operations (Figure 1), the new 
swarm is obtained as new_swarmi. In the next step, the combined swarm is 
obtained using swarmi = swarmi U new_swarmi. From the combined swarm, 
N number of best positions are selected with the non-dominated sorting and 
ranks. If the lth ranked beetles are selected as the last level Fl in new swarm, 
then all the solutions from (l + 1)th rank are discarded. If not all the solutions 
with lth rank are selected, then only those solutions are selected, which could 
enhance the diversity. This selection procedure is accomplished using the 
generation of the reference points, the adaptive normalization of the swarm 
agents, the mapping of the swarm agents with the reference points, and niche- 
preservation procedure (Deb and Jain 2014). The proposed framework for the 
SACBAS is displayed in Figure 2.

Defining Reference Points
The reference points are obtained using a systematic procedure defined by ref. 
(Das and Dennis 1998), which distributes the reference points on a normalized 
hyper-plane. This hyper-plane is symmetrically inclined to the M number of 
the objective axes and defined using an (M-1)-dimensional unit simplex. The 
number of the reference points are decided on the number of divisions of each 
of the objective axes. Since the number of objectives considered in this study 
are not too many, therefore this technique provides good results. For 
P number of divisions, the number of reference points H would be computed 
using Eq. (3.7), 

H ¼ CMþP� 1
P 3:7ð Þ

For example, if M = 4, and P = 10, then the number of the reference points 
H = 286. Reference points could be expressed as an M × H dimensional matrix. 
It is assumed that the Pareto solutions are evenly dispersed over the Pareto 
front since the reference points are also scattered uniformly over hyper-plane. 
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Zref denotes the set of the reference points and Zref = (zk
1, zk

2, . . ., zk
H) ∀ 

k∈[1,H].

Adaptive Normalization of Swarm
The original adaptive normalization procedure proposed by (Deb and Jain 
2014) solves a set of linear equation systems, which increase the computational 
complexity of the metaheuristic. For operational ease, the generalized normal-
ization procedure is adopted in this paper. If Zj

min = (z1
min, z2

min, . . ., zM
min) 

denotes the set of ideal points consists of the minimum objective values for jth 

member ∀ j∈[1, N] of the swarm. zi
min is the ith minimum objective value fi ∀ 

i∈[1, M]. The zi
max ∈Zmax is assumed to be the worst point for the ith objective. 

Then, the normalized objective value fi*(xj) is calculated using Eq. (3.8). The 
procedure is portrayed in Algorithm 2. 

f �i xj
� �
¼

zmax
i � fi xj

� �

zmax
i � zmin

i
"i 2 1;M½ �and"j 2 1;N½ � 3:8ð Þ

Algorithm 2: AdaptiveNormalization
Input: swarm, Zmax, Zmin

Output: Normalized Zr

Step 1: zi
min ← min fi ∀ I ∈ [1, M]

Step 2: for j ←1 to N do
Step 3: for i←1 to M do
Step 4: if fi (xj) < zi

min then
Step 5: zi

min ← fi (xj)
Step 6: end

Figure 2. The SACBAS Framework for data-driven optimization.
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Step 7: end
Step 8: end
Step 9: for j ←1 to N do
Step 10: for i←1 to M do
Step 11: fi*(xj) ← (zi

max − fi (xj))/(zi
max − zi

min)
Step 12: end
Step 13: end

Mapping of Swarm to Reference Points
On the normalized hyper-plane, the reference points are connected with the 
origin using the reference lines. Further, the perpendicular distance among the 
swarm members and reference lines are computed. For every reference point, 
the minimum perpendicular distance is obtained, and the corresponding 
member of swarm is mapped to that reference point. The procedure is 
portrayed in Algorithm 3,

Algorithm 3: Mapping
Input: Zr, swarm
Output: τ (X ∈ swarm), d (X ∈ swarm) [τ is the nearest reference point and 

d is the distance from X to τ]
Step 1: for j ←1 to H do
Step 2: Calculate reference line wj = zj (z ∈ Zr)
Step 3: end
Step 4: for j ←1 to N do
Step 5: for j ←1 to H do
Step 6: Calculate d⊥(s, w) = || (s− wTsw/||w||2) ||
Step 7: end
Step 8: Assign τ(s) = w: argmin w ∈ Zr d⊥(s, w)
Step 9: Assign d(s) = d⊥(s, τ(s))
Step 10: end

Niche-Preservation Procedure
Using this procedure, niches are tallied for every reference point based on the 
associated members of the swarm. Niche preservation is performed to select 
the desired candidates from Fl (the last selected level for the new swarm) using 
following rule. First, the reference points set is selected with minimum niche 
counts. If the number of such reference points are more than one, a random 
reference point is selected from above set. If the niche count is zero, the 
member is chosen based on the smallest perpendicular distance to the refer-
ence line else if the niche count is one or greater, a random member is selected 
from Fl front. Thereafter, the niche count is increased by one for the next 
iteration of the niche preservation procedure. If this selection operation is 
exhausted for a reference point, then that is excluded from the present itera-
tion. This niche preservation procedure is repeated for the N – |pop| times 
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(until the new swarm saturates). At the end of the procedure, the new swarm 
of size N is obtained.

Sequential Move Generation for BAS
In the collaborative multi-objective BAS framework, the position re- 
computation Eq. (3.4) is modified to include the domination characteristics 
of the solutions. Once the left and right positions are computed, the next step 
is to obtain the objective values for the right and left positions and select the 
next position based on the domination among these two and the xGEV

i−1. The 
individual extreme values are discarded to increase the convergence speed. 
This further simplifies the position reevaluation and eliminates the need for 
computing velocities (existent or non-existent?) of the beetles (Yang, Deb, and 
Fong 2011). The procedure is displayed in Algorithm 4.

Algorithm 4: SequentialMove
Input: xr, xl, f, xGEV

i−1, c1, c2
Output: xi
Step 1: If xl dominates xr
Step 2: Compute xi = (1-c2) × xi + c1 × δi × ~b × xGEV

i−1

Step 3: Else If xr dominates xl
Step 4: Compute xi = (1-c2) × xi + c1 × δi × ~b × xGEV

i−1

Step 5: Else
Step 6: Compute xi = xGEV

i−1

Step 7: End
Step 8: End
Step 9: Return xi

Machine-Learning (ML) Fitness Functions

The objective evaluation is an important step for optimization algorithm. For 
the offline data-driven optimization problems, explicit mathematical objective 
functions are not readily available. Hence the ML fitness functions are suitable 
for such real-world problems (Chugh et al. 2018). In this study, four different 
ML functions are considered, and performances are compared for the offline 
data training. Depending on the performance measure scores, the best ML 
model is picked for the SACBAS algorithm. These function models are devel-
oped using the Decision Tree (DT), Support Vector Machine (SVM) based on 
linear and Gaussian kernels, and Radial Basis Function (RBF).

Decision Tree (DT)
A dataset of size n with output variable Yi for i = 1, 2, . . ., k, (Yi ∈ R) and 
decision variables Xj, j = 1, 2, . . ., p (xj ∈ RD) is considered. The DT model is 
trained in such a way that the values of Y could be predicted from the new 
X values. The Y variable holds ordered values and a DT regression model is 
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fitted to each of the nodes of tree for the training. The DT model could be used 
for the high-dimensional data. The most popular DT approaches are AID 
(Morgan and Sonquist 1963) and the CART (Breiman et al. 1984) found in 
literature. Algorithm 5 displays the DT construction procedure,

Algorithm 5: DTConstruction
Step 1. Start the procedure at the root node or first node
Step 2. If stopping criteria is not met
Step 3. Compute two child nodes using the minimization of the sum of 

square error on nodes (S for each X) and split {X* ∈ S*} are obtained with the 
minimum overall X and S.

Step 4. Repeat step 3 for the child nodes
Step 5. End
DT models are also known as piecewise linear models since two separate 

linear models are required to fit on each of the node splits. Quinlan (1992) 
stated the formulation of S using the DT model in Eq. (3.9), 

S ¼
m
n

SD tð Þ �
nLSD tLð Þ � nRSD tRð Þ

n

� �

3:9ð Þ

Where t is the node, n is the sample size, tL and tR are the node splits with 
sample size nL and nR, the SD is standard deviation, and m is the number of 
non-missing values in splits. Thereafter, multiple regression model is fitted 
to each of the nodes. Prediction error at t node is calculated using 
Eq. (3.10), 

Err tð Þ ¼

P
i Yi � bYi

�
�
�

�
�
�

n
�

nþ v
n � v

3:10ð Þ

Where v is the number of the parameters fitted in the model. Then, the 
number of regressors in each node is minimized using the backward stepwise 
regression. Tree pruning is performed using the bottom-up approach using 
the minimum prediction error check. Predicted values are smoothened using 
Eq. (3.11) 

ŷ�� ¼
nŶ þ kŶ�
� �

nþ kð Þ
3:11ð Þ

Where Y ̂ ** is smoothened predicted value, Y ̂ * and Y ̂ are the predicted values 
at parent and child node, respectively, and k is a constant.

Support Vector Machines (SVM)
The SVM performs a data mapping from the low dimensional space to high 
dimensional space. In this approach, the input parameters X are mapped onto 
an m-dimensional attribute space using specific nonlinear mapping, which 
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further converts it to a linear model in the same attribute space. The linear 
model is expressed as, 

f X;ωð Þ ¼
Xm

j¼1
ωjgj Xð Þ þ β 3:12ð Þ

Where gj(X) (j = 1 . . . m) is non-linear transformation function and β is bias. 
The performance of regression is analyzed using the ε-insensitive loss function 
(Chapelle and Vapnik 2000), 

L y; f X;ωð Þð Þ ¼
0if Y � f X;ωð Þj j � ε

Y � f X;ωð Þj j � εOtherwise 3:13ð Þ

�

The observed risk is defined using Eq. (3.14), 

R ωð Þ ¼
1
n

Xn

i¼1
L Yi; d Xi;ωð Þð Þ 3:14ð Þ

The abovementioned regression model can be transformed into an optimiza-
tion problem using Eq. (3.15), 

min Z ¼
1
2

ω2 þ C
Xn

k¼1
γi þ γ�i
� �

3:15ð Þ

Subject to, 

Yi � f Xi;ωð Þ � εþ γ�i
f Xi;ωð Þ � Yi � εþ γi
γi; γ�i � 0; i ¼ 1 . . . n

3:16ð Þ

8
<

:

Where γi and γi* (i = 1 . . . n) are positive slack variables, which can calculate 
the deviation of the input parameters beyond the ε-insensitive neighborhood. 
This optimization problem is known as primal, which could be transformed 
into a dual using Eq. (3.17), 

max W α; α�ð Þ ¼ �
1
2

Xn

i¼1

Xn

j¼1
αi � α�i
� �

αj � α�j
� �

Xi;Xj þ
Xn

i¼1
αi � α�i
� �

Yi

þ
Xn

i¼1
αi � α�i
� �

ε 3:17ð Þ

Subject to, 

Xn

i¼1
αi � α�i
� �

¼ 0; 0 � αi; α�i � C; i ¼ 1; 2; . . . ; n 3:18ð Þ

The SVM fitting function is expressed as, 
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f Xð Þ ¼
Xn

i¼1
αi � α�i
� �

K Xi;Xj
� �

þ b 3:19ð Þ

K(xi, xj) = <f(xi),f(xj)> is termed as the kernel function, which could be linear 
as well as non-linear (Gaussian) models.

Radial Basis Function (RBF)
The RBF is a popular function for fitting of the non-uniform data to predict 
responses. The RBF was first introduced by Hardy (1971). The RBF is demon-
strated as an accurate method for predictive modeling of high-dimensional 
data (Arnaiz-González et al. 2016). The RBF is defined as f: RD → R with 
Gaussian function of Eq. (3.20), 

φi
~X
� �
¼ e

�

X!� μi
!

�
�
�

�
�
�

�
�
�

�
�
�

2

2σ2
i 3:20ð Þ

The summation function is computed using Eq. (3.21), 

; ~X
� �
¼ β0 þ

Xn

i¼1
ωie
�

X!� μi
!

�
�
�

�
�
�

�
�
�

�
�
�

2

2σ2
i 3:21ð Þ

Where n is the number of RBFs, µ is the midpoint of each RBF, X is input, σ > 0 
is the Gaussian function, β0 is the bias, and ω is the weight of each RBF.

Initial Solution Generation for SACBAS
For the purpose of the initial solution generation, Latin Hypercube Sampling 
(LHS) is preferred, which is a popular method to sample the random solutions 
(Chen, Li, and Yao 2018; Wang et al. 2018). In this paper, a modified form of 
the LHS method is adopted, which generates the random sample (position of 
the beetle) uniformly within a specified range depending upon the actual range 
of the input variables. The algorithm 6 explains the modified LHS procedure. 
The proposed SACBAS algorithmic framework is portrayed in Algorithm 7.

Algorithm 6: ModifiedLHS
Input: No. of Sample points N (N = 1), Input Variables M with Lower 

Bound (LB) and Upper Bound (UB).
Output: Sample point in the form of solution string [X1, X2, . . ., XM]
For i←1 >M do

(1) Slope = UB-LB
(2) Offset = LB
(3) LUB = |UB|
(4) SLOPE = JN×LUB
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(5) OFFSET = JN×LUB
(6) SLOPEi = JN×1 ⊙ Slopei and OFFSETi = JN×1 ⊙ offseti for i ∈ [1, LUB]
(7) XNORM ← Basic LHS (N, LUB)
(8) XMOD ←SLOPE ⊙ XNORM + OFFSET

End For
Return: XMOD
Algorithm 7: SACBAS Pseudocode
%Parameter Initialization
Step 1: Number of Iterations (MaxIT), Size of Swarm (N), distance between 

antennae d0, step size δ0, learning factors (c1, c2), nondom = φ
%Functional Initialization
Step 2: →Zref = ReferencePointGenerator ()
Step 3: →Swarm0 = InitializeSwarm ()
Step 4: →Zmax = IdealPointGenerator ()
Step 5: →fitness0 = FitnessFunction (Swarm0) %FitnessFunction is 

SVMLinearKernel for data driven SACBAS
Step 6: →[F1, F2, . . ., Fl, . . .’] = Non-dominated Sorting (Swarm0)
Step 7: →GEV = F1(1)
%Main Loop
Step 8: For i←1: MaxIT
Step 9: For j←1: N
Step 10: xj← Swarm0 (j)
Step 11: Generate ~b, xr, xl using Eq. (3.1–3.3)
Step 12: xj

new ← SequentialMove (xj)
Step 13: fj ← f (xj

new)
Step 14: End For
Step 15: . Swarm0

new ← [x1
new, x2

new, . . ., xN
new]; fitness ←[f1, f2, . . ., fN]

Step 16: Swarm0 ← Swarm0
new ∪ Swarm0

Step 17: [F1, F2, . . ., Fl, . . .] = Non-dominated Sorting (Swarm0)
Step 18: While (nondom < N) do
Step 19: nondom ← nondom ∪ Fk (k←k+1)
Step 20: If last front included in nondom is Fl
Step 21: If Size(nondom) = = N then
Step 22: Swarm0 ← nondom;
Step 23: break
Step 24: Else Swarm0 ← F1 + F2 + . . . + Fl-1
Step 25: Zr ← AdaptiveNormalization (Swarm0, Zmax, Zmin)
Step 26: [τ(x), d(x)] ← Mapping (Zr, Swarm0) ∀x ∈ Swarm0

Step 27: Calculate the number of niche for reference points
Step 28: [N-Size(Swarm0) solutions] = NichePreservationProcedure 

(Swarm0, Zr, τ, d, Fl)
Step 29: End If
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Step 30: End If
Step 31: End While
Step 32: Update the antennae distance d and step size δ using Eq. (3.5) 

and (3.6)
Step 33: End For

Computational Studies

The proposed SACBAS is coded in the MATLAB on a 2.11 GHz Intel i7 
computer. The proposed SACBAS is compared with other two latest metaheur-
istic algorithms, NSGA III (Deb and Jain 2014) and MOEA/D (Zhang and Li 
2007). In the first place, the multi-objective form of the SACBAS is tested on the 
eleven benchmark test problems taken from ZDT (Zitzler, Deb, and Thiele 2000) 
and DTLZ (Deb et al. 2001) problem suites. For ZDT, the problem dimension is 
set as 20 for ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6. For the DTLZ, the 
experiments are performed on the 3-objective and the 5-objective problems 
for DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ5, and DTLZ6. Then, in the second 
place, the data-driven SACBAS algorithm is validated using offline data, which 
are the Energy Efficiency (EE) for residential building data (Tsanasa and Xifara 
2012), Closed Loop Engine (CLE) control data (Engine Timing Model with 
Closed Loop Control 1994), Concrete Slump (CS) data (Yeh 2007), and capital 
Stock Portfolio Performance (SPP) data (Liu and Yeh 2017). These real-world 
datasets could be directly accessible from the UCI Machine Learning (ML) 
repository (https://archive.ics.uci.edu/ml/index.php) and Mendeley data. The 
Hypervolume indicator (HV) is considered as the performance measure for 
the SACBAS, NSGA III, and MOEA/D algorithms (Augera et al. 2012). The HV 
calculates the volume area covered between the obtained Pareto frontier and the 
reference point on the objective space. According to ref. (Bringmann and 
Friedrich 2010) an optimization problem could be defined using some random 
dimension of decision variables X, where the objective is to minimize f(X): X → ℝ 
d

≥0. The d is the dimension of the problem. A probable solution point x belongs 
to the decision space X, which could be recognized with the corresponding 
fitness value in the solution space. If SWARM is the size of initial solution set, 
then the HV is computed using Eq. (4.1). 

HV SWARMð Þ ¼ VOL [
x1;x2;...;xdð Þ2SWARM

0; x1½ � � 0; x2½ � � . . .� 0; xd½ �

� �

4:1ð Þ

The VOL operation is performed using Lebesgue measure (Kestelman 1960). 
The higher is the HV indicator score, the better is the algorithmic 
performance.
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Multi-Objective Performance Analysis on the ZDT and DTLZ Test Problems

The algorithms are executed for 15 trial runs for each of the test problems. The 
algorithmic parameters are obtained after rigorous testing and displayed in 
Table 1. For the selection of the parameters, the trade-off between the com-
putational time and solution qualities are considered. For ZDT problems, the 
best (MAX) and worst (MIN) scores for HV indicator are obtained and

Figure 3. ZDT1 Pareto Curves obtained using SACBAS, NSGA III, and MOEA/D.

Figure 4. ZDT2 Pareto Curves obtained using SACBAS, NSGA III, and MOEA/D.

Figure 5. ZDT3 Pareto Curves obtained using SACBAS, NSGA III, and MOEA/D.

Figure 6. ZDT4 Pareto Curves obtained using SACBAS, NSGA III, and MOEA/D.
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presented in Table 2. Obtained Pareto fronts are portrayed in Figure 3- Figure 
7. The comparison among algorithmic performances is portrayed using box-
plots in Figure 8. For ZDT3 and ZDT6, the SACBAS performs extremely well 
and obtains better HV scores than the NSGA III and MOEA/D. For ZDT1 and 
ZDT2, the mean HV scores obtained by all the three algorithms lie in the same 
region. Whereas, the SACBAS performs at per with the MOEA/D and better 
than the NSGA III for ZDT4. It could also be observed that the SACBAS 
obtains smaller number of Pareto solutions than the NSGA III and MOEA/D. 
However, the mean HV scores are better in most of the cases. This phenom-
enon proves the robustness and consistency of the SACBAS algorithm. If 
computational complexities are considered, the SACBAS has shown similar 
performance with the NSGA III. However, the MOEA/D performs faster than 
the SACBAS and NSGA III.

Figure 7. ZDT6 Pareto Curves obtained using SACBAS, NSGA III, and MOEA/D.

Table 1. Parameters for the SACBAS, NSGA III, and MOEA/D.
SACBAS NSGA III MOEA/D

Swarm Size 100 Population Size 100 Population Size 100
Iteration No. 50 Generation No. 50 Generation No. 50
C1 0.2 PCrossover 0.5 Archive No. 100
C2 0.2 PMutation 0.02 PCrossover 0.5

Table 2. Comparison among SACBAS, NSGA III, and MOEA/D based on ZDT MOPs.
HyperVolume CPU Time (S)

MOP nVar nObj HV SACBAS NSGA III MOEA/D SACBAS NSGA III MOEA/D
ZDT1 20 2 MAX 5.41E-01 5.41E-01 5.46E-01 18.37 17.23 7.17

MIN 4.53E-01 4.77E-01 4.65E-01
MEAN 5.00E-01 5.00E-01 5.00E-01

ZDT2 2 MAX 5.45E-01 5.45E-01 5.57E-01 21.67 21.12 6.22
20 MIN 4.67E-01 4.69E-01 4.64E-01

MEAN 5.01E-01 4.99E-01 5.00E-01
ZDT3 20 2 MAX 5.27E-01 5.35E-01 5.47E-01 19.28 20.62 7.12

MIN 4.65E-01 4.59E-01 4.60E-01
MEAN 5.02E-01 4.98E-01 5.04E-01

ZDT4 20 2 MAX 5.30E-01 5.44E-01 5.30E-01 20.14 20.88 5.78
MIN 4.64E-01 4.65E-01 4.74E-01
MEAN 5.00E-01 4.98E-01 5.02E-01

ZDT6 20 2 MAX 5.28E-01 5.31E-01 5.36E-01 19.92 18.045 6.09
MIN 4.55E-01 4.72E-01 4.59E-01
MEAN 5.04E-01 4.99E-01 5.03E-01
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The justification could be that the goal of the development of MOEA/D is to 
reduce the computational complexities using decomposition method (Zhang 
and Li 2007). Whereas the SACBAS algorithm follows the trail of the 
NSGA III.

The SACBAS algorithm is further applied on the DTLZ test problems. The 
DTLZ problems are harder than the ZDT problems. Fig. 9, 11, 13, 15, 17, and 
19 depict the Pareto fronts obtained by the SACBAS, NSGA III, and MOEA/D

Figure 8. Comparison among SACBAS, NSGA III, and MOEA/D for ZDT problems using box plots.

Figure 9. DTLZ1 Pareto Curves for 3-Objective Problem by SACBAS, NSGA III, and MOEA/D.

Figure 10. DTLZ1 Pareto Curves for 5-Objective Problem by SACBAS, NSGA III, and MOEA/D.
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algorithms for 3-objective DTLZ problems. Fig. 10, 12, 14, 16, 18, and 20 
portray the Pareto fronts for 5-objective DTLZ problems obtained by the 
SACBAS, NSGA III, and MOEA/D algorithms. The comparison among the 
algorithmic performances for 3-objective problems are portrayed using box-
plots in Figure 21. It could be observed that the SACBAS performs very well 
for DTLZ1, DTLZ2, DTLZ4, DTLZ5 3-objective problems. Whereas, the

Figure 11. DTLZ2 Pareto Curves for 3-Objective Problem by SACBAS, NSGA III, and MOEA/D.

Figure 12. DTLZ2 Pareto Curves for 5-Objective Problem by SACBAS, NSGA III, and MOEA/D.

Figure 13. DTLZ3 Pareto Curves for 3-Objective Problem by SACBAS, NSGA III, and MOEA/D.

Figure 14. DTLZ3 Pareto Curves for 5-Objective Problem by SACBAS, NSGA III, and MOEA/D.
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NSGA III performs slightly better for the DTLZ3, and the MOEA/D performs 
superior for the DTLZ6 3-objective problem. Figure 22 shows the performance 
comparison among the three algorithms for the 5-objective DTLZ problems. 
The SACBAS shows improved HV scores for almost all the test problems 
except DTLZ6. The MOEA/D obtains slightly better mean HV scores for 
DTLZ6. Table 3 demonstrates the overall results for DTLZ test problems

Figure 15. DTLZ4 Pareto Curves for 3-Objective Problem by SACBAS, NSGA III, and MOEA/D.

Figure 16. DTLZ4 Pareto Curves for 5-Objective Problem by SACBAS, NSGA III, and MOEA/D.

Figure 17. DTLZ5 Pareto Curves for 3-Objective Problem by SACBAS, NSGA III, and MOEA/D.

Figure 18. DTLZ5 Pareto Curves for 5-Objective Problem by SACBAS, NSGA III, and MOEA/D.
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based on HV scores. Computational time scores are better for the MOEA/D 
algorithm than other two as expected.

Figure 19. DTLZ6 Pareto Curves for 3-Objective Problem by SACBAS, NSGA III, and MOEA/D.

Figure 20. DTLZ6 Pareto Curves for 5-Objective Problem by SACBAS, NSGA III, and MOEA/D.

Figure 21. Comparison among SACBAS, NSGA III, and MOEA/D for DTLZ 3-objective problems 
using box plots.
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Data-Driven Evolutionary Optimization Analysis on Offline Data

Four cases are considered from the literature, which are based on the real-world 
data. These are complicated multi-dimensional data with more than one objective 
to be considered (2–6). These cases are based on the offline data, which means that 
the experimentations or investigations are conducted before and the data are 
collected for analysis. Therefore, new data are not available during the

Figure 22. Comparison among SACBAS, NSGA III, and MOEA/D for DTLZ 5-objective problems 
using box plots.

Figure 23. Pareto Curves for EE data by SACBAS, NSGA III, and MOEA/D.

Figure 24. Pareto Curves for CLE Data by SACBAS, NSGA III, and MOEA/D.
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optimization process. Due to the availability of the limited data or absence of new 
data, it is essential to obtain accurately trained ML-based surrogate models. For 
that matter, four different functions based on DT, SVM, and RBF are considered. 
The best function is selected based on the performances of these functions on all 
the case data. The HV indicator is also employed to measure the performance of 
the SACBAS algorithm with respect to the NSGA III and MOEA/D. The perfor-
mance of the surrogate function is evaluated using Root Mean Square Error 
(RMSE) and Mean Absolute Error (MAE). The expressions of the RMSE and 
MAE are portrayed in Eq. (4.2) and Eq. (4.3) respectively. 

RMSE ¼
1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
Yi � tið Þ

2
r

4:2ð Þ

MAE ¼
P

i jYi � tij

N
4:3ð Þ

Where N is the number of observations, Yi is the observed value for ith observa-
tion and ti is the ith target value. The comparison study among the surrogate 
functions is displayed in Table 4. It could be observed that the SVM outperforms 
the DT and RBF functions. Among both SVMs, the SVM with linear kernel 
shows better RSME and MAE scores than the SVM with Gaussian kernel for the 
EE data, CLE data, and CS data. However, it obtains near best scores for SP data. 
Based on the analysis, the SVM with linear kernel is selected as the target 
function. All the three metaheuristic algorithms are applied on the selected

Figure 25. Pareto Curves for CS data by SACBAS, NSGA III, and MOEA/D.

Figure 26. Pareto Curves for SP data by SACBAS, NSGA III, and MOEA/D.
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SVM function. These algorithms performed well for all the four offline datasets. 
The obtained Pareto fronts are displayed in Fig. 23–26.

The results are obtained based on HV indicator and displayed in Table 5 
and the comparison using boxplots is depicted in Figure 27. It could be

Table 3. Comparison among SACBAS, NSGA III, and MOEA/D based on DTLZ MOPs.
HyperVolume Indicator CPU Time (S)

MOP nVar nObj Scores SACBAS NSGA III MOEA/D SACBAS NSGA III MOEA/D
DTLZ1 7 3 MAX 8.98E-01 8.79E-01 8.82E-01 22.6 25.7 15.53

MIN 8.37E-01 6.52E-01 7.36E-01
MEAN 8.69E-01 8.02E-01 7.93E-01

9 5 MAX 7.31E-01 8.23E-01 6.33E-01 259.1 253.6 105.4
MIN 6.34E-01 6.01E-01 5.14E-01
MEAN 6.96E-01 6.94E-01 3.21E-01

DTLZ2 12 3 MAX 8.91E-01 8.92E-01 8.88E-01 23.46 25.34 15.6
MIN 8.00E-01 6.72E-01 8.22E-01
MEAN 8.63E-01 8.48E-01 8.56E-01

14 5 MAX 8.34E-01 8.03E-01 7.71E-01 256.36 259.07 113.28
MIN 6.24E-01 2.21E-01 4.82E-01
MEAN 7.40E-01 5.04E-01 6.29E-01

DTLZ3 12 3 MAX 8.57E-01 8.92E-01 8.16E-01 24.29 25.27 12.98
MIN 6.72E-01 7.92E-01 5.47E-01
MEAN 8.05E-01 8.52E-01 6.78E-01

14 5 MAX 8.01E-01 7.28E-01 6.60E-01 257.82 254.05 100.32
MIN 5.65E-01 4.76E-01 3.63E-01
MEAN 7.20E-01 5.95E-01 4.56E-01

DTLZ4 12 3 MAX 6.12E-01 8.22E-01 2.86E-01 23.86 25.78 14.57
MIN 5.82E-01 5.16E-01 2.12E-01
MEAN 5.47E-01 6.08E-01 2.51E-01

14 5 MAX 3.02E-01 2.16E-01 2.57E-01 267.19 265.48 113.56
MIN 1.79E-01 4.60E-02 5.10E-02
MEAN 2.56E-01 8.79E-02 1.11E-01

DTLZ5 12 3 MAX 8.79E-01 8.07E-01 7.62E-01 25.97 27.8 17.14
MIN 8.37E-01 6.86E-01 5.93E-01
MEAN 7.80E-01 6.02E-01 6.54E-01

14 5 MAX 6.52E-01 4.80E-01 5.61E-01 282.12 295.9 118.37
MIN 3.84E-01 1.54E-01 2.85E-01
MEAN 5.67E-01 2.82E-01 3.37E-01

DTLZ6 12 3 MAX 8.94E-01 8.94E-01 8.87E-01 28.23 28.17 17.25
MIN 8.60E-01 8.17E-01 8.60E-01
MEAN 8.17E-01 4.96E-01 8.13E-01

14 5 MAX 8.15E-01 7.59E-01 7.38E-01 278.58 277.58 114.16
MIN 5.68E-01 1.81E-01 6.20E-01
MEAN 6.78E-01 4.34E-01 6.91E-01

Table 4. Comparison among surrogate models based on RMSE and MAE scores.
nVar nObj Decision Tree SVM (Linear Kernel) SVM (Gaussian 

Kernel)
RBF

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

EE Data 8 2 3.29E 
+00

2.84E 
+00

3.25E 
+00

2.48E 
+00

9.27E 
+00

8.22E 
+00

5.50E 
+00

4.30E 
+00

CLE Data 3 2 1.97E 
+03

1.44E 
+03

4.58E 
+01

3.11E 
+01

4.47E 
+02

2.92E 
+02

3.17E 
+02

2.04E 
+02

CS Data 7 3 2.45E 
+01

1.62E 
+01

1.23E 
+01

7.79E 
+00

1.40E 
+01

1.07E 
+01

1.47E 
+01

1.18E 
+01

SPP Data 6 6 6.70E-02 4.30E-02 4.90E-02 3.00E-02 4.10E- 
02

3.00E- 
02

6.00E-02 4.00E-02
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observed that the SACBAS performs uniformly and attains very good mean 
HV scores. It can outperform the established techniques such as NSGA III and 
MOEA/D for high-dimensional and multi-objective problems.

Table 5. Comparison among SACBAS, NSGA III, and MOEA/D based on DTLZ MOPs.
HyperVolume CPU Time (S)

DATA nVar nObj HV SACBAS NSGA III MOEA/D SACBAS NSGA III MOEA/D
EE Data 6 2 MAX 5.39E-01 5.43E-01 5.36E-01 30.13 26.47 15.97

MIN 4.71E-01 4.64E-01 4.65E-01
MEAN 5.02E-01 5.00E-01 5.02E-01

CLE Data 3 2 MAX 5.43E-01 5.27E-01 5.44E-01 24.66 18.94 12.06
MIN 4.65E-01 4.69E-01 4.64E-01
MEAN 5.02E-01 5.02E-01 5.01E-01

CS data 7 3 MAX 4.84E-01 4.92E-01 5.03E-01 27.93 19.32 13.27
MIN 4.23E-01 4.19E-01 4.21E-01
MEAN 4.55E-01 4.51E-01 4.55E-01

SPP Data 6 6 MAX 3.70E-02 3.20E-02 3.20E-02 96.46 96.65 43.99
MIN 1.30E-02 1.30E-02 1.00E-02
MEAN 2.30E-02 2.00E-02 2.10E-02

Figure 27. Comparison among SACBAS, NSGA III, and MOEA/D for all four offline data by box plots.
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Nonparametric Statistical Comparisons among the SACBAS, NSGA III, and 
MOEA/D

It is highly desirable to quantify the performance of a metaheuristic statisti-
cally. The numerical HV scores obtained from Table 2, 3, and 5 are close to 
each other. It is not an easy task to pick up the best performing metaheuristic 
with significant differences without statistical test. The nonparametric tests are 
suitable for such analyses where more than two metaheuristics are considered 
(Veillegas 2011). For that matter, Friedman rank test is applied on all the three 
algorithms. The test would confirm if at least one algorithm performs differ-
ently than others. All the test problem instances are considered in cumulative 
form for the statistical test. The HV scores are used for the test. The null 
hypothesis and alternative hypothesis are defined as, 

H0: There is no significant difference among the metaheuristics (null 
hypothesis)

H1: At least one algorithm is different than others performance wise (alter-
native hypothesis)

In the first step of the Friedman rank test, the HV scores are ranked using 
R(HVij) where HVij is the HV score obtained by ith algorithm for jth problem. 
However, the ranks are assigned for a particular algorithm and the ranks 
obtained for an algorithm are not correlated with the ranks obtained by 
another algorithm. Thereafter, the summation of all the squared ranks is 
obtained using Eq. (4.4), 

A2 ¼
Xn

i¼1

Xm

j¼1
R HVij
� �� �2 4:4ð Þ

Where n is the number of algorithms and m is the number of problems. 
Further, the sum of the ranks for each algorithm is obtained and the 
square form of these summations are summed again using Eq. (4.4).  

B2 ¼
1
m
Pn

i¼1

Pm

j¼1
R HVij
� �

" #2

4:4ð Þ

The test statistic is computed using Eq. (4.5), 

T2 ¼
m � 1ð Þ B2 � mn nþ 1ð Þ

2
=4

� �

A2 � B2
4:5ð Þ

At this stage, at the level of α significance F1-α, n-1, (n-1)(m-1) is obtained from the 
F distribution table. If the test statistic T2 is greater than F1-α, n-1, (n-1)(m-1) then 
the null hypothesis is rejected. Here the k1 = n-1 and k2 = (n-1)(m-1) denote 
the degree of freedom values. Friedman test is carried out on the data obtained 

APPLIED ARTIFICIAL INTELLIGENCE 467



from Table 2, 3, and 5. Total 63 data points are considered and presented in
Table 6. The ranks and square of the ranks are computed and displayed in 
Table 6. It also displays the sum of the ranks and the sum of the square of the 
ranks. Using Eq. (4.3) and Eq. (4.4) the values of A2 = 833 and B2 = 723.19 are 
computed. The test statistic is calculated as T2 = 18.525 using Eq. (4.5). For 
α = 0.05, from F distribution table F1-α, n-1, (n-1)(m-1) = F0.95, 2, 124 = 2.6. Since T2 
˃ F, the null hypothesis is rejected. Hence, the Friedman test concludes that 
there exists at least one algorithm, which performs differently than the other 
two. At this point, a Post Hoc test is required, which would perform the 
pairwise comparison tests to identify the metaheuristic(s) behaving differently 
(Veillegas 2011). For that matter, the absolute difference between the sums of 
the ranks of the algorithms i and k are calculated and put in the conditional Eq. 
(4.6). If the condition holds, then ith and kth algorithms are claimed as different 
to each other. 

Xm

j¼1
R HVij
� �

�
Xm

j¼1
R HVkj
� �

�
�
�
�
�

�
�
�
�
�
> t1� α

2; n� 1ð Þ m� 1ð Þ

2n A2 � B2ð Þ

n � 1ð Þ m � 1ð Þ

� �0:5

4:6ð Þ

The value of t1-α/2, (n-1)(m-1) is obtained from t distribution table with α 
significance level and (n-1)(m-1) degree of freedom. This calculates 
t1-α/2, (n-1)(m-1) = t0.975, 124 = 1.96 and the right hand side of Eq. (4.6) becomes 
1.96[2 n(A2-B2)/(n-1)(m-1)]0.5 = 1.96×(111.58)°.5 = 20.704. Further, the pair-
wise comparison matrix is obtained using the left-hand side of Eq. (4.6) and 
portrayed in Table 7. It could be observed that the SACBAS outperforms both 
the NSGA III and MOEA/D. Whereas the NSGA III and MOEA/D perform 
equally. Therefore, the SACBAS algorithm could be claimed as the superior 
among all.

Conclusions

This paper presents a novel Storage Adaptive Collaborative Beetle Antennae 
Search algorithm (SACBAS), which could be applied on the mathematical 
function-based as well as the data-driven computational expensive problems. 
The SACBAS uses the memory stored adaptive learning-based sequential 
move and the reference point-based non-dominated sorting approach. The 
algorithm is developed using the Support Vector Machine (SVM) surrogate 
function as the SVM with linear kernel is shown to be superior to another 
SVM with Gaussian kernel, RBF, and decision tree-based models. Offline data 
are collected from the UCI ML repository and used for the model training. The 
proposed SACBAS is successfully compared with two other algorithms, the 
NSGA III and MOEA/D. The test suites utilized for the multi-objective 
performance comparison are based on the ZDT and DTLZ. A detailed 
Friedman test with Post Hoc analysis is carried out on the HyperVolume 
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Table 6. Calculation of ranks, sum of ranks, square of ranks, and sum of square of ranks.
No. SACBAS R R2 NSGA III R R2 MOEA/D R R2

1 0.898 1 1 0.879 3 9 0.882 2 4
2 0.837 1 1 0.652 3 9 0.736 2 4
3 0.869 1 1 0.8015 2 4 0.793 3 9
4 0.731 2 4 0.823 1 1 0.633 3 9
5 0.634 1 1 0.601 2 4 0.514 3 9
6 0.696 1 1 0.694 2 4 0.321 3 9
7 0.891 2 4 0.892 1 1 0.888 3 9
8 0.8 2 4 0.672 3 9 0.822 1 1
9 0.863 1 1 0.848 3 9 0.856 2 4
10 0.834 1 1 0.803 2 4 0.771 3 9
11 0.624 1 1 0.221 3 9 0.482 2 4
12 0.74 1 1 0.504 3 9 0.629 2 4
13 0.857 2 4 0.892 1 1 0.816 3 9
14 0.672 2 4 0.792 1 1 0.547 3 9
15 0.805 2 4 0.852 1 1 0.678 3 9
16 0.801 1 1 0.728 2 4 0.66 3 9
17 0.565 1 1 0.476 2 4 0.363 3 9
18 0.72 1 1 0.595 2 4 0.456 3 9
19 0.612 2 4 0.822 1 1 0.286 3 9
20 0.582 1 1 0.516 2 4 0.212 3 9
21 0.547 2 4 0.608 1 1 0.251 3 9
22 0.302 1 1 0.216 3 9 0.257 2 4
23 0.179 1 1 0.046 3 9 0.051 2 4
24 0.256 1 1 0.0879 3 9 0.111 2 4
25 0.879 1 1 0.807 2 4 0.762 3 9
26 0.837 1 1 0.686 2 4 0.593 3 9
27 0.78 1 1 0.602 3 9 0.654 2 4
28 0.652 1 1 0.48 3 9 0.561 2 4
29 0.384 1 1 0.154 3 9 0.285 2 4
30 0.567 1 1 0.282 3 9 0.337 2 4
31 0.894 1 1 0.894 1 1 0.887 3 9
32 0.86 1 1 0.817 3 9 0.86 1 1
33 0.817 1 1 0.496 3 9 0.813 2 4
34 0.815 1 1 0.759 2 4 0.738 3 9
35 0.568 2 4 0.181 3 9 0.62 1 1
36 0.678 2 4 0.434 3 9 0.691 1 1
37 0.541 2 4 0.541 2 4 0.546 1 1
38 0.453 3 9 0.477 1 1 0.465 2 4
39 0.5 1 1 0.5 1 1 0.5 1 1
40 0.545 2 4 0.545 2 4 0.557 1 1
41 0.467 2 4 0.469 1 1 0.464 3 9
42 0.501 1 1 0.499 3 9 0.5 2 4
43 0.527 3 9 0.535 2 4 0.547 1 1
44 0.465 1 1 0.459 3 9 0.46 2 4
45 0.502 2 4 0.498 3 9 0.504 1 1
46 0.53 2 4 0.544 1 1 0.53 2 4
47 0.464 3 9 0.465 2 4 0.474 1 1
48 0.5 2 4 0.498 3 9 0.502 1 1
49 0.528 3 9 0.531 2 4 0.536 1 1
50 0.455 3 9 0.472 1 1 0.459 2 4
51 0.504 1 1 0.499 3 9 0.503 2 4
52 0.539 2 4 0.543 1 1 0.536 3 9
53 0.471 1 1 0.464 3 9 0.465 2 4
54 0.502 1 1 0.5 3 9 0.502 1 1
55 0.543 2 4 0.527 3 9 0.544 1 1
56 0.465 2 4 0.469 1 1 0.464 3 9
57 0.502 1 1 0.502 1 1 0.501 3 9
58 0.484 3 9 0.492 2 4 0.503 1 1
59 0.423 1 1 0.419 3 9 0.421 2 4
60 0.455 1 1 0.451 3 9 0.455 1 1
61 0.037 1 1 0.032 2 4 0.032 2 4
62 0.013 1 1 0.013 1 1 0.01 3 9

(Continued)
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(HV) scores obtained by the algorithms and the proposed SACBAS is shown 
to outperform the NSGA III and MOEA/D. This article renders the following 
contributions,

● The proposed SACBAS is developed in such a way that it can execute 
parallel BAS algorithm modules for each of the swarm member. 
Therefore, each of the swarm members (beetle) can walk independently 
in the swarm.

● The beetles have information stored in memory and they use adaptive 
learning procedure to remember things. This phenomenon is incorpo-
rated in the SACBAS to memorize the group extreme value of the swarm 
and accelerate the convergence without the help of the individual extreme 
values for the swarm members.

● The reference point-based framework distributes the candidate solutions 
uniformly in the objective space. Further, the modified normalization 
procedure proposed in this study is suitable for high-dimensional data 
and reduces complexities. Both mechanisms are incorporated in the 
proposed SACBAS to obtain the Pareto optimal solutions for the high- 
dimensional problems with many objectives.

● The offline data-driven approach and global-surrogate is adopted in the 
proposed SACBAS algorithm for generalization, robustness, and prompt 
global optima.

The proposed SACBAS is in a process of further development. An attempt 
would be made to use it for more complex real-world many-objective pro-
blems such as manufacturing and production processes with combined form 
of the global and local surrogates for the online data.
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