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Abstract
Quantum computers promise to enhance machine learning for practical applications. Quantum
machine learning for real-world data has to handle extensive amounts of high-dimensional data.
However, conventional methods for measuring quantum kernels are impractical for large datasets
as they scale with the square of the dataset size. Here, we measure quantum kernels using
randomized measurements. The quantum computation time scales linearly with dataset size and
quadratic for classical post-processing. While our method scales in general exponentially in qubit
number, we gain a substantial speed-up when running on intermediate-sized quantum computers.
Further, we efficiently encode high-dimensional data into quantum computers with the number of
features scaling linearly with the circuit depth. The encoding is characterized by the quantum
Fisher information metric and is related to the radial basis function kernel. Our approach is robust
to noise via a cost-free error mitigation scheme. We demonstrate the advantages of our methods
for noisy quantum computers by classifying images with the IBM quantum computer. To achieve
further speedups we distribute the quantum computational tasks between different quantum
computers. Our method enables benchmarking of quantum machine learning algorithms with
large datasets on currently available quantum computers.

1. Introduction

Quantum machine learning aims to use quantum computers to enhance the power of machine learning
[1, 2]. One possible route to quantum advantage in machine learning is the use of quantum embedding
kernels [3–6], where quantum computers are used to encode data in ways that are difficult for classical
machine learning methods [7–9]. Noisy intermediate scale quantum computers [10, 11] may be capable of
solving tasks difficult for classical computers [12, 13] and have shown promise in running proof-of-principle
quantum machine learning applications [14–25]. However, currently available quantum computers are at
least 6 orders of magnitude orders slower than classical computers. Furthermore, running quantum
computers is comparatively expensive, necessitating methods to reduce quantum resources above all else.
Thus, it is important to develop better methods to run and benchmark noisy quantum computers. Here,
several bottlenecks limit quantum hardware for machine learning in practice. First, the quantum cost of
measuring quantum kernels with conventional methods scales quadratically with the size of the training
dataset [5]. This quadratic scaling is a severe restriction, as commonly machine learning relies on large
amounts of data. Second, the data has to be encoded into the quantum computer in an efficient manner and
generate a useful quantum kernel. Various encodings have been proposed [26, 27], however the number of
features is often limited by the number of qubits [19, 20] or the quantum kernel is characterized only in a
heuristic manner. Finally, the inherent noise of quantum computers limits the quality of the experimental
results. Error mitigation has been proposed to reduce the effect noise [28], however in general this requires a
large amount of additional quantum computing resources [29].

Here, we use randomized measurements to calculate quantum kernels. The quantum computing time
scales linearly and the classical post-processing time quadratically with the size of the dataset. While our
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method scales in general exponentially in the number of qubits, compared to other methods a substantially
lower number of measurements is needed for intermediate-sized quantum computers of about ten qubits.
Additionally, we can reuse the collected measurement data to effectively mitigate the noise of quantum
computers. To efficiently load high-dimensional data into the quantum computer, we apply an encoding that
scales linearly with the depth of parameterized quantum circuits (PQCs). The resulting quantum kernel is
characterized with the quantum Fisher information metric (QFIM) and can be approximately described by
the radial basis function (RBF) kernel. We introduce the natural PQC (NPQC) with an exactly known QFIM
and demonstrate its usefulness for quantum machine learning. We implement our approach on the IBM
quantum computer to classify handwritten images of digits with high accuracy. We experimentally
demonstrate further speedups by parallelizing quantum computational tasks between different quantum
computers. With our approach, currently available quantum computers can process larger datasets
containing ten thousands of entries within a feasible time, extending the range of quantum machine learning
algorithms that can be run in practice.

2. Support vector machine

Our goal is to classify unlabeled test data by learning from labeled training data as shown in figure 1(a). The
dataset for the supervised learning task {{xi,yi}}Li=1 contains in total L items. The ith data item is described
by aM-dimensional feature vector xi and corresponding label yi. Label yi belongs to C possible classes, while

the feature vector xi = {x(n)i }Mn=1 consists ofM real-valued entries. To learn and classify data, we use a kernel
K(xi,xj) that is a measure of distance between feature vectors xi and xj [2]. The kernel corresponds to an
embedding of theM-dimensional data into a higher-dimensional space, where analysis of the data becomes
easier [30]. In quantum kernel learning, we embed the data into the high-dimensional Hilbert space of the
quantum computer and use it to calculate the kernel (see figure 1(b)). With the kernels, we train a support
vector machine (SVM) to find hyperplanes that separate two classes of data (see figure 1(c)). The SVM is
optimized using the kernels of the training dataset with a semidefinite program that can be efficiently solved
with classical [31] or quantum computers [32, 33].

maxα
∑
i

αi−
1

2

∑
i,j

yiyjαiαjK(xi,xj) (1)

subject to the conditions
∑

iαiyi = 0 and αi ⩾ 0. After finding the optimal weights α∗, the SVM predicts the

class of a feature vector η as ypredi = sign(
∑

iα
∗
i yiK(xi,η)+ b), where b is calculated from the weights. One

can extend this approach to distinguish C classes by solving C SVMs that separate each class from all other
classes.

The power of the SVM highly depends on a good choice of kernel K(xi,xj), such that it captures the
essential features of the dataset. In the following, we propose a powerful class of quantum kernels that can be
implemented with currently available quantum computers. Then, we show how to compute kernels for large
datasets and mitigate the noise inherent in real quantum devices.

3. Encoding

A crucial question is how to efficiently encode a high-dimensional feature vector into a quantum computer
while providing a useful kernel for machine learning. We encode theM-dimensional feature vector xi as
M-dimensional parameter θi of a PQC via

θi = θr + cxi , (2)

where c is a scaling constant and θr the reference parameter. As shown in figure 1(b), we use hardware
efficient PQCs with N qubits and d layers of unitaries for the encoding [34]. The lth layer is composed of a

product of parameterized single qubit rotations Rl,k(θ
(nl,k)
i ) acting on qubit k and non-parameterized

entangling gatesW l that generate the quantum state |ψ(θi)⟩=
∏d

l=1Wl(
∏

kRl,k(θ
(nl,k)
i ))|0⟩⊗N.

Our choice of quantum kernel measures the distance between two encoding states as given by the fidelity
between ρ(θi) and ρ(θj) [8, 27]

K(θi,θj) = Tr(ρ(θi)ρ(θj)) , (3)

which for pure states ρ(θi) = |ψ(θi)⟩⟨ψ(θi)| reduces to K(θi,θj) =
∣∣⟨ψ(θi)|ψ(θj)⟩

∣∣2.
We can formalize the expressive power of our encoding with the QFIM F(θ), which is aM×M

dimensional positive-semidefinite matrix that provides information about the kernel in the proximity of
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Figure 1. (a) Supervised learning to classify images of handwritten digits. By learning from a training set of labeled images, our
goal is to identify previously unseen test data correctly. The support vector machine (SVM) learns using a kernel (equation (3))
which is a measure of distance between the data. (b) We learn a dataset of L images with i= {1, . . . ,L}, each withM pixels

n= {1, . . . ,M}, where we denote each pixel with x(n)i ∈ R. For the ith image, we encode theM-dimensional feature vector xi into
a parameterized quantum circuit (PQC) with anM-dimensional parameter vector θi. The PQC has N qubits and d layers of
parameterized single qubit rotations and two-qubit entangling gates. We encode the nl,k ≡ n entry of the feature vector into a

single qubit rotation acting on qubit k and layer l via θ
(n)
i = θ

(n)
r + cx

(n)
i (equation (2)), where θr is a fixed reference parameter

and c a scaling factor. The number of encoded features scales linearly with N and d. The kernel (equation (3)) is characterized by
the quantum Fisher information metric (QFIM) F(θr) and can be approximately described by the radial basis function kernel
(equation (5)). We calculate the quantum kernel by measuring the PQC in randomized local bases of Haar random unitaries
VHaar. (c) The SVM trained with the quantum kernel draws the decision boundaries (here shown for a two-dimensional feature
vector space and three possible digits) that classify each feature vector to its corresponding label.

θ [35]. For a pure state |ψ⟩= |ψ(θ)⟩ it is given by Fij(θ) = 4[⟨∂iψ|∂jψ⟩− ⟨∂iψ|ψ⟩⟨ψ|∂jψ⟩], where ∂j|ψ⟩ is
the gradient in respect to the j-th element of θ [36]. In the limit c→ 0 of encoding equation (2), the kernel of
a pure quantum state can be written as

K(θr,θr + cxi) = 1− c2

4
xTi F(θr)xi = 1− c2

4

M∑
k=1

λkgk , (4)

where λk is the kth eigenvalue of the QFIM F(θr) and gk = |⟨xi,µk⟩|2 is the inner product of the feature
vector xi and the kth eigenvector µk of F(θr). R= rank(F) (the number of non-zero eigenvalues) of F(θr)
is an important measure of the properties of the PQC and the encoding [35]. TheM−R eigenvectorsµk with
λk = 0 have no effect on the kernel with K(θ,θ+ cµk) = 1. Thus, feature vectors xq ∈ span{µ1, . . . ,µM−R}
that lie in the space of eigenvectors with eigenvalue zero cannot be distinguished using the kernel as they have
the same value K(θ,θ+ cxq) = 1. Further, the size of the eigenvalues λk determines how strongly the kernel
changes in direction µk of the feature space. By appropriately designing the QFIM as the weight matrix of the
kernel, generalizing from data could be greatly enhanced [27, 35, 37]. For example, the feature subspace with
eigenvalue 0 could be engineered such that it coincides with data that belongs to a particular class.
Conversely, features that strongly differ between different classes could be tailored to have large eigenvalues
such that they can be easily distinguished [37]. For a PQC with N qubits the rank is upper bounded by
R⩽ 2N+1 − 2, which is the maximal number of features that can be reliably distinguished by the kernel [35].

It has been recently shown that the kernel of pure quantum states of hardware efficient PQCs can be
approximated as Gaussian or RBF kernels [38], which are one of the most popular non-linear kernels with
wide application in various machine learning methods [39]. Specifically, for small enough c with the
encoding equation (2), we can approximately describe the quantum kernel as

K(θi,θj)≈ exp

[
− c2

4
(xi− xj)

TF(θr)(xi− xj)

]
, (5)

which is the RBF kernel with the QFIM as weight matrix F(θr) [38]. While for general PQCs the QFIM is a
priori not known, a type of PQC called NPQC has the special property that the QFIM takes a simple form
with F(θr) = I, where I is the identity matrix and θr a particular reference parameter, which we will choose
in the following for the NPQC (see [40] and appendix A). The NPQC forms an approximate isotropic RBF
kernel that can serve as a well characterised basis for quantum machine learning. We also study another
commonly used type of hardware efficient circuit (YZ-CX PQC) composed of single qubit rotations and
CNOT gates arranged in a one-dimensional nearest-neighbor chain with a non-trivial QFIM F(θr) ̸= I. For
the YZ-CX PQC we choose a randomly drawn θr, we find that the overall performance is nearly independent
of the choice.

Further details on the NPQC and YZ-CX PQC are shown in the appendix A. The scaling factor c controls
the scale of the resulting values of the quantum kernel. Too small kernel values can impede learning as the
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model becomes too constrained. We can restrict the kernel from below Kmin < K(θi,θj) for all i, j by
choosing c as

c2 <
−4 log(Kmin)

mini,j(xi− xj)TF(θr)(xi− xj)
. (6)

4. Measurement

We calculate the L quantum kernels using randomized measurements [41–43] by measuring quantum states
in r randomly chosen single qubit bases. We first choose r sets n= {1, . . . , r} of transformations

V(n) =⊗N
k=1V

(n)
k , composed of random single qubit rotations V(n)

k drawn according to the Haar measure
SU(2) acting on each qubit k. Then, we prepare the quantum state ρ(θi) and rotate into a random basis

V(n)ρ(θi)V(n)†. Then, we measure s samples of the rotated state in the computational basis and estimate the

probability P(n)i (vq) of measuring the computational basis state v ∈ {0,1}N for state ρ(θi) and
transformation n. This procedure is repeated for the r transformations and L quantum states. The kernel
Kb(θi,θj) = Tr(ρ(θi)ρ(θj)) via randomized measurements is then calculated as [42]

Kb(θi,θj) = Tr(ρ(θi)ρ(θj))

=
∑
v,v ′

(−2)−D(v,v ′)
r∑

n=1

P(n)i (s)P(n)j (s ′) , (7)

where D(v,v ′) is the Hamming distance that counts the number of bits that differ between the
computational states v and v

′
.

To measure all entries of the kernel, we perform NR = srLmeasurements in total. The error∆K of
estimating a single kernel entry scales as∆K∝ 1/(s

√
r) [42]. Thus, for a fixed error it is beneficial to choose

the number of bases r to a relatively small number compared to s. Note that for sufficient accuracy a minimal
number of r is needed which increases with N. Overall, the number of measurements needed to estimate the
kernel scales as NR ∝ 2aNL, with a factor a≲ 1 that depends on the type of state being measured [41, 42] and
can be improved by importance sampling [44]. While for large N, the exponential measurement cost is
prohibitive, for intermediate qubit number on the order of ten qubits the measurement cost is moderate.
With our method, the number of measurements needed to determine the full kernel matrix scales only
linearly with the dataset size NR ∝ L, a quadratic speedup in contrast to other methods. Other commonly
used measurement strategies such as the swap test [45, 46] or the inversion test [18, 20] have to explicitly
prepare both states ρ(θi) and ρ(θj) on the quantum computer. Thus, they scale unfavorably with the square
NR ∝ L2 of the dataset size (see appendix B). While randomized measurements requires an overhead
compared to standard methods, we find that for relatively small datasets, L> 21, randomized measurement
requires less measurements for our experimental parameters (see appendix D). For L= 103, we find that
randomized measurement requires a factor 100 lower number of measurements compared to the parameters
used in previous works. A further advantage is found in error mitigation. For standard measurement
methods on noisy quantum computers, error mitigation adds a substantial cost to the measurement
budget [29]. In contrast, randomized measurement can mitigate errors without further measurement cost as
we show in the following.

5. Error mitigation

In general, quantum computers are affected by noise, which will turn the prepared pure quantum state into a
mixed state and may negatively affect the capability to learn. For depolarizing noise, we can use the
information gathered in the process to mitigate its effect and infer the noiseless value of the kernel.

For global depolarizing noise, with a probability pi the pure quantum state |ψ(θi)⟩ is replaced with the
completely mixed state ρm = I/2N, where I is the identity matrix. The resulting quantum state is the density
matrix ρ(θi) = (1− pi)|ψ(θi)⟩⟨ψ(θi)|+ pi(2− pi)ρm. The purity can be determined from the randomized
measurements Tr(ρ(θi)

2) = Kb(θi,θi) = (1− pi)2 +
pi
2N by reusing the same data used to compute the kernel

entries. Using these purities, the depolarization probability pi can be calculated by solving a quadratic
equation [23, 47]. With pi and the measured kernel Kb(θi,θj) affected by depolarizing noise, the mitigated
kernel is approximated by

Km(θi,θj)≈
Kb(θi,θj)√

Tr(ρ(θi)2)Tr(ρ(θj)2)
. (8)
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Figure 2. (a) Simulated kernel K(θi,θj) as function of (xi − xj)TF(θr)(xi − xj), which is the distance in feature space weighed
with the QFIM F(θr). The feature vectors xi are sampled uniformly from [−1,1]M, then the norm of xi is rescaled to a randomly
chosen |xi| and encoded with equation (2) into the PQC. We show two types of hardware efficient PQCs, namely YZ-CX PQC
and NPQC (see appendix A). Shaded area is the standard deviation of the kernel. The quantum kernels are well approximated by
radial basis function kernels (RBF, dashed line, equation (5)) until reaching very small values Kmin = 2−N (dash-dotted lines).
PQCs have N= 10 qubits, d= 10 layers and we average over 50 random feature vectors. (b) Experimental kernel K(θi,θj) as
function of distance between the feature vectors. We encode uniformly sampled xi in the NPQC with the QFIM F(θr) = I. The
quantum kernel generated by theory (blue dots) and via experimental results with IBM quantum computer (orange crosses)

follows approximately the isotropic radial basis function kernel (K(θi,θj) = exp(− c2

4
|xi − xj|2), black line). Shaded area is

standard deviation of the kernel. The NPQC has N= 8 qubits,M= 36 features and d= 4 layers. Experimental results from
ibmq_guadalupe were performed with r= 50 randomly chosen measurement settings, s= 8192 measurement samples and error
mitigation with equation (8).

6. Results

We now proceed to numerically and experimentally demonstrate our methods. First, we investigate the
kernel of our encoding. In figure 2(a) we numerically simulate [48, 49] two types of hardware efficient PQCs
(YZ-CX PQC and NPQC) and show that the quantum kernel is well described by a RBF kernel (equation (5),
dashed line). The kernel diverges from the RBF kernel for exponentially small values of the kernel and
reaches a plateau at Kmin =

1
2N , which is the fidelity of Haar random states [50]. In figure 2(b), we

experimentally measure the kernel of the NPQC with an IBM quantum computer (ibmq_guadalupe [51])
using randomized measurements and error mitigation (equation (8)). We find that the mean value of the
kernel matches well with the isotropic RBF kernel. See appendix E for details on the experiment and
appendix C for results regarding the YZ-CX PQC.

Next we address the statistical error introduced by estimating the kernel using randomized
measurements and global depolarizing noise p. In figure 3(a) we simulate the average error

∆K=
2

L(L− 1)

L∑
i=1

L∑
j=i+1

∣∣Km(θi,θj)−K(θi,θj)
∣∣ (9)

of measuring the mitigated kernel Km(θi,θj) using randomized measurements with respect to its exact value
K(θi,θj) as function of number of measurement samples s. We find that there is a threshold of samples where
the error becomes minimal. This threshold depends on the choice of the number of measurement settings r
and number of qubits N. We find that the choice r= 8 provides sufficient accuracy for our experiments. We
are able to mitigate depolarizing noise to a noise-free level even for high p. In figure 3(b), we show the
minimal number of samples smin required to measure the kernel with an average error of at most∆K< 0.1
as function of depolarization noise p. The randomized measurement scheme works well even with
substantial noise p, where we find a power law smin ∝ (1− p)−2.

Now we assess the overall performance of our approach on a practical task. We learn to classify
handwritten 2D images of digits ranging from 0 to 9. The dataset contains L= 1797 images of 8× 8 pixels,
where each pixel has an integer value between 0 and 16 [52]. We map the image toM= 64 dimensional
feature vectors. For the YZ-CX PQC, we use allM= 64 features, whereas for the NPQC we perform a
principal component analysis to reduce it toM= 36 features. We calculate the kernel of the full dataset and
use a randomly drawn part of it as training data for optimizing the SVM with Scikit-learn [53]. The accuracy
of the SVM is defined as the percentage of correctly classified test data, which are Ltest = 200 images that have
not been used for training. The dataset is rescaled using the training data such that each feature has mean

5
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Figure 3. (a) Average error for measuring the kernel with randomized measurements∆K as function of number of measurement
samples s and the global depolarizing probability p. Simulation with r= 8 measurement settings, N= 8 qubits and the YZ-CX
PQC. (b) Minimal number of measurement samples smin needed to achieve an average error of at most∆K< 0.1 for varying
depolarizing noise p. Dashed line is the power law smin ∝ (1− p)−2. Number of measurement settings is r= 8 for N= 8, and
r= 16 for N= 10.

value zero and its variance is given by 1√
M
. We encode the feature vectors xi via equation (2) with c= 1,

where for the YZ-CX PQC we choose θr randomly and for the NPQC we define θr such that the QFIM is
given by F(θr) = I (see appendix A).

In figure 4(a), we classify the data by measuring the quantum kernel with a single quantum computer. We
plot the accuracy of classifying test data with the SVM against the size of the training data for the YZ-CX
PQC and the NPQC. As a classical baseline, we show the RBF kernel. Further, we show a simulations of the
exact quantum kernel (exact) and a noiseless simulation of the randomized measurements (noiseless). For
experimental data, we use an IBM quantum computer (ibmq_guadalupe [51], see appendix E for more
details) to perform randomized measurements with error mitigation (mitigated) and without error
mitigation (unmitigated). The accuracy improves steadily with increased number of training data for all
kernels. Our error mitigation scheme (equation (8)) substantially improves the accuracy of the SVM trained
with experimental data to nearly the level of the noiseless simulation of the randomized measurements. The
randomized measurements have a lower accuracy compared to the exact quantum kernel as we use only a
relatively small number r of randomized measurement settings. For the NPQC, the exact quantum kernel
shows nearly the same accuracy as the classical RBF kernel, whereas for the YZ-CX PQC the quantum kernel
performs slightly worse compared to the classical kernel, likely indicating that its QFIM does not optimally
capture the structure of the data. The depolarizing probability of the IBM quantum computer is estimated as
p≈ 0.36 for the NPQC and p≈ 0.39 for the YZ-CX. To measure the kernel of the dataset with Ltrain = 1597
and Ltest = 200, we require in total NR = s(Ltrain + Ltest)r≈ 1.2× 108 measurements. For the inversion test,
one would require NR = scLtrain(Ltrain − 1)/2+ scLtrainLtest ≈ 0.8× 1010 experiments, where we have set the
number of measurements per kernel entry to sc = 5000 as chosen in past experiments [18]. Thus, we
estimate that our method yields a reduction in total measurements by more than factor 60. We find that our
method already yields a lower measurement cost for Ltrain > 21 as shown in appendix D.
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Figure 4. Accuracy of classifying previously unseen handwritten digits correctly as function of the size of the training data.
(a) SVM trained with experimental quantum kernel measured on a single quantum computer (ibmq_guadalupe) with
randomized measurements using error mitigation (red, equation (8)) and no error mitigation (yellow). The shaded area is the
standard deviation of the accuracy. As a classical baseline, we show the isotropic radial basis function kernel (blue). Simulations of
quantum kernels are the exact quantum kernel (orange) and noiseless simulation of randomized measurements (green). (b) We
distribute the measurements on two different quantum computers (ibmq_guadalupe and ibmq_toronto, purple curve) and
post-process the combined measurement results with error mitigation. As reference, we show the accuracy of quantum kernel
measured on a single quantum computer for ibmq_guadalupe (red) and ibmq_toronto (light blue). We encode the data into the
YZ-CX PQC withM= 64 features and the NPQC withM= 36 features. Experiments are performed using s= 8192 measurement
samples, N= 8 qubits and r= 8 randomized measurement settings. The test data contains Ltest = 200. To calculate mean and
standard deviation of the accuracy, we randomly draw test and training data from the full dataset 20 times for each training data
size.

Finally, in figure 4(b) we distribute the measurements between two quantum computers. We split the
dataset into two halves, where one half is measured using randomized measurements with ibmq_guadalupe
and the other half with ibmq_toronto [51] (see appendix E for more details). The measurement outcomes
from both machines are then combined for the post-processing on the classical computer to calculate the
kernel matrix of the full dataset. Here, we also apply error mitigation. As reference, we also plot the accuracy
achieved with a single quantum computer. For the YZ-CX PQC, we find nearly equal accuracy with the
distributed and single quantum computer approach. For the NPQC, the accuracy of the distributed
approach is slightly lower. The performance highly depends on the noise and calibration of the IBM
quantum computers, which can fluctuate over time and highly depends when an experiment is performed.
We attribute the lower performance of the distributed YZ-CX approach with a higher noise level present
while the experiment was performed on ibmq_toronto. As the randomized measurement method correlates
measured samples, differences in the respective noise model of the two quantum computers can have a
negative effect on the resulting quantum kernel. In the appendices F and G, we show the accuracy of the
training data and the confusion matrices.

7. Discussion

Our work demonstrates a practical method to learn large datasets on noisy quantum computers with
intermediate qubit numbers. Randomized measurement enables a linear scaling in dataset size L and encodes
high-dimensional data with number of features scaling linearly with quantum circuit depth d. We show our
encoding can be characterized by the QFIM and its eigenvalues and eigenvectors [35]. As the behavior of the
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kernel is crucial for effectively learning and generalizing data, future work could design the QFIM to improve
the capability of quantum machine learning models. We demonstrated the NPQC with a simple and exactly
known QFIM, which could be a useful basis to study quantum machine learning on large quantum
computers.

We encode the data in hardware efficient PQCs, which are known to be hard to simulate classically for
large numbers of qubits [12]. This type of PQC has been used in quantum machine learning
experiments [18]. While sampling from these circuits is difficult to simulate on classical computers, we find
that the quantum kernel closely follow the radial basis function kernel up to exponentially small kernel
values [38]. Similarly, many other classes of quantum kernels have efficient classical representations [54]. The
resemblance with a classical kernel implies that these quantum kernels are unlikely to achieve an advantage
over classical methods [8]. However, we note that radial basis function type of kernels have been of interest in
quantum optics [55] and can serve as a reliable benchmark of quantum machine learning methods. Further,
the non-trivial weight matrix F could be of independent interest in machine learning [56].

We mitigate the noise occurring in the quantum computer by using data sampled during the
measurements of the kernel. We find that the number smin of measurement samples needed to mitigate
depolarizing noise scales as smin ∝ (1− p)−2, allowing us to extract kernels even from very noisy quantum
computers. We successfully apply this model to mitigate the noise of the IBM quantum computer. While the
noise model of quantum computers is known to be complicated involving multiple types of sources of noise,
the depolarizing model we use is sufficient to mitigate the noise of kernels measured on IBM quantum
computers [47]. This may be the result of the randomized measurements leading to an insensitivity to fixed
unitary noise channels. We note that noise induced errors can actually be beneficial to machine learning as
the capability to generalize from data can improve with increasing noise [37].

In general, the number of measurements needed for the randomized measurement scheme scales
exponentially with the number N of qubits [41, 42]. This makes our method currently practical only for a
lower number of qubits. However, various approaches could extend our method to larger qubit numbers.
Importance sampling can reduce the number of measurements needed [44]. For particular types of states an
exponential reduction in cost has been observed. It would be worthwhile to study how importance sampling
can improve the measurement cost for quantum machine learning. In other settings adaptive measurements
have been proposed to improve the scaling of measurement costs [57], as well as other approaches such as
shadow tomography [58]. The choice of an effective set of measurements could be included in the machine
learning task as hyper-parameters to be optimized. To reduce the number of qubits, one could combine our
approach with quantum autoencoders to transform the encoding quantum state into a subspace with less
qubits that captures the essential information of the kernel [59]. Alternatively, one could trace out most of
the qubits of a many-qubit quantum state ρ(θi) such that a subsystem A with a lower number of qubits
remains. Then, randomized measurements can efficiently determine the kernel Tr(ρA(θi)ρ

A(θj)). It would
be worthwhile to investigate the learning power of kernels generated from subsystems of quantum states that
possess quantum advantage [7, 8].

Randomized measurements process each of the L quantum states of the dataset separately [42]. The full
kernel matrix K(θi,θj) with L2 elements is then constructed via classical post-processing using equation (7)
where the randomized measurement data for state |ψ(θi)⟩, |ψ(θj)⟩ is reused to calculate each entry of the
matrix. This gives us the resulting speedup in quantum computational time. As a further advantage, our
approach only requires preparing one quantum state at a time, reducing the number of gates by half
compared to the inversion test or swap test. Further, we demonstrate how to achieve additional speedups by
distributing measurements across different quantum computers.

The quantum computation time scales linearly with dataset size L and provides a quadratic speedup
compared to conventional measurement methods such as the inversion test or swap test. Note that the
classical post-processing to construct the kernel still scales as L2. However, we note that current quantum
computers perform measurements at a rate of∼5 kHz [12, 13], which is a factor 106 slower than commonly
available classical computers. Further, using quantum computers is very expensive compared to classical
computation. Thus, the main bottleneck for quantum machine learning algorithms on current quantum
hardware lies within the quantum part, while the classical part can be easily parallelized and distributed.
Therefore, our work opens up benchmarking quantum machine learning with large datasets on
intermediate-size quantum computers, which was impractical with previously known methods.

For our encoding equation (2), at small distances the quantum kernel in parameter space can be
described by the QFIM via equation (4). We note this relation is general for any type of PQC. The rank of the
QFIM F indicates the number of independent directions in parameter space with equation (4). The maximal
number of independent featuresMmax that can be encoded via equation (2) is thus given by the rank of the
QFIM, which is upper bounded by rank(F) =Mmax ⩽ 2N+1 − 2 [35]. Thus, even a modest number of qubits
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can represent a large number of parameters. The popular MNIST dataset [60] for classifying 2D images of
handwritten digits has 28× 28 pixels, which could be encoded in only N = 9 qubits.

Assuming 5 kHz measurement rate, s= 8192 measurement samples and r= 8 measurement settings, our
method can process the full MNIST training dataset with Ltrain = 60000 entries in about 240 h of quantum
processing time of a single quantum computer. In contrast, the inversion or swap test would require at least
10 years with s= 1000 samples on a quantum computer. With our scheme, we enable quantum machine
learning with large datasets on intermediate-sized quantum computers. Future work could benchmark the
performance of currently available quantum computers with datasets commonly used in classical machine
learning.
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Appendix A. Parameterized quantum circuits

Here, we describe the two types of PQCs used in the main text. The PQCs are composed of N qubits and d
layers of unitaries. The parameters of the PQC are given by theM-dimensional parameter vector θ ∈ RM.
Each layer is described by unitary Ul(θl) with the parameter vector of each layer θl with θ = {θ1, . . . ,θd}.
The total PQC is given by U(θ)|0⟩=

∏d
l=1Ul(θl)|0⟩⊗N. Each layer unitary Ul(θ

l) is is composed of
parameterized single qubit rotations and an unparameterized entangling gate. For each layer, we denote each

parameter entry by θ(k)l,α , where l denotes the layer, α ∈ {x,y,z} the type of rotation and k the qubit number.
Note this notation is different from the main text.

In figure 5(a), we show the first circuit we use, which we call the NPQC. The first layer is composed of

2N single qubit rotations around the y and z axis for each qubit n with U1 =
∏N

k=1R
(k)
z (θ

(k)
1,z )R

(k)
y (θ

(k)
1,y ). Here,

R(k)
α (θ) = exp(−i θ2σ

α
n ), α ∈ {x,y,z} and σxn, σ

y
n, σzn are the Pauli matrices acting on qubit k. Each additional

layer l> 1 is a product of two qubit entangling gates and N parameterized single qubit rotations defined as

Ul(al) =
∏N/2

k=1[R
(2k−1)
z (θ

(2k−1)
l,z )R(2k−1)

y (θ
(2k−1)
l,y )]Uent(al), where Uent(al) =

∏N/2
k=1CPHASE (2k− 1,2k+ 2al)

R(2k−1)
y (π/2) and CPHASE(n,m) is the controlled σz gate for qubit index n,m, where indices larger than N

are taken modulo. The entangling layer Ul(0) is shown as example in figure 5(b). The shift factor
al ∈ {0,1, . . . ,N/2− 1} for layer l is given by the recursive rule shown in the following. Initialize a set
A= {0,1, . . . ,N/2− 1} and s= 1. In each iteration, pick and remove one element r from A. Then set as = r
and as+q = aq for q= {1, . . . , s− 1}. As the last step, we set s= 2s. We repeat this procedure until no elements
are left in A or a target depth d is reached. One can have maximally dmax = 2N/2 layers with in total
M= N(d+ 1) parameters. The NPQC has a QFIM F(θr) = I, I being the identity matrix, for the reference
parameter θr given by

F(θr) = I for θ
(k)
r,l,y = π/2 , θ

(k)
r,l,z = 0 , (A1)

where θ(k)r,l,z is the reference parameter for layer L, qubit k and rotation around z-axis. Close to this reference
parameter, the QFIM remains approximately close to being an identity matrix. When implementing the
NPQC for the IBM quantum computer, we choose the sift factor al such that only nearest-neighbor CPHASE
gates arranged in a chain appear. To match the connectivity of the IBM quantum computer, we removed one
entangling gate and its corresponding single qubit rotations which require connection between the first and
the last qubit of the chain.
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Figure 5. (a) The NPQC for N qubits and d layers, which is a hardware efficient PQC composed of single qubit rotations and
CPHASE gates. For the reference parameter θr, the QFIM is the identity matrix. (b) Example of the entangling layer for the
NPQC, which is composed of N/2 non-overlapping CPHASE gates and y rotations by π/2. (c) YZ-CX PQC, which is a hardware
efficient circuit consisting of single qubit rotations and CNOT gates arranged in an alternating fashion in even and odd layers l.

The second type of PQC used is shown in figure 5(c), which we call YZ-CX. It consists of d layers of
parameterized single qubit y and z rotations, followed by CNOT gates. The CNOT gates arranged in a
one-dimensional chain, acting on neighboring qubits. Every layer l, the CNOT gates are shifted by one qubit.
Redundant single qubit rotations that are left over at the edges of the chain are removed.

Appendix B. Methods to measure quantum kernels

In figure 6, we explain the different methods to measure kernels of L quantum states. In this paper, we use the
randomized measurements method shown in figure 6(a). The number of required measurements to measure
all possible pairs of kernels scales linearly with dataset size L.

The inversion test is shown in figure 6(b). To measure the kernel between two quantum states, it uses the
unitary of the first state combined the with inverse unitary of the second state. Then, the kernel is given by
the probability of measuring the zero state. Here, the number of measurements scales with the square L2 of
the dataset size.

The swap test is shown in figure 6(c). It prepares both states for the kernel, requiring two times the
amount of qubits as with the other tests. Then, a controlled SWAP gate is applied, with the control being on
an ancilla qubit. Then, the kernel is given by the measurement of the ancilla. As with the inversion test, the
number of required measurements scales with the square L2 of the dataset size. Further, the controlled SWAP
gate can require substantial quantum resources.
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Figure 6. Quantum circuits to measure kernel K(θi,θj) of L quantum states U(θi)|0⟩. (a) Randomized measurement scheme.
Prepare state |ψ(θi)⟩, rotate into randomized basis given by single qubit Haar random unitaries VHaar and measure in
computational basis. By post-processing sampled states one can extract the kernel. The number of measurements scales linearly
with L. (b) Inversion test. Prepare U†(θj)U(θi)|0⟩ and measure probability of zero state |0⟩. The number of measurements scale
with L2. (c) Swap test. Prepare U(θj)⊗U(θi)|0⟩ on twice the number of qubits and perform controlled SWAP gate with an
ancilla. Kernel is determined by measuring ancilla only. The number of measurements scale with L2.

Appendix C. Experimental kernel of YZ-CX PQC

We provide further data on the experimental quantum kernel measured on the IBM quantum computer. We
measure the kernel using randomized measurements for randomly chosen feature vectors. In figure 7, we
show experimental data of the kernel for the YZ-CX PQC using ibmq_guadalupe. We find that the
experimental data and numerical simulations match well.
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Figure 7. Experimental kernel K(θi,θj) as function of distance between the feature vectors xi, xj. We encode randomly chosen
feature vectors via θi = θr + cxi in the YZ-CX PQC, where θr ∈ [0,2π] is a randomly chosen reference parameter. The QFIM
F(θr) is calculated numerically. The quantum kernel generated by theory (blue dots) and via experimental results with IBM

quantum computer (orange crosses) follows approximately a weighted radial basis function kernel K(θi,θj) = exp[− c2

4
(xi − xj)T

F(θr)(xi − xj)] (black line). Shaded area is standard deviation of the kernel. The YZ-CX PQC has N= 8 qubits,M= 72 features
and d= 5 layers. Experimental results from ibmq_guadalupe were performed with r= 50 randomized measurement settings,
s= 8192 measurement samples and error mitigation.

Appendix D. Measurement cost

Here, we compare the measurement cost when learning from our dataset for varying number of training data
used. For randomized measurements, the number of measurements is given by N random

meas = s(Ltrain + Ltest)r.
For conventional methods such as SWAP or inversion test, we haveN inv

meas = scLtrain(Ltrain − 1)/2+ scLtrainLtest.
We now assume that Ltest = Ltrain/5. We assume s= 8192 and r= 8 with the same values as used for
experiment of N = 9 qubits in the main text. For the conventional approach, we choose sc = 5000 as used
in [18] for an experiment with comparable feature vector size. The measurement cost is plotted in figure 8,
where we find that randomized measurements is advantageous with N random

meas < N inv
meas for Ltrain > 21.
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Figure 8. Number of measurements for randomized and standard measurement methods as function of training data Ltrain
measured on the quantum computer. We set test data to Ltest = Ltrain/5 and use s= 8192, r= 8 and sc = 5000.

Appendix E. IBMQuantum implementation details

Our PQC circuits are constructed as parameterized circuits with Qiskit [63]. These parameterized circuits are
first transpiled then bound for each data point and randomized measurement unitary, ensuring that all
circuits submitted have the same structure and use the same set of device qubits. Transpiling is handled by
the pytket Python package [64] using rebase, placement and routing passes with no additional optimizations
(IBMQ default passes with optimization level 0).

The ibmq_guadalupe [51] results presented in figures 2 and 4 were collected between 22 July 2021 and 30
July 2021. The ibmq_toronto [51] results presented in figure 4 were collected between 23 July 2021 and 9
August 2021. Figure 2 required the execution of 100× 50= 5000 circuits and figure 4 involved
1790× 8= 14320 circuits, each with 8192 measurement shots. For comparison, applying the inversion test
to the same handwritten digit dataset used for figure 4 would have required the execution of
1790× 1790≈ 3.2× 106 circuits. Circuits were executed on IBM quantum devices using the circuit queue
API. Job submissions were batched in such a way that all measurement circuits for a data point were
submitted and executed together.

Beyond the error mitigation procedure described in the main text we carry out no further error
mitigation. In particular, we find that within our experiments readout error mitigation does not yield any
significant advantages. We attribute this two possible origins. Our randomized measurement scheme applies
random unitaries, which effectively twirl the noise into a form which is easier to mitigate and has been
shown to substantially reduce errors [65]. Further, data collected from application of random Pauli operators
subject to the same noise has been shown to efficiently correct read-out errors [66]. Similar to this approach,
it is possible that our error mitigation scheme also corrects read-out errors at the same time.

Appendix F. Training accuracy

In figure 9, we plot the accuracy of classifying the training data with the SVM for the YZ-CX PQC and
NPQC. We show the accuracy for processing on ibmq_guadalupe, ibmq_toronto and distributing the dataset
between both quantum computers. The accuracy is defined as the percentage of training data that is correctly
identified. We find that error mitigation substantially increases the accuracy in all cases.
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Figure 9. Accuracy of classifying training data as function of the size of the training data. The shaded area is the standard
deviation of the accuracy. We use same data as in the main text. We compare the radial basis function kernel (blue dots), exact
quantum kernel (orange), noiseless simulation of randomized measurements (green), kernel of IBM quantum computer with
randomized measurements using error mitigation (red) and no error mitigation (yellow). (a), (c), (e) YZ-CX PQC withM= 64
features and (b), (d), (f) NPQC withM= 36 features. We use (a), (b) ibmq_guadalupe, (c), (d) ibmq_toronto and (e), (f) equally
distributing measurements between aforementioned quantum computers. We have s= 8192 measurement samples, N= 8 qubits
and r= 8 randomized measurement settings. The training data is randomly drawn from the full dataset, which is repeated 20
times for each training data size.

Appendix G. Confusionmatrix

We now show the confusion matrices for the test data. The confusion matrix shows what label is predicted by
the SVM in respect to its true label of the test data. The diagonal are the correctly classified digits, whereas
the off-diagonals show the number of times a digit was miss-classified. In figure 10, we show the confusion
matrix for the NPQC, and in figure 11. We show the confusion matrix for the YZ-CX PQC. We find that the
actual digit 8 is often predicted to be the digit 1. Then, likely confusions are that digit 3 is assumed to be 8
and digit 9 is assumed to be 8. We find these confusions consistently in all kernels. While for the NPQC,
radial basis function kernel and quantum kernel give nearly the same confusion matrix, we find substantial
differences for the YZ-CX PQC. The reason is that while NPQC is an approximate isotropic radial basis
function kernel, the YZ-CX PQC is an approximate radial basis function kernel with a weight matrix given
by the QFIM. The weight matrix of the YZ-CX seems to reduce the accuracy of the trained SVM.
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Figure 10. Confusion matrix for the NPQC for (a) radial basis function kernel (b) exact quantum kernel (c) mitigated IBM results
with ibmq_guadalupe and (d) unmitigated IBM results. We use 1300 training data and 200 test data, where we average the
confusion matrix over 100 randomly sampled instances of the data.

Figure 11. Confusion matrix for the YZ-CX PQC for (a) radial basis function kernel (b) exact quantum kernel (c) mitigated IBM
results with ibmq_guadalupe and (d) unmitigated IBM results. We use 1300 training data and 200 test data, where we average the
confusion matrix over 100 randomly sampled instances of the data.

Appendix H. Product state as analytic radial basis function kernel

As an analytic example, we show that product states form an exact radial basis function kernel. We use the
following N qubit quantum state

|ψ(θ)⟩=
N⊗

n=1

(
cos

(
θn
2

)
|0⟩+ sin

(
θn
2

)
|1⟩
)
. (H1)

The QFIM is given by F(θ) = I, where I is theM-dimensional identity matrix and
Fij = 4[⟨∂iψ|∂jψ⟩− ⟨∂iψ|ψ⟩⟨ψ|∂jψ⟩]. The kernel of two states parameterized by θ, θ ′ is given by

K(θ,θ ′) =
∣∣⟨ψ(θ)|ψ(θ ′)⟩

∣∣2 = N∏
n=1

(1+
1

2
cos(∆θn)) (H2)

where we define∆θ = θ−θ ′ as the difference between the two parameter sets. We now assume |∆θn| ≪ 1
and that all the differences of the parameters are equal∆θ1 = · · ·=∆θN. We then find in the limit of many
qubits N

K(θ,θ ′)≈
N∏

n=1

(1− 1

4
∆θ2n)−−−−→

N→∞
exp

(
−1

4

N∑
n=1

∆θ2n

)
, (H3)

which gives us the radial basis function kernel.
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