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Aeronautics, Mechanical and Electronic Convergence Engineering, Kumoh National Institute of 
Technology, Gumi-si, Republic of Korea

ABSTRACT
In this paper, we study a deep learning (DL)-based multimodal 
technology for military, surveillance, and defense applications 
based on a pixel-by-pixel classification of soldier’s image data-
set. We explore the acquisition of images from a remote tactical- 
robot to a ground station, where the detection and tracking of 
soldiers can help the operator to take actions or automate the 
tactical-robot in battlefield. The soldier detection is achieved by 
training a convolutional neural network to learn the patterns of 
the soldier’s uniforms. Our CNN learns from the initial dataset 
and from the actions taken by the operator, as opposed to the 
old-fashioned and hard-coded image processing algorithms. 
Our system attains an accuracy of over 81% in distinguishing 
the specific soldier uniform and the background. These experi-
mental results prove our hypothesis that dilated convolutions 
can increase the segmentation performance when compared 
with patch-based, and fully connected networks.
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Compiled 16 March 2021  

Introduction

Countless efforts from military and civil defense agencies in the last decades have 
focused on detecting a known target in a video image Haralick (1979); Haralick, 
Shanmugam, and Dinstein (1973). The result of this hard work has always been 
based on image/video processing techniques. However, with the revolution of 
artificial intelligence in the last couple of years, the classical processing techni-
ques are becoming obsolete Geron (2017); Goodfellow, Bengio, and Courville 
(2016); Mitchell (1997), in part for the fixed characteristic of the coding, and the 
almost inexistent versatility and reusability of the code from one application to 
another. Algorithms for basic segmentation such as TextonForests Shotton, 
Johnson, and Cipolla (2008) and Random Forest Shotton et al. (2011) are limited 
by its low performance. Patch classification, where every pixel is classified 
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individually with patches, is limited by the requirement of fixed size images 
Ciresan, Alessandro Giusti, and Schmidhuber (2012); Shelhamer, Long, and 
Darrell (2017). Models based on convolutional neural networks (CNNs) have 
increased the segmentation performance on popular segmentation datasets such 
as MSCOCO Lin et al. (2014) and PASCAL VOC 2012 Everingham et al. (2012). 
Fully connected layer CNN architectures allow generating segmentation from 
images of any size. Pre-trained CNNs allow to reuse the learned features for new 
tasks, enabling researchers to develop models faster, with less training data Pan 
and Yang (2010); Morocho-Cayamcela, Eugenio, and Kwon (2017); Shifat and 
Jang-Wook (2020).

Even though some pattern recognition techniques have been recently 
exploited in the classification area, there is no record of using artificial intelli-
gence (AI) techniques to detect the uniformity of soldiers accurately using an 
image semantic segmentation network. To solve this problem, we propose a 
segmentation network using two CNNs that reassemble a semantic pixel classi-
fier. This technique has been proven to generalize to any scenario if the training 
data are well-defined Maggiori et al. (2017a); Badrinarayanan, Kendall, and 
Cipolla (2015); Morocho-Cayamcela and Lim (2020); Morocho-Cayamcela, 
Eugenio, and Lim (2020a). We test our segmentation network along with 
different segmentation techniques from the literature and prove that our design 
outperforms them for the classes of soldier and background. Our system attains 
an accuracy of over 81% in distinguishing the specific soldier uniform and the 
background from the image.

Model architecture

We use an encoder-decoder structure to exploit the multi-scale features in the 
dataset and perform feature-dense extraction Maggiori et al. (2017b); 
Badrinarayanan, Kendall, and Cipolla (2015). This is where the encoder– 
decoder architecture excels at, as it compresses the input to represent all of 
the information. Our encoder-decoder segmentation network architecture is 
shown in Figure 1. The encoder stage uses a pre-trained CNN to downscale the 
images of the soldiers into a feature vector containing a dense pixel-location 
information. The decoder is employed to expand the compressed feature 
vector back to a categorical matrix with the original input size Morocho- 
Cayamcela, Eugenio, and Lim (2020a).

The backbone of the encoder is based on the ResNet-101 architecture He et al. 
(2016), which is a pre-trained CNN with 101-layers trained on the ImageNet 
dataset Deng et al. (2009), built with five convolutional (Conv) modules, where 
each one of the modules possesses the same number of convolutional layers as 
the original ResNet-101. The first four convolutional blocks of ResNet-101 are 
reused, and the last block is adapted with parallel copies to apply dilated spatial 
pyramid pooling at different scales. Our model then concatenates the extracted 

APPLIED ARTIFICIAL INTELLIGENCE 477



features to send the data to the decoder stage. The dilated convolutions guar-
antee the robustness of our architecture to environment size changes caused by 
the multi-scale contextual information encoding. The dilated convolution func-
tion is represented as 

y½i� ¼
XK

k¼1
x½iþ r � k�w½k� (1) 
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Figure 1. Our model architecture employs an encoder-decoder structure. The encoder applies 
dilated convolution at different scales to encode multi-scale contextual information. The decoder 
refines the segmentation along boundaries. Morocho-Cayamcela, Eugenio, and Lim (2020a). Ó 

2020 IEEE.
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for each position i, on the output y, and filter w. The operation of convolution 
is dilated over the input map of features x, where the dilation rate r indicates 
the step at which the input is sampled. The value of r controls the field of view 
of the convolution. This method can be seen as an analogy to use the 
convolution function on the input x with up-sampled filters with r � 1 zeros 
added between two values of the sequential filter. Note that the standard 
convolution is a special case of dilated convolution, with a value of r ¼ 1. 
The filter’s field-of-view is regulated by adjusting the value of r. As the 
sampling rate r increases, the number of weights applied to the effective 
feature area decreases. Figure 2 illustrates the dilated spatial pyramid pooling 
(DSPP) process of our system with four parallel functions (1� 1 convolution, 
and 3� 3 dilated convolution with r values of 6, 12, and 18).

The features that were generated in the last step are then concatenated and 
sent to an additional convolution and batch normalization before the last 1�
1 convolution. The decoder estimates the feature responses by adding low- 
level features from the encoder. A four-factor fast bilinear interpolation is 
implemented before generating the final categorical matrix.

rate: 12

rate: 18

rate: 6

rate: 1

Feature Map Feature Map

Feature Map Feature Map

Figure 2. A systematical dilation creates an exponential receptive field growth without losing 
resolution. The figure presents the dilated convolutions in the proposed architecture with a 3� 3 
kernel and rates r of 6, 12, and 18. Morocho-Cayamcela, Eugenio, and Lim (2020a) Ó 2020 IEEE.
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Materials and methods

To build the network, we first created a customized ground truth database 
(with classes “soldier,” and “background”). Our system is trained with these 
ground truth examples x along with their label y, such that the CNN model can 
learn to classify new examples. The initial ground-truth database was then 
used to generate an image data store and a pixel label data store. From the 
dataset statistics, 23% of the images contained the class “soldier,” and 77% of 
the remaining pixels contained the class “background.” Ideally, all classes 
would have the same number of observations. We solved this class weighting 
issue by normalizing the input data. A random split of 60% of the images for 
the training stage and 40% for the testing/validating is employed for the 
analysis. Figure 3 shows a subset of soldier images used as ground truth in 
our segmentation network.

The segmentation network was built using VGG-16 He, Shaoqung, and Jian 
(2018), a pre-trained CNN in order to transfer the initially learned weights to 
our segmentation network. Data augmentation techniques such as random 
translation and reflection were added to make the network robust to variability 
in the input data. Figure 5 illustrates the proposed system.

The model is trained by measuring how much each pixel belongs to a 
particular ground truth pixel in each iteration. To measure the performance 
of our model, we employed the difference between the probability distribution 
of the ground truth and the output using pixel-wise cross-entropy. If the 
predicted probability is different from the ground truth, the loss will increase. 
Our selected loss function is based on parameters, and the objective of our 
model is to find these parameter values that minimize the cost function. The 
training set has the values of ðxðiÞ; yðiÞÞ for i ¼ 1; . . . ;m. We find the weights 
θ ¼ fθð1Þ; θð2Þ; θð3Þ; . . . ; θðnÞg that minimize JðθÞ (cost function) as follows: 

JðθÞ ¼ � 1
Xm

i¼1

XK

k¼1
yðiÞk logðp̂ðiÞk Þ (2) 

where the value yðiÞk is 1 if the target for the ith training example is k; otherwise, 
it is 0. The gradient vector of this loss function is represented with respect to 
θðkÞ as 

ÑθðkÞJðθÞ ¼ 1
Xm

i¼1
ðp̂ðiÞk � yðiÞk Þx

ðiÞ (3) 

where xðiÞ contain the feature values of the ith image, and yðiÞk is the desired 
output for the ith image in class k. Our model uses a partial differential iterative 
process to minimize the parameters in JðθÞ Cauchy (1976). To avoid the 
vanishing gradient problem, θ is initialized using Xavier’s technique Glorot 
and Bengio (2010). The decomposition of the cost function as a sum over the 
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example images can be represented as the negative conditional log-likeli-
hood as 

JðθÞ ¼ 1
Xm

i¼1
LðxðiÞ; yðiÞ; θÞ (4) 

with L as the loss per-example Lðx; y; θÞ ¼ � log pðyjx; θÞ. For these additive 
loss functions, we estimate 

Figure 3. A small subset of labeled (ground truth) images from our database used to train the 
artificial intelligence-based image semantic segmentation network.

APPLIED ARTIFICIAL INTELLIGENCE 481



ÑθJðθÞ ¼ 1
Xm

i¼1
ÑθLðxðiÞ; yðiÞ; θÞ (5) 

An extensive computational memory is required to compute ((5)). To balance 
the system memory usage, our model samples a minibatch of B ¼

fxð1Þ; . . . ; xðm0Þg example images before each iteration. In addition, our 
model set m0 to a multiple of m to optimize computation memory Robbins 
and Monro (1951). Using soldier images from B, the algorithm optimizes the 
gradient descent as 

g ¼
1

m0
Ñθ
Xm0

i¼1
LðxðiÞ; yðiÞ; θÞ (6) 

θ θ � εg (7) 

with the value of ε as the learning rate.
The oscillations in (6) and (7) can cause the algorithm to not converge or 

diverge. To avoid these oscillations, the proposed model estimates the expo-
nentially weighted average of past gradients and employs them to update θ. 
The algorithm uses a learning rate ε, an initial velocity v, and an initial set of 
parameters θ. The gradient is estimated using (8) for every epoch, v is 
computed with (9), and θ is updated using (10), as follows 

g  1Ñθ
X

i
Lðf ðxðiÞ; θÞ; yðiÞÞ (8) 

v αv � εg (9) 

θ θþ v (10) 

with 0 � α � 1 as the previous step contribution. Finally, our model uses 
maxout regularization, and dropout by overwriting random features to zero to 
prevent the overfitting problem. Algorithm 4 illustrates a high-level learning 
process for our image segmentation network.
Algorithm 1 Parameter Learning and Optimization
Input: m, K, x, y, learning rate ε, momentum parameter α.
Output: Optimal hyperparameter values θ for segmentation.

Initialization:
1: Initialize v to zero.
2: Initialize θXavier’s initialization.

Data acquisition
3: Get soldier images from online server.

LOOP Data pre-processing
4: for each soldier image do
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5: Resize images720� 720 pixels.
6: Image augmentationRandom rotation and translation.
7: end for
8: Compute class weighting using the inverse frequency.

Define the cross-entropy cost function.
9: JðθÞ ¼ � 1

Pm
i¼1
PK

k¼1 yðiÞk logðp̂ðiÞk Þ

10: ÑθðkÞJðθÞ ¼ 1
Pm

i¼1 ðp̂
ðiÞ
k � yðiÞk Þx

ðiÞ

Calculate the steepest descent with PDEs.
11: while stopping criterion not met do
12: Sample a minibatch B of m0 samples from the training

set fxð1Þ; . . . ; xðmÞg with corresponding targets.
13: Compute the gradient estimate: 

g  
1

m0
Ñθ
X

i
Lðf ðxðiÞ; θÞ; yðiÞÞ

.14: Compute the velocity update: v αv � εg.
15: Apply update: θ θþ v
16: end while
17: return θ

Experimental results and simulation

After 200 epochs, the segmentation accuracy of the proposed model is com-
pared against state-of-the-art segmentation techniques from related works. 
Table 1 shows the accuracy of the two classes under study for the image 
segmentation models under study. We prove that using transfer learning 
and combining two CNNs in an encoder-decoder architecture, and employing 
stochastic gradient descent with momentum as the parameter optimizer, the 
accuracy of the segmentation attains 81.49% and 82.64% for the soldier and 
background classes. Figure 4 shows a subset of segmented images used our 
proposal. The images in the left show the segmented pixels overlapped with 
the image from the test set, and the images from the left show the semantic 
segmentation network pixel labeling overlapped with the ground truth. The 
green and magenta regions represent the regions where the segmentation 
results diverge from the expected ground truth. The visual metrics confirm 
the numerical results.
yConvolutional encoder-decoder architecture, optimized with stochastic 

gradient descent with momentum.

Table 1. Segmentation accuracy obtained with different models*.
Classes Texton forests Patch based FCNs U-Net Proposed modely z

Soldier 55:82% 74:03% 75:24% 77:28% 81:49%
Background 51:07% 74:12% 76:44% 78:03% 82:64%

*Trained using 4 NVIDIA GTX 1080Ti with local parallel pool.
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Conclusions

The results obtained from our proposed segmentation network are very 
promising, with an accuracy over the 80%. The segmentation of the image is 
by far the most difficult part of a tracking system, with the blobs generated 

Figure 4. Results from the test set of images. The images from the left show the labeled pixels 
overlapped with the original image. The images from the left show the labeled pixels overlapped 
with the ground truth. The green and magenta regions highlight areas where the segmentation 
results differ from the expected ground truth.
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from the proposed segmentation network we can easily find the center and 
feedback the information to the camera moving system to change the position 
and center the target. The proposed segmentation network can also be re- 
trained over a different dataset to detect other targets, like enemy artillery, or 
their own soldiers for rescue purposes. The benefit found in the use of our 
proposed technique is that the CNN can find patterns that most image 
processing algorithms cannot and are impossible to recognize by the human 
eye. This technology helps de-camouflaging the targets through exploratory 
image analysis. The methodology presented in this paper is not intended to 
replace any triggering mechanism of the tactical robot, but to help the opera-
tors to take better decisions in the battlefield.
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