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Abstract
Machine-learning force fields have been increasingly employed in order to extend the possibility of
current first-principles calculations. However, the transferability of the obtained potential cannot
always be guaranteed in situations that are outside the original database. To study such limitation,
we examined the very difficult case of the interactions in gold–iron nanoparticles. For the
machine-learning potential, we employed a linearized formulation that is parameterized using a
penalizing regression scheme which allows us to control the complexity of the obtained potential.
We showed that while having a more complex potential allows for a better agreement with the
training database, it can also lead to overfitting issues and a lower accuracy in untrained
systems.

1. Introduction

Atomistic modeling is often divided in two different types of simulations. On the one hand, quantum
methods including Hartree–Fock and density functional theory (DFT) approaches are considered the most
accurate and are employed for virtually any types of chemical species [1, 2]. On the other hand, classical force
fields are used to perform large-scale and long-time simulations with less accuracy [3, 4]. However, it is still
difficult to connect both approaches and until now, one can hardly perform a simulation involving millions
of atoms for nanoseconds while retaining the accuracy of quantum methods.

In this context, machine-learning interaction potentials (MLIP) have been proposed in the recent years
and have shown great potentials to achieve such simulations [5–7]. Numerous approaches are currently
considered including artificial neural networks [8], Gaussian approximation methods [9], linearized
potentials [10, 11], spectral neighbor analysis potential [12], symmetric gradient domain machine learning
[13, 14] and moment tensor potentials [15]. The success of these techniques is recognized by the large variety
of materials that have been successfully tackled: pure metals [16–20], organic molecules [21–24], oxides
[25, 26], water [27–31], amorphous materials [32–37] and hybrid perovskites [38].

For all of these techniques, the main procedure consists in using a very universal analytical formulation
for the force field which is then parameterized to match a database of DFT calculations including total
energy, forces and stress tensors. However, it is admitted that MLIP can sometimes show poor transferability
towards systems that are not included in the learning database. In the worst scenario, the MLIP is so-well
fitted to its learning database that non-physical behaviors may be observed outside of it. In order to fix this
issue, the main proposal is to regularly check the accuracy of the potential as the machine-learning molecular
dynamics simulations are carried out and to improve the MLIP ‘on the fly’ [38–40]. Yet, to the best of our
knowledge, such flaw of the approach has never been quantitatively investigated while being acknowledged
by both users and developers.
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For our case study, we choose interactions in gold–iron nanoparticles. In principle, such system can be
found concurrently in three different chemical orderings namelly ‘alloy’, ‘Janus’ and ‘core-shell’. Yet, recent
experiments have shown that the synthesized Au–Fe nanoparticles are made of an iron core wrapped in a
gold shell and that the shape of the iron core depends strongly on the amount of surrounding gold [41–45].
These nanoparticles have potential biomedical applications as iron is known for its intrinsic ferromagnetism
and gold capping can protect the iron core from oxidation. However, rationalizing the results of the synthesis
along with predicting the material properties would require numerical simulations which are sparse for
gold–iron nanoparticles [45–49]. Indeed, while full quantum calculations can not be employed to study
clusters of more than tens of atoms, the empirical modeling of gold–iron nanoparticles is also a very difficult
case because these two metals are non miscible at room temperature on a very large domain of the phase
diagram. There are therefore no iron–gold alloy crystal structures to adjust the parameters of an empirical
potential. Moreover, iron is magnetic and crystallizes in a bcc structure while gold crystallizes in an fcc
structure, which makes the development of a potential capable of capturing all the properties of this alloy
even more complex. Previous attempts have shown their limits by stabilizing metastable alloys [50] or by not
being able to find the most stable Fe/Au interfaces [46, 47], leading us to develop potentials specifically
dedicated to a particular problem, and hence highly non-transferable [49].

In this article, we begin by describing the methodology including linearized machine-learning potential
and a penalizing regression scheme. In the results section, we first studied the influence of the descriptor
functions. Then, we showed that the methodology allows one to quickly obtain MLIPs with different degrees
of complexity. Afterwards, the transferability of these different potentials was tested on forces in untrained
chemical orderings namely Janus and core–shell. While the error should decrease monotonically when
increasing the MLIP complexity, we observed a surprising non-monotonic behavior thus illustrating that
more complexity does not necessarily lead to a better MLIP overall. Such transferability issue was reduced by
using a more diverse set of descriptors. Finally, we measured some properties of the bulk and investigated the
possibilities and the limitations of the obtained MLIP toward bulk simulations even if it was trained on
nanostructures.

2. Methods

2.1. TheΦ-Lassolars machine-learning interaction potential
For our MLIP, we employed the analytical formulation originally put forward by Seko et al [10, 17, 18,
51, 52]. In this method, the total potential energy of a configuration made of N atomic positions is first given
by Etot =

∑N
i=0Ei where Ei is the atomic energy. For Ei, we considered a weighted linear combination of

descriptors indexed by n:

E(i) =
∑
n

ωnX
(i)
n , (1)

where ωn is the linear coefficient associated with the descriptor X
(i)
n . Until now, moment tensors [16],

group-theoretical high-order rotational invariants [52] and bispectrum components [11, 12, 53] were
previously proposed as descriptors for such linearized potentials. In this work, we favored a simpler
formulation which consists in developing the descriptor space in explicit two-body, three-body and N-body
interactions:

[2B](i)n =
∑
j

fn(Rij)× fc(Rij), (2)

[3B](i)(n,l) =
∑
j

∑
k

fn(Rij)fc(Rij)fn(Rik)fc(Rik)cos
l(θijk), (3)

[NB](i)(n,m) =

∑
j

fn(Rij)× fc(Rij)× fs(Rij)

m

, (4)

where Rij is the distance between atoms i and j, θijk is the angle centered around the atom i, and l andm are
two positive integers. For the cut-off function, we chose what was originally proposed by Behler and
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Parrinello [8]: fc =
1
2

(
1+ cos(π(Rij/Rcut))

)
with Rcut being set at 6 Å. The switch function denoted f s is

employed in order to prevent from non-physical behavior of the N-body contribution at short distances.
To do so, two distances r1 and r2 are first defined as respectively 95% and 105% of the minimum of the
dimer interactions and then a function is constructed to smoothly go to from 0 to 1 in the range of
[r1:r2]: fs(u) = 6u5 − 15u4 + 113 where u= (Rij − r1)/(r2 − r1) [54]. Altogether, these expressions allow for a
direct computation of the forces as well as the stress tensors by differentiating with respect to the positions
[10]. Regarding the basis of functions f n, there are no physical restrictions. In particular, for the two-body
interactions, one can tune f n to mimic traditional interatomic potentials as for example Morse,
Lennard–Jones, Buckingham or Yukawa potentials or use simple functions like Gaussians, Lorentzian or
asymmetric log-normal functions. Likewise, for the three-body interactions, the current formulation is very
similar to what is done in the Stillinger–Weber potential [55]. Finally, the N-body interaction is a generalized
form of the EAM potential where the embedding function is a polynomial of the atomic density [56]. In this
case, the integerm corresponds directly to the degree of N-body order. The difference between our
formulation and the most recent ones proposed by Seko et al is that, in the N-body interactions, we did not
include any explicit angular dependence and did not mix different forms of the atomic density.

For the fitting procedure of such a linear model, previous studies have proposed the use of genetic
algorithm [12, 53], weighted ordinary least squares [11], Bayesian linear regression [39], ridge regression
[18, 51, 52] and least absolute shrinkage and selection operator (Lasso) [17, 10]. In order to construct a
simpler MLIP, we employed the Lasso regression with the Least Angle Regression Scheme (Lars, together
denoted LassoLars) [57]. In practice, along with the ordinary least square objective function, χ2

OLS, the Lasso
scheme adds a penalty on the sum over the absolute value of the coefficients ωn and the employed error
function is therefore given by

χ2 = χ2
OLS +α

∑
n

|ω(n)|, (5)

where α is a parameter that controls the degree of penalty. The penalty on the absolute value of the
coefficients enforces lots of the linear coefficients to be exactly 0. Additionally, using Lars allows us to select
the most relevant descriptors by measuring their correlation to the target. Using LassoLars as a regression
scheme is at the expense of accuracy and flexibility for the MLIP but it allows for a considerable reduction in
the complexity of the potential. Please see the appendix for further motivation regarding the choice of
LassoLars and for additional details on the Φ-LassoLars implementation.

2.2. DFT database
Building a general purpose potential for Au–Fe nano-crystals would require to model the atomic interactions
not only in different structures (crystal polymorph, interfaces and liquid for instance) but also in different
chemical orderings including alloyed, Janus and core–shell nanoparticles. Because the focus of this work is to
measure the issues related to transferability, we purposely employed an incomplete database made of only
three types of nanoparticles: (1) alloys with almost equimolar compositions, (2) pure iron in the
body-centered cubic (bcc) phase, (3) pure gold in the face centered cubic (fcc) phase (see figure 1). Then,
molecular dynamics (MD) simulations by means of a house code were carried out to melt the constructed
nanoparticles. Simulations were performed in the NVT ensemble obtained with Andersen thermostat at
1400 K during 500 ps using a timestep of 1 fs. We used simple pair-wise potentials made of Lennard–Jones
and Morse interactions for gold and iron respectively and of Lennard–Jones interaction for the gold–iron
cross-interaction. The employed Morse parameterization is the one of Hung et al [58]. while the two
Lennard–Jones potentials for gold–gold and iron–gold were simply parameterized in order to match bulk
lattice parameters and cohesive energies. Along the melting path, we extracted configurations that are
representative of the solid to liquid transition. In addition, each initial structure was also manually
compressed. The distances are reduced by a factor of 75% and along the compression, we extracted 10
configurations in order to sample structures of higher density and better reproduce the repulsion at short
distances. For the same reason, diatomic molecules FeFe, AuFe and AuAu with distances down to 1Åwere
also added in the database. For each of these configurations, forces were finally computed at the DFT-level
using single-point calculations. Spin-polarized DFT calculations were performed with the VASP code [59],
using PAW type pseudopotentials for iron and gold [60], a plane wave cutoff of 650 eV and a
Methfessel-Paxton smearing parameter σ of 0.01 eV. All calculations were done at the Γ-point of the
Brillouin zone. Altogether, the database is made of 181653 atomic configurations with an almost equal
proportion in the three types of nanoparticles (34% of alloy, 34% of pure gold and 32% of pure iron). We
note that the database sampling was made with classical interaction potentials which is less satisfying than
performing ab initioMD. Yet, the advantage is that it allows us to quickly sample configurations that remain
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Figure 1. Images of the initial structures employed in the database.

Table 1. Summary of the tested descriptors.

Function name Equation List of an List of bn Nfunc

Gaussian fn(Rij) = exp(−an(Rij − bn)
2) 0.5, 1.0, 1.5 1, 2, 3, 4, 5, 6 990

Lorentzian peak fn(Rij) = 1/((Rij − an)
bn + 1). 1, 2, 3, 4, 5, 6 2, 4, 6, 8 1320

Log-normal peak fn(Rij) = exp(− ln[(Rij − an)/bn]
2) 1, 2, 3, 4, 5, 6 1.0, 1.5, 2.0, 2.5 1320

Slatter-type orbital fn(Rij) = Ran
ij exp(−bnRij) −2,−1, 0, 1, 2 2, 4, 6, 8, 10 1375

Gaussian-type orbital fn(Rij) = Ran
ij exp(−bnR

2
ij) −2,−1, 0, 1, 2 2, 4, 6, 8, 10 1375

physically valid and it prevents from running very computationally demanding simulations for those
relatively large nanoparticles (more than 100 for the alloy and the pure nanoparticles). In addition, by
employing configurations that span from the crystalline to the liquid regime, we assure a large variety of
atomic neighborhoods with forces ranging from 10−4 to 5 eV Å−1. Finally, during the manual compression
of the nanoparticle and when computing the forces for diatomic molecules, it may happen that some atoms
were very close thus leading to very large forces. In the χ2, those large forces would contribute a lot while
being very unlikely to emerge in a realistic dynamics. Therefore, before performing the fitting procedure, the
database is filtered out to remove cases where the forces are larger than 5 eV Å−1. Such value was chosen
large enough to keep some part of the repulsive interaction but not too large to avoid a fitting focusing only
on the repulsive part. Within the fitting procedure, the database is randomly divided in a training (95%) and
a test (5%) sets.

3. Results

3.1. Influence of the descriptor space
First, five different types of descriptors were tested. In particular, we used three functions that are ‘peak’
functions i.e. Gaussian, Lorentzian and Log-normal peaks and two functions that are usually employed for
orbital calculations and that diverge at short distance i.e. Slatter-type (STO) and Gaussian-type (GTO)
orbital (see table 1). Then, the LassoLars method is employed to obtain five different interaction potentials
using α= 10−7. For the three-body and the N-body interactions, we used respectively l= [1, 2, 3, 4, 5] and
m= [4, 5, 6, 7]. Altogether, we have around a thousand available descriptors which include Au–Au, Fe–Fe
and Fe–Au interactions for each type of descriptors. In figure 2(a), we show the fitting error measured as the
root mean square error (RMSE) for the five different types of descriptors. RMSE measured on training and
test data sets are similar which means that at this stage, no overfitting is observed. In addition, it appears that
the two orbital functions are not as good as the peak functions although STO still gives an RMSE equal to
0.17 eV Å−1. Gaussian and Lorentzian descriptors are able to reproduce the forces with an RMSE respectively
equal to 0.13 and 0.14 eV Å−1. Such values are similar to what is obtained with the generally employed MLIP
methods including neural networks, Gaussian approximation method and linearized potentials [61]. In
figure 2(b), the number of non-zero coefficient is plotted for the five different types of descriptors. In the
cases of GTO and STO functions, much fewer descriptors were selected in comparison to the peak functions.
In overall, it remains that the LassoLars algorithm allows one to drastically decrease the number of employed
descriptors with respect to the number of available descriptors.

In addition, before studying the transferability issues, we wish to illustrate a second advantage of using
the LassoLars algorithm which consists in having a penalizing parameter that controls both the accuracy and
the complexity of the obtained potential. According to figure 3, by increasing α, the number of non-zero
coefficients and the computational cost can be reduced at the expense of increasing the RMSE. As such, with
the LassoLars algorithm, one can simply choose which degree of accuracy or complexity is required for their
usage. Finally, the presence of a plateau for the smallest values of α shows that the LassoLars regression only
selects relevant descriptors thus reducing the potential complexity. Similar to what was obtained previously
using α= 10−7, we note that: (1) the 3 peak functions are the most accurate and behave similarly and (2) the
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Figure 2. (a) RMSE obtained for five different descriptors and measured on the training and the test sets. (b) Number of non-zero
coefficients obtained with α= 10−7.

Figure 3. (a) Influence of the penalizing factor α on testing RMSE and on (b) the number of non-zero coefficients.

STO function gives slightly higher RMSE yet with much fewer non-zero coefficients. Figure 3 evidences that
the LassoLars algorithm gives the ability to finely control the complexity of the potential at the expense of the
accuracy on the DFT database. In the following, we will test how this complexity can influence the MLIP
transferability.

3.2. Complexity vs transferability
For that purpose, three additional morphologies of gold-iron nanoparticles were designed: two Janus and
one core–shell (see figure 4(a)). Being able to accurately retrieve the interactions in those structures is a
difficult test for the MLIP as the training set did not posses any of those demixed structures. Figure 4(b)
shows the corresponding RMSE on the forces without having trained the potential on these structures and
using only Gaussian functions. Figure 4(c) shows that most of the errors are located at the gold/iron interface
which was not included in the training database. Surprisingly, the RMSE behavior is non-monotonic with a
minimum located for the three structures around α= 8× 10−6 which corresponds to 90 non-zero
coefficients. More specifically, when transferring the obtained potential to Fe100Au100 Janus nanoparticles,
the RMSE obtained with α= 10−7 is 30% higher than with the less complex potential that was obtained with
α= 8× 10−6. Therefore, while increasing the complexity of the potential leads to a better agreement within
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Figure 4. (a) Images of untrained configurations with morphology Janus and core–shell, (b) fitting error as a function of the
penalizing factor α for each untrained configurations and for the training set and (c) map of the force errors on the Fe100Au100
Janus structure for different values of α. The green line designates the iron/gold interface.

the training database, it does not necessarily lead to an improvement of the RMSE in unlearned structures
using in our case different chemical ordering (i.e. Janus and core–shell instead of alloy nanoparticles). Our
challenging test demonstrates that precautions should be made when using machine-learning approaches
and that increasing the complexity does not automatically lead to a better overall potential.

According to figure 5, the non-monotonic behavior that was highlighted when using only Gaussian
functions is also observed with the two other peak functions i.e. Lorentzian and Log-normal. We also note
that, GTO is again very inaccurate and should most probably be avoided for usage as descriptor. Finally, the
STO functions while being less accurate on the training database seems to give an overall better results in
terms of transferability.

In closing, a combination of three different descriptors (Gaussian, Gaussian-type orbital and Lorentzian
peak) is tested in order to employ simultaneously two different types of peak functions along with a function
that diverge at short repulsion. STO was chosen for its remarkable ability to decrease the number of non-zero
coefficient while Lorentzian peaks also showed slightly less non-monotonocity. On the one hand, regarding
its fitting performance, this combination gives an RMSE similar to that obtained previously yet with fewer
non-zero coefficients (see figure 5). Having these two additional functions gives more flexibility in the
descriptor space and fewer functions can therefore be selected for the same accuracy. On the other hand, for
the transferability towards the unlearned structures, the combination gives RMSE that are comparable to the
peak functions and even better in two cases (i.e. Fe110Au111 and core–shell). More importantly, it allows for
a further reduction of the non-monotonicity. We note that being able to combine three different types of
descriptors at the same time is an additional advantage of using a constrained linear regression scheme such
as LassoLars.

3.3. Quality of the potential
Even if the aim of the paper was not to obtain an all-purpose MLIP for gold-iron interactions, we still wish to
assess the quality of the obtained potential. Regarding the force accuracy on the learned database, figures 6(a)
and (b) shows the correlation plot obtained with two different values of α. For the RMSE, we obtained in
both cases values of 0.14 eV Å−1 when using the three descriptors at the same time. Such value is on par with
most of the currently employed MLIP methods [27] and by comparison, the EAM potential that was recently
developed for Au-Fe nanoparticle [62] gives a value of 1.4 eV Å−1. Our MLIP is thus already a drastic
improvement in force evaluation for the studied nanoparticles (see figure 6(c)).

Furthermore, additional simulations with the MLIP were performed to check some properties in the bulk
phase although it was not included in the training set. Simulations were carried out using the large-scale
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Figure 5. Fitting error as a function of the penalizing factor α for each untrained configurations and for the training set using
different types of descriptors and for different untrained structures.

molecular dynamics software LAMMPS [63] in which the proposed MLIP was implemented [Please see
appendix for details on the LAMMPS implementation]. Periodic boundary conditions were employed and
the different minimization runs were performed down to a net force of 10−6 eV Å−1. We measured eight
different lattice constants (pure iron bcc, pure gold fcc, alloys with 25%, 50% and 75% of gold in both bcc
and fcc phases). In addition, our fitting did not include any energy. Therefore, to take into account the
atomic energy, the MLIP energies are shifted in order to match the cohesive energy of pure iron and gold
most stable states i.e. bcc and fcc respectively. Then, we also measured the cohesive energy for each alloying
structures. Results are compared in figures 6(d) and (e) to DFT calculations that were previously obtained
[47]. The errors are lower than 3% for lattice spacing and 12% for cohesive energy which is already satisfying
considering that in the database, we employed alloying proportions that are much closer to 50% and only
used nano-crystals. Therefore, being able to reach such small relative errors even for those extreme alloying
proportions (25% and 75%) and in addition with bulk structures is an encouraging result for our MLIP.

Finally, we measured phonon dispersion curves using supercell approach implemented in PHONOPY
[64] (see figures 6(e) and (f)). In practice, the dynamical matrix was obtained by moving each symmetrically
independent atoms by 0.01 Å. We used a supercell of size 4× 4× 4. The agreement between DFT and MLIP
curves is not as good as what is usually obtained in MLIP works [17, 65] but it remains qualitatively
satisfying if one considers that our MLIP was not trained on any bulk structures.

Even if our potential has not been designed to reproduce bulk properties, these results are already very
encouraging. Obtaining an accurate MLIP potential that is transferable to any phase and/or structure is a
considerable challenge for multi-component systems and would require to carry out additional DFT
calculations to build a bigger database including bulk structures but also interfaces. Besides, in order to target
a specific application, one should also perform ‘on-the-fly’ optimization of the potential as proposed by
Jinnouchi et al [39, 38]. However this is not the main purpose of this paper, which focuses on shedding light
onto the relationship between complexity and transferability in machine learning force fields. It remains that
our current MLIP potential may be used as a first step when studying bimetallic Fe–Au nanoparticles.

4. Discussion and conclusion

To summarize, this work aims at measuring transferability issues that can occur when using MLIP in
untrained structures. To begin, we presented the employed MLIP method that includes a linearized potential
and a penalizing regression scheme. Then, we discussed the influence of the descriptor space and showed that
although the three different peak functions behave similarly in terms of accuracy and number of non-zero
coefficients, the repulsive functions lead to a worst accuracy but with a lower number of non-zero
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Figure 6. (a)–(c) Correlation plot between DFT forces and forces from MLIP with α= 10−7 (b) and with α= 5× 10−6 (c) and
from EAM (d). Blue and red points correspond to results within the training and the test sets. (d,e) Valuesobtained for the lattice
parameters and for the cohesive energies using MLIP and DFT. (f)–(g) Phonon dispersion of respectively gold FCC and iron BCC.
The plain lines correspond to MLIP results while the dotted lines are obtained by DFT calculations.

coefficients. Next, we demonstrated that by using the LassoLars algorithm instead of the previously
employed linear regression scheme, one can finely tune the complexity of the potential along with its
accuracy. This is because the penalizing parameter α allows for turning off most of the initially proposed
descriptors thus controlling the overall complexity of the potential. With this ability in hand, we measured
transferability issues using three unlearned structures that are qualitatively different from what was
considered in the training database. We showed that while the accuracy on the trained structures decreases
monotonically as the value of α is decreased, it is not the case for those untrained structures. Indeed, when
using only one type of descriptor, it exists an optimal value of α that allows for the best transferability.
Finally, we introduced a way to overcome this transferability issue which consists in using different types of
descriptors simultaneously. This again shows an other advantage of using the LassoLars algorithm which is
able to actively select the most appropriate descriptors. Finally, we computed some properties of the Fe–Au in
bulk and showed that the obtained potential is already qualitatively satisfying. But, before being able to really
use our potential from practical applications, we plan to improve further it by adding bulk and interface DFT
calculations within the database and by implementing ‘on the fly’ learning. As a perspective, the obtained
MLIP will be further improved and then employed to study nucleation in core–shell FeAu nanoparticles as
observed in experiments [41–45]. Before closing, we wish to discuss two additional points.

First, the very intuitive MLIP expression that was employed here allows us to give some insights on the
nature of the interactions. Here, we focus on the combined MLIP where Gaussian, STO and Lorentzian peak
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Figure 7. Force contributions for each types of (a) descriptors and (b) multi-body components averaged over alloy, pure iron and
pure gold nanoparticles.

were used simultaneously. We can indeed distinguish between each descriptors (Gaussian, STO, Lorentzian).
For that purpose, we compute the ratio between the absolute value of the forces given by each descriptor and
the sum of the absolute values of the three descriptors and then perform an average over each force
components (x, y, z) of all of the atoms within the training database (alloy, pure iron and pure gold
nanoparticles). Figure 7(a) shows that the preponderant functions are different depending on the considered
interactions thus highlighting the advantage of using simultaneously the three types of descriptors. More
interestingly, the same can be done in order to distinguish between two-body, three-body and N-body
contributions (see figure 7(b)). In our case, the two-body and three-body contributions are more important
than the N-body contributions. This may explain why the previously employed EAM potentials that do not
possess any explicit angular contributions could not accurately compute the forces.

Moreover, we would like to raise an additional implication of our work in which the transferability issues
were measured and connected to the complexity of the potential. Indeed, as previously discussed, when using
the LassoLars regression scheme, the complexity of the potential can be adjusted using the penalizing
parameter. In the alternative MLIP methods, the same is done by modifying (1) the number of neurons and
hidden layers in the case of neural-network potential [5] and (2) the number of selected configurations after
sparsification in the case of gaussian approximation model [9, 32]. For some users of these techniques, the
rule of thumb may be to use these adjusting parameters in order to increase the complexity of the potential
which necessarily improves the accuracy on the learning database. Yet, our work indicates that transferability
issues should be expected by such operation.
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Appendix A. Advantage of using LassoLars against other linear regression scheme

In this section, we wish to further motivate the choice of our regression scheme by working on a case study
where we will compare LassoLars with two commonly employed linear regression schemes naming Ridge
and the coordinate descent Lasso. For this test, the database is generated with an equimolar mixture of binary
Lennard–Jones particles thus allowing us to directly verify the obtained MLIP. With such a binary system, an
additional challenge for the fitting algorithm is to distinguish self-species and cross-species interactions. In
practice, positions and forces were measured for 50 configurations of 64 atoms in the liquid regime.
Regarding the basis of descriptors, only two-body interactions were considered and we used 17
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Figure A1. Values of the obtained coefficients ωn using different linear regression scheme: (a) Ridge, (b) Lasso, (c) LassoLars. The
penalty parameter was set to 10−5. The red points and the blue line correspond respectively to the original interactions and the
fitting results.

Lennard–Jones functions with different distance parameters including those in the original simulations. All
of the four employed methods manage to retrieve a linear combination of Lennard–Jones functions that
matches the original interactions. However, it appears that only LassoLars can find the correct coefficients ωn

setting all coefficients to 0 except those of the original interactions (see figure A1). Such result shows the
advantage of using LassoLars instead of the commonly employed linear regression methods.

Appendix B. Numerical implementation of theΦ-LassoLars method

In this section, we give some additional details on the described MLIP. First, obtaining an MLIP using the
Φ-LassoLars method consists in two steps. In the first step, a homemade C++ parallelized code using
OpenMP was developed to construct a matrix:

• Each columns of the matrix designates a specific descriptor which can be 2B, 3B or NB for all the functions
and considered values for their parameters described in table 1.

• Each rows of the matrix correspond to the force on a given direction, atom and structure.

In the second step, a python code concatenates the obtained matrices for each structures and read the
associated DFT forces. The same python code finally employs the LassoLars method as implemented in the
sklearn package to obtain the linear coefficients associated to each columns of the matrix.

Then, in order to use the obtained MLIP, the same C++ code is employed to read the obtained
coefficients and generate input files for LAMMPS simulations. Those consists on three parts:

(a) For the 2B interactions, we directly add all of the selected linear contributions and generate a table file
that can be read by LAMMPS using pair_style table.

(b) For the 3B interactions, we build a homemade routine that is added to LAMMPS and use an personalized
input file.

(c) For the NB interactions, we use a python code based on atsim.potentials [66] to generate EAM-like
files that can be directly read by LAMMPS.

Finally, the pair_style hybrid/overlay is employed to combine all the contributions.
Regarding the computational timing for building the MLIP, a matrix for a structure of 64 atoms

containing all of the functions (2B, 3B, NB for all values in table 1) for one type of descriptors is obtained in
approximately 3 min. This process can be parallelized since each structure can be treated independently.
Then, after reading all of the input matrices, a LassoLars fitting takes less than 20 s when using only one type
of functions and less than 2 min when using simultaneously three types of functions. Results are obtained on
one Intel E5-2650 processor.

ORCID iD

Julien Lam https://orcid.org/0000-0003-0343-6005

10

https://orcid.org/0000-0003-0343-6005
https://orcid.org/0000-0003-0343-6005


Mach. Learn.: Sci. Technol. 2 (2021) 025003 M Benoit et al

References

[1] Marx D 2009 Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Leiden: Cambridge University Press)
[2] Martin R 2008 Electronic Structure: Basic Theory and Practical Methods (Cambridge: Cambridge University Press)
[3] Frenkel D and Smit B 2002 Understanding Molecular Simulation (New York: Elsevier)
[4] Stone A J 2016 The Theory of Intermolecular Forces (Oxford: Oxford University Press)
[5] Behler J 2015 Int. J. Quantum Chem. 115 1032
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