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Abstract
One-class classification (OCC) is a fundamental problem in pattern recognition with a wide range
of applications. This work presents a semi-supervised quantum machine learning algorithm for
such a problem, which we call a variational quantum one-class classifier (VQOCC). The algorithm
is suitable for noisy intermediate-scale quantum computing because the VQOCC trains a
fully-parameterized quantum autoencoder with a normal dataset and does not require decoding.
The performance of the VQOCC is compared with that of the one-class support vector machine
(OC-SVM), the kernel principal component analysis (PCA), and the deep convolutional
autoencoder (DCAE) using handwritten digit and Fashion-MNIST datasets. The numerical
experiment examined various structures of VQOCC by varying data encoding, the number of
parameterized quantum circuit layers, and the size of the latent feature space. The benchmark
shows that the classification performance of VQOCC is comparable to that of OC-SVM and PCA,
although the number of model parameters grows only logarithmically with the data size. The
quantum algorithm outperformed DCAE in most cases under similar training conditions.
Therefore, our algorithm constitutes an extremely compact and effective machine learning model
for OCC.

1. Introduction

With the growing demand for efficient and effective methods to extract useful knowledge from data,
quantum machine learning (QML) has emerged as a promising application of quantum technology [1–3].
Many pattern recognition problems in data science can be formulated as a classification problem, which can
be addressed via supervised machine learning (ML). Several theoretical works showed that QML can be
advantageous for classification in terms of runtime [4–10], trainability, model capacity [11, 12],
generalization [13], and prediction accuracy [14].

While the majority of existing works on QML for classification addresses binary problems, this work
focuses on one-class classification (OCC). OCC has a wide range of applications, such as anomaly
detection in finance [15], bioinformatics [16], manufacturing [17], computer vision [18], and high energy
physics [19]. The goal of OCC is to train an ML model that distinguishes normal data from anomalous ones.
In OCC, instead of having input–output example pairs as in the usual setup for supervised learning, only the
input information is provided. Since the training example does not contain the class labels, the OCC is often
called semi-supervised learning and is more difficult than the binary or multinomial classification with the
label information. Moreover, a multinomial classifier can be constructed with multiple one-class
classifiers.

OCC problems have been tackled by statistical ML approaches, such as principal component analysis
(PCA) [20], one-class support vector machine (OC-SVM) [21–23], and deep learning based algorithms
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[24, 25]. In particular, an autoencoder, a feed-forward neural network that aims to copy its input to its
output [26–28], is widely used in OCC. An autoencoder consists of an encoder, which extracts the essential
feature of data and reduces dimension, and a decoder, which reconstructs the data. Given a training dataset,
an autoencoder is trained to act as an identity function with respect to the training dataset and the mean
squared reconstruction error is subject to minimization. For OCC, after training a neural network as an
autoencoder with normal class data, the reconstruction error can be used as a decision function [29, 30].
Alternatively, the autoencoder can be used as a feature extractor of other statistical ML techniques like
OC-SVM [31–33].

As a classical autoencoder is able to learn the efficient representation of low dimensional latent space, a
quantum autoencoder (QAE) is proposed for efficient quantum data compression. The QAE utilizes a
parameterized quantum circuit (PQC) [34], which is central in variational quantum algorithms [35]. In
addition to quantum data compression, several applications of QAE have been explored including denoising
quantum data [36], quantum error correction [37], quantum error mitigation [38], and quantum
metrology [39]. The QAE has also been explored for detecting anomalous phases in the context of quantum
Hamiltonian problems [40], and detecting anomalous events at the Large Hadron Collider in high energy
physics [41].

Motivated by the success of classical autoencoders for OCC problems, we present a variational quantum
one-class classifier (VQOCC) algorithm based on the QAE that applies to classical data. The VQOCC is
composed of data encoding, PQC, and quantum measurements for classical post-processing. In the past,
anomaly detection algorithms based on the quantum OC-SVM and quantum PCA that could achieve
exponential speedup were proposed [6]. However, these quantum algorithms require expensive subroutines,
such as the quantum linear solver [42] and matrix exponentiation [5] that are not suitable for noisy
intermediate-scale quantum (NISQ) computing [43]. In contrast, training a shallow-depth PQC with a
classical optimizer is regarded as a promising approach for near-term QML [44]. This work focuses on taking
the NISQ-friendly approach that constructs a variational quantum algorithm for OCC with classical data,
and verifying whether a quantum advantage can be attained.

Numerical experiments are performed on handwritten digits and the Fashion-MNIST dataset with
open-source Python API Qibo [45] for quantum circuit simulation. The performance of VQOCC is
evaluated via the area under a receiver operating characteristic (ROC) curve (AUC), and compared to
classical methods including OC-SVM, kernel PCA, and deep convolutional autoencoder (DCAE). We
benchmark the performance of VQOCC with various structures of the QAE. The structure of the QAE is
determined by selecting data encoding, the number of PQC layers, and the size of the latent feature space.
The general result of VQOCC shows comparable performance to the classical methods despite having the
number of model parameters grow only logarithmically with the data feature size. Notably, the performance
of VQOCC is better than DCAE under similar training conditions.

The remainder of the paper is organized as follows. Section 2 describes the OCC and reviews some of the
well-known approaches to the problem. Section 3 explains the QAE, which is the basis of the quantum
one-class classifier proposed in this work. Section 4 explains the application of QAE for OCC and
constructing different models via modifying the ansatz (i.e. structure of the PQC) and cost functions.
Numerical experiments performed using scikit-learn and Qibo with handwritten digits and Fashion-MNIST
datasets are explained in section 5. This section also compares the AUC of ROC curves of our algorithm with
a one-class SVM, a kernel PCA, and a DCAE. Section 6 provides conclusion and suggestions for
future work.

2. One-class classification

Assigning an input data to one of a given set of classes is a canonical problem in pattern recognition and can
be formally described as a classification problem. Classification aims to predict the class label of an unseen
(test) data x̃ ∈ RN, given a labeled (training) dataset

D = {(x1,y1), . . . ,(xM,yM)} ⊂ RN ×Zl,

where l is the number of classes. The binary classification problem corresponds to the case when l= 2, which
aims to distinguish between two specific classes. In contrast, the OCC is a special case of the aforementioned
problem when l= 1 [25, 46], meaning that only a single class is provided during training. In this case, the
training dataset isD = {x1,x2, . . . ,xM}, which is referred to as normal in the context of anomaly detection,
and the goal is to identify whether test data x̃ belongs to the class observed during training. Since anomalous
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data is not used in training, this is known as semi-supervised learning. It is also possible to perform OCC
with unsupervised methods with an unlabeled dataset under the assumption that most of the test dataset is
composed of normal data [24, 25].

Given a training dataset of normal classD, a decision function f(x;D) is attained from a OCC algorithm,
which quantifies how far the input data x is from the training dataset. If the decision function f(x̃;D) is
smaller than a threshold value Cth (i.e. f(x̃)< Cth), then x̃ is close enough to the normal class to be classified
as normal. If f(x̃)> Cth, then the test data is too far from the normal class and is classified as anomalous. If
f(x̃) = Cth, then the decision is made at random.

Two well-known statistical approaches for addressing OCC problems are PCA [20] and SVM [21–23].
PCA is a dimensionality reduction technique that projects data xi into a lower dimensional subspace such
that the projections have the largest variances. The projected space provides reconstructed data x̂i. The lower
dimensional subspace is determined to minimize the reconstruction error

∑
i ∥xi − x̂i∥2. Once the lower

dimensional subspace is chosen, the reconstruction error f(x) = ∥x− x̂∥2 can be considered as a decision
function for OCC, since it will be small for normal data and large for anomalous one. The kernel trick can be
utilized in PCA to include non-linearity [47].

The SVM is a supervised learning model that aims to find a hyperplane that separates two classes of
training data with the maximum margin. Thus it is commonly used in binary classification. The SVM can be
modified for OCC by finding a maximum-margin hyperplane that separates normal data from the origin.
This is known as the one-class SVM (OC-SVM) [21, 22]. The decision function of OC-SVM is

f(x) = ⟨w,Φ(x)⟩− b, (1)

where w and b describes the hyperplane and Φ is the feature map. If the decision function is positive
(negative), the corresponding test data is classified as normal (anomalous).

Alternatively, the SVM can be modified for OCC by finding the smallest hypersphere that encapsulates
normal data. This is known as the support vector data description (SVDD) [23]. After finding the optimal
hypersphere, the data located outside of the hypersphere is classified as anomalous. In this case, the decision
function can be expressed as

f(x) = ∥Φ(x)− a∥2 −R, (2)

where a is a center of the hypersphere, and R is a radius of the hypersphere. Note that when the data is
normalized to unit norm, the OC-SVM and SVDD become equivalent [48]. Intuitively, these methods can be
understood as a process of learning the boundary for the normal data and identifying the data outside of the
boundary to be anomalies.

3. Quantum autoencoder

QAE is the quantum-analog of classical autoencoder, for which a PQC learns to reduce the dimensionality
of data [34]. The training is carried out through a classical optimization process; hence, it is the
classical-quantum hybrid algorithm. The dimensionality reduction means that a QAE compresses quantum
data into a smaller number of qubits than the input qubits. Following the convention used in classical ML, we
refer to the set of qubits to which the data is compressed as latent qubits. A QAE is composed of an encoding
part and a decoding part as depicted in figure 1(a). The encoding part applies a parameterized unitary gate
U(θ), where θ is a set of trainable parameters, aiming to compress data into latent qubits. Other qubits are
discarded after this step (i.e. traced out) and are called trash qubits. The number of trash qubits is denoted by
nt . For example, the QAE circuit in figure 1(a) uses four latent qubits and two trash qubits. The decoder
applies U†(θ) on the latent qubits and a reference state |0⟩⊗nt to reconstruct the initial quantum state. For a
QAE to be successful, the parameterized unitary gates for encoding should learn to disentangle latent qubits
and trash qubits to put them into a product state. This guarantees the reconstruction of the initial quantum
state via decoding with a proper ancillary state. The PQC is trained by minimizing a cost function defined
with the quantum state fidelity or Hamming distance between the trash qubit system and the target state
|0⟩⊗nt [34, 49, 50]. More details on the cost function used in this work will be described in the next section.

4. Variational quantum one-class classifier

The QAE lays the ground for VQOCC. The structure of a QAE can be simplified if it is applied to a OCC.
Namely, only the encoder part of the QAE is needed. In Romero et al [34], two cost functions based on the
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Figure 1. Graphical representation of (a) QAE and (b) VQOCC with number of trash qubits nt = 2 and total qubits n= 6.
Quantum autoencoder is composed of encoder and decoder parts, which are represented as parameterized quantum circuit U(θ)
and U†(θ), respectively. The VQOCC quantum circuit consists of three parts: data encoding (blue rectangle), parameterized
quantum circuit U(θ), and measurement of trash qubits for one-class classification. Note that the parameterized quantum circuit
and measurement from the VQOCC quantum circuit is directly taken from the encoder part of quantum autoencoder.

trash state fidelity and the decoded state fidelity were analyzed. It shows that the trash state fidelity is the
upper bound of the decoded state fidelity, and when the trash state fidelity equals one, the decoded state
fidelity also equals one. The cost function based on the decoded state requires the access of two identical
copies of the input state, whereas the cost function based on the trash state does not. Thus formulating the
optimization problem with the cost function that only uses the trash state is more advantageous in terms of
computational resources.

After training the PQC to minimize the cost function for the normal class training dataset, the cost
function for anomalous data is expected to yield values far from zero. Hence by setting a threshold value to
the cost function, normal and anomalous data can be discriminated. In this case, the cost function can be
understood as a decision function f of OCC, which is analogous to using the reconstruction error as a
decision function in the classical autoencoder.

In the following, the essential steps of the QAE-based VQOCC, namely data encoding, parameterized
unitary gates, and measurement of nt qubits from which the cost function is evaluated, are explained in
detail. Hereinafter, the structure of quantum gates in a PQC is referred to as ansatz. A pictorial
representation of the quantum circuit for VQOCC is shown in figure 1(b).

4.1. Data encoding
To handle classical data, a QML algorithm must be preceded by a procedure that encodes classical data into
quantum states [11, 51–53]. The quantum data encoding is a map Φ : D→W, where D⊂ RNc andW⊂ CNq

are the subsets of the real and complex vector spaces in which the classical and quantum data are represented,
respectively. The map can be implemented by applying a unitary transformation that is determined by
classical data to the initial state |0⟩⊗n, where n= log(Nq) is the number of qubits. Typically, n ranges from
log(Nc) to Nc depending on the encoding map Φ [54–56]. In this work, two quantum data encoding schemes
are used. One is amplitude encoding, which encodes classical data into the amplitudes of quantum states.
Another one is called flexible representation of quantum images (FRQI) [57], which encodes classical data
into rotation angles. Under these encoding schemes, n= O(log(Nc)). The latter uses one more qubit than the
former, but its resource overhead for the classical pre-computation is significantly smaller. More details on
these quantum data encoding methods are given in appendix A.

The ansatz of a QAE serves as a structure for the sequence of quantum gates that are trained to
disentangle trash qubits and latent qubits,

U(θ)|ψ⟩ ≈ |0⟩⊗nt ⊗ |ϕ⟩. (3)

The ansatz depicted in figure 2, which is adapted from reference [50], is constructed to achieve this. It is
composed of layers with parameterized single-qubit y-axis rotations Ry(θj) = e−iθjY/2, followed by
controlled-Z (CZ) gates. The CZ gates are applied between trash–trash qubit pairs and latent–trash qubit
pairs. Each layer applies a sequence of CZlatent–trash ·CZtrash–trash ·

⊗n
j=1Ry(θj)multiple times within which a

different combination of latent–trash qubit pairing is used. In contrast, there are no CZ gates between latent
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Figure 2. Parameterized quantum circuit ansatz for one layer with number of trash qubits (a) nt = 2, (b) nt = 3 and total qubits
n= 6. Dashed boxes correspond to the ansatz of one layer that has Ry rotations and CZ gates between two trash qubits and
between a trash qubit and a latent qubit. CZ gates are applied to different combinations of trash–latent qubit pairs after Ry

rotations.

qubits since it does not contribute to disentangling trash qubits from latent qubits. For example, in
figure 2(a), CZ gates are applied between the first latent qubit and either the first or second trash qubit.

In this work, it will be shown that increasing the number of layers can enhance the performance of OCC.
However, using more layers increases the number of model parameters and gates and the quantum circuit
depth. Evaluating these and studying the tradeoff between classification performance and computational
resources is of critical importance for the practical application of VQOCC. The number of parameters (p)
and two-qubit gates (g2), and the circuit depth (d) used for VQOCC are

p= nt(nL+ 1), (4)

g2 =

(
n3t − 3n2t

2
+ nnt

)
L, (5)

and

d= 1+

(
n3t − 3n2t

2
+ nnt + nt

)
L, (6)

respectively, where L is the number of layers.
Because n= O(log(Nc)) when amplitude encoding or FRQI encoding is utilized, the number of

optimization parameters shown in equation (4) increases logarithmically with the size of data, which is in
stark contrast to a large number of parameters required in classical deep learning algorithms. A potential
quantum advantage is rooted in the fact that VQOCC can learn to discriminate anomalous data using only a
logarithmic number of model parameters with respect to the number of features that describe the data.

4.2. Cost function
The choice of cost function is critical in training PQCs. As described in section 3, minimizing the cost
function for a QAE is equivalent to making the trash qubit state as close as possible to the reference state
|0⟩⊗nt . PQCs are trained such that only normal data can provide the reference state |0⟩⊗nt on trash qubits,
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whereas anomalous data will provide different states on the trash qubits. In the early developments of
QAE [34], the quantum state fidelity between measured trash qubit state and |0⟩⊗nt was chosen as a cost
function. However, reference [49] showed that cost functions with global observables induce exponentially
vanishing gradients, so called barren plateaus [58], even in shallow quantum circuits. Consequently, the
fidelity-based cost function used in the initial work is subject to the unwanted barren plateau effect. One way
to avoid this is to construct a cost function with local observables [49]. The localized cost function used in
this paper is based on the Hamming distance between the measurement outcome in the computational basis
and the reference state |0⟩⊗nt [50]. More specifically, the local cost function based on the Hamming distance
can be written as

C=
1

2

nt∑
j=1

(1−⟨Zj⟩), (7)

where ⟨Zj⟩ is an expectation value of the Pauli-Z operator for the jth trash qubit. This cost function is zero
when the trash qubit state is disentangled from latent qubits and equals to the reference state |0⟩⊗nt , which
indicates the compression of the quantum state to latent qubits.

While keeping the local property, a cost function can be constructed in a different manner. For instance, a
cost function can be formulated in terms of a log loss function as

C=

nt∑
j=1

log

(
1−⟨Zj⟩

2

)
. (8)

5. Numerical experiments

This section reports the benchmarking results for VQOCC, obtained by classical simulations carried out with
open source framework Qibo [45]. The simulation is performed with two datasets, an 8× 8 handwritten
digits dataset available in scikit-learn [59], and the Fashion-MNIST dataset [60] downsampled to 16× 16
pixels. Both datasets have ten different classes. Samples of the datasets are depicted in appendix D. In each
numerical simulation, one class is treated as the normal class, and the training sample size is 100. After
training, both normal and anomalous data samples are used as a test dataset. An equal number of samples
from each class is used as test samples. A test dataset is composed of 70 and 100 test samples from each class,
and consequently, the total number of test datasets used in the experiment is 700 and 1000 for handwritten
digits and Fashion-MNIST datasets, respectively.

Besides the datasets, there are three variables in the numerical experiments: quantum data encoding
methods, the number of trash qubits denoted by nt , and the number of PQC layers denoted by L. Amplitude
encoding and FRQI encoding are used for quantum data encoding, as described before. For amplitude
encoding, 6-qubit states and 8-qubit states are used for handwritten digits and Fashion-MNIST datasets,
respectively. For FRQI encoding, 7-qubit states and 9-qubit states are used for handwritten digits and
Fashion-MNIST datasets, respectively. Three different numbers of trash qubits, nt = 2,3,4, are used in the
simulation. For each nt , different values of L are used. More specifically, L ∈ {2,4,8,12,16} for nt = 2,
L ∈ {2,4,6,8,10} for nt = 3, and L ∈ {2,4,6,8} for nt = 4. The maximum L for each nt is chosen in a way
that the maximum circuit depths for all nt are approximately the same for a fair comparison among different
nt . The evaluation metric used for numerical experiments is the AUC, which is commonly used for one-class
classifiers [25].

The optimization of the PQC was performed with the Adam optimizer [61] in Tensorflow [62].
Tensorflow was set to be the simulation backend of Qibo, which enables the automatic differentiation for the
computation of gradients. We used mini-batch gradient descent with a batch size of 10. The learning rate was
set to be 0.1, and the number of iterations was 150.

The results presented in this section are based on minimizing the Hamming distance cost function shown
in equation (7). Experiments based on the logarithmic cost function shown in equation (8) tested on the
handwritten digit and the Fashion-MNIST datasets with amplitude encoding produced similar results that
are reported in appendix C.

We compared the performance of VQOCC with various classical methods, such as the kernel PCA,
OC-SVM, and deep neural network. For kernel PCA and OC-SVM, the Gaussian radial basis function kernel
was used. We selected the inverse length parameter γ from γ ∈ {2−10,2−9, . . . ,2−1} via grid search using the
performance on a small holdout set (10% of randomly drawn normal and anomalous test samples), and for
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Figure 3. Average AUCs (over 10 seeds) of VQOCC on handwritten digit and Fashion-MNIST dataset for ten different normal
classes. We report the best results from different numbers of trash qubits nt and layers L of parameterized quantum circuits with
two quantum data encoding schemes, amplitude encoding (open) and FRQI (filled). The results of kernel PCA (blue solid),
OC-SVM (red dashed), and DCAE (green dotted) are illustrated as baselines.

OC-SVM, we chose the hyperparameter ν ∈ {0.01,0.1}, which represents the lower (upper) bound for the
fraction of support vectors (errors), and report the better result.

As a deep learning method, a DCAE [32, 63] was chosen as a baseline. The size of the deep architecture
was constrained so that the number of model parameters is comparable to that of VQOCC for a fair
comparison. A detailed description of the DCAE architecture is described in appendix E. The number of
parameters used in DCAE is 158 and 254 for the handwritten digit and the Fashion-MNIST datasets,
respectively.

5.1. Results overview
The main results are presented in figure 3 and table 1. Each value in the figure and table represents the result
obtained with the best nt and L. In figure 3, two data encoding methods, amplitude encoding and FRQI
encoding, are shown as open and filled bars, respectively. The results obtained from kernel PCA and
OC-SVM, and DCAE are displayed as blue solid, red dashed, and green dotted lines, respectively. In table 1,
the average and best AUCs of the OCC on handwritten digits and Fashion-MNIST datasets are provided. In
general, the results from both encoding methods are on par with the classical algorithms and show better
performances than DCAE. The cases from the class 2, 6, and 7 of the handwritten digit dataset even show
that the performances from the quantum algorithm outperform the performances from all three classical
algorithms. Also note that the best AUCs from VQOCC with either of the encoding methods at the class 0, 1,
2, 4, 6, 7, and 9 of handwritten digit and the class 8 and 9 of Fashion-MNIST show better performances than
the AUCs from both OC-SVM and kernel PCA. The best AUCs from DCAE are generally better than the best
AUCs from VQOCC in the Fashion-MNIST dataset, but the standard deviations of DCAE are larger than
that of VQOCC. The two quantum data encoding methods performed comparably, except one case at the
class 5 of Fashion-MNIST with the significantly lower performance of 64.0%, due to the data normalization
in amplitude encoding (appendix F). Note that even though FRQI encoding requires one more qubit than
amplitude encoding, quantum state preparation of image data is simpler with FRQI encoding (see
appendix A).

5.2. Effects of the QAE structure
The performances of VQOCC are evaluated for various QAE structures determined by different values of nt
and L. Figure 4 illustrates the average AUCs of VQOCC for various nt and L with standard deviations as
colored shade on the handwritten digit and Fashion-MNIST datasets. We chose a few classes to illustrate the
dependencies. Class 1 and 5 of handwritten digits and class 2 and 5 of Fashion-MNIST were chosen with
both encoding schemes. The circuit depths at each L are also shown at the top of each plot. The general trend
shows that the average AUC (i.e. the classification performance) increases with L. Furthermore, not only does
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Figure 4. Average AUCs and their standard deviations of VQOCC varying the number of trash qubits nt = 2,3,4 and layers L on
handwritten digits (a), (b), (c) and Fashion-MNIST (d), (e), (f) dataset. Shaded areas indicate the standard deviations. For
handwritten digits, the results from class 1 and 5 are shown, and for Fashion-MNIST, the results form class 2 and 5 are shown as
representative examples. The plots include results for two different encoding schemes, amplitude encoding and FRQI encoding.
The circuit depths at a number of layers L for different encoding schemes are indicated on the top of each plot.

the performance increase but also the standard deviation of AUCs decreases as L increases. This implies that
the PQC with low depth is more likely to fall into a local minimum, which impedes the classification
performance.

The results in figure 4 show that the performance saturates as L increases. In general, an average AUC
increases with L, but in some cases, the performance hits a plateau when L is beyond a certain threshold Lth.
For instance, Lth of class 5 of the handwritten digit dataset is Lth = 8 and Lth = 4 for nt = 2 and 3,
respectively, for both encoding schemes, whereas in the case of nt = 4, the performance plateau was not
observed in class 5 of the handwritten digit dataset. Such behaviors are also observed at the class 1 of the
handwritten digit dataset for Amplitude encoding at nt = 4, the class 5 of Fashion-MNIST dataset for both
encoding schemes at nt = 2, and the class 2 of Fashion-MNIST dataset for both encoding schemes at
nt = 2,3, and 4. Recall that the number of model parameters increases linearly with L. This observation
shows the relevance of the over-parameterization in variational QML [64].

6. Conclusion

We proposed a semi-supervised variational QML algorithm for OCC of classical data. In general, OCC
problems are considered to be more difficult than traditional binary or multi-class classification problems
due to the absence of labels in the dataset. Consequently, it requires a different approach. Our algorithm,
dubbed VQOCC, utilizes a fully-parameterized QAE that learns to extract essential features of normal data.
Unlike the conventional QAE, VQOCC only uses the encoding part, which is trained to recognize anomalous
data by minimizing a loss function defined with trash qubits left out from the data compression. Since the
algorithm is based on training a fully PQC and only uses half the circuit of the usual QAE, it is an excellent
candidate for the NISQ application.

We explored the performance of the VQOCC algorithm for the handwritten digits and Fashion-MNIST
datasets by varying the classifier structure, which includes the data encoding scheme, the number of layers in
the ansatz, and the number of measured trash qubits. After tailoring the structure of the VQOCC algorithm,
the performance was compared to classical OCC methods including OC-SVM, kernel PCA, and DCAE. The
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number of parameters in DCAE was matched to that in PQCs for a fair comparison. VQOCC generally
performed better than DCAE and was comparable to OC-SVM and kernel PCA. However, it is unsure
whether increasing the number of parameters in PQCs by having more layers will constantly improve the
performance to significantly surpass classical methods. Numerical experiments show that increasing the
number of circuit layers (and hence the number of model parameters) is deemed to be effective in enhancing
performance until it hits the plateau when a certain value is reached.

Note that statistical methods like OC-SVM and kernel PCA are known to be less effective at complex
high-dimensional datasets [65] and deep learning algorithms are shown to be very effective at this problem.
VQOCC proposed in this work can be an alternative model of deep learning algorithms and its classification
capabilities for complex high-dimensional datasets are left for future investigation. Since the number of
qubits for encoding classical data can be exponentially smaller than the number of features, the model
parameters in VQOCC can be exponentially smaller than classical deep learning algorithms. Moreover,
OC-SVM and kernel PCA require at least O(d) computational complexity for a d-dimensional dataset, in
stark contrast to O(logd) number of qubits and model parameters required in VQOCC.

Interesting future work is to apply different ansatz of PQCs for VQOCC. One particular example of
ansatz is quantum circuits with a hierarchical structure [8]. Previously, the hierarchical structure was
successful for binary classification [8, 14], and hence it is natural to extend it to OCC. Another promising
direction could be a combination of a QAE and OC-SVM, possibly with quantum kernels. A similar
approach exists in classical ML in which an autoencoder is used as a feature extractor [31] and OC-SVM is
used for anomaly detection on the compressed data. Appendix F shows that the classification results of
OC-SVM and kernel PCA are affected under the data normalization, which is required in amplitude
encoding. This implies that the VQOCC can be further improved by carefully choosing the data encoding
scheme which must be preceded by classical data preprocessing. It is worth mentioning that our approach
can be extended to the unsupervised learning of OCC. In the classical unsupervised setup, most of the data is
assumed to be comprised of normal data and anomalous data will show a high false positive rate [24, 32].
This assumption can be directly applied to our VQOCC algorithm. Finally, an important future work, which
is common in many variational quantum algorithms, is to verify whether the improvements continue to hold
in larger systems.
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Appendix A. Data encoding

A.1. Amplitude encoding
Amplitude encoding loads classical data into the amplitudes of a quantum state. To encode a 2n × 2n pixel
image into a quantum state, the input can be represented as x= (x1,x2, . . . ,xN)⊤, where N= 22n, and it can
be encoded in a 2n-qubit quantum state ϕ(x) as follows,

|ϕ(x)⟩= 1

∥x∥

N∑
i=1

xi|i⟩. (A1)

A.2. FRQI: flexible representation of quantum images
The FRQI [57] is designed to encode classical image data into quantum states. Unlike amplitude encoding,
which requires nonintuitive routine to prepare arbitrary amplitudes [66], FRQI encoding is composed of
Hadamard and controlled rotation with rotation angles simply achieved from input image. When input is
given by x= (x1,x2, . . . ,xN)⊤, each pixels can be normalized to be in the range of θi ∈ [0, π2 ], or
θ = (θ1,θ2, . . . ,θN)

⊤. These angles can be encoded in (2n+ 1)-qubit quantum state I(θ) as follows,

10



Mach. Learn.: Sci. Technol. 4 (2023) 015006 G Park et al

|I(θ)⟩= 1

2n

22n−1∑
i=0

(cos(θi)|0⟩+ sin(θi)|1⟩)⊗ |i⟩. (A2)

It requires one more qubit to encode classical data, but it is more intuitive and flexible on encoding
classical image data into quantum states.

Appendix B. Evaluationmetrics

The performance of one-class classifier is evaluated based on how well normal and anomalous data in a test
dataset is classified as normal and anomalous, respectively. Such classification depends on a threshold value,
Cth, for the decision function. The ROC curve characterizes the performance of OCC at different threshold
values. The ROC curve plots the relationship between the true positive rate (TPR) and the false positive rate
(FPR). By labeling normal (anomalous) data as positive (negative), respectively, they are defined as follows,

TPR=
TP

TP+ FN
, (B1)

FPR=
FP

FP+TN
, (B2)

where TP, TN, FP, and FN refer to the number of data that is true positive, true negative, false positive, and
false negative, respectively.

The AUC is commonly used evaluation metrics for one-class classifiers [25]. If the classifier can ideally
separate the normal and anomalous data, the AUC is given by 1.0. In contrast, in the worst case when the
data is classified at random, the AUC is given by 0.5. Furthermore, AUC can represent a performance of
one-class classifier independently to a threshold value of a decision function.

Appendix C. Logarithmic cost function

In section 4 of the main text, the local cost function was introduced that it can avoid barren plateaus. The
cost function mainly used in the main text is the Hamming distance based cost function (7), but the local
cost function can also be constructed in terms of logarithmic function, as (8). We here report the AUC result
for the handwritten digit and Fashion-MNIST dataset with amplitude encoding and logarithmic cost
function in table 2. The result for logarithmic cost does not show a big difference to the result from
Hamming distance based cost function.
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Table 2. Average AUCs in % and one standard deviation (over 10 seeds) of the one-class classification on the handwritten digit dataset
with logarithmic cost function.

Average AUC (%)

Dataset Normal class Amplitude Kernel PCA OC-SVM

Handwritten digit 0 99.9± 0.1 99.9 99.9
1 97.7± 0.7 88.5 98.4
2 96.5± 1.2 94.9 97.4
3 98.0± 0.8 97.5 99.7
4 97.7± 0.3 96.4 99.0
5 98.8± 0.6 99.4 99.9
6 99.8± 0.1 99.3 99.5
7 98.9± 0.5 96.5 92.8
8 92.5± 1.3 89.2 96.2
9 93.7± 2.2 93.2 95.3

Fashion-MNIST 0 90.9± 0.3 89.0 87.2
1 98.2± 0.1 98.5 91.3
2 86.8± 0.4 86.2 87.8
3 92.4± 0.5 91.0 91.9
4 92.9± 0.3 93.6 93.6
5 65.0± 3.5 75.3 43.2
6 79.9± 0.5 79.9 80.4
7 97.9± 0.2 98.1 97.0
8 89.8± 2.0 89.4 80.8
9 99.0± 0.3 98.9 98.3

Figure 5.Most normal (a), (c) and most anomalous in-class (b), (d) samples in the handwritten digit and Fashion-MNIST
dataset, respectively, classified by variational quantum one-class classifier (VQOCC).

Appendix D. Data samples

Figures 5(a)–(d) show the most normal and the most anomalous in-class samples in the handwritten digit
data, and the most normal and the most anomalous in-class samples in the Fashion-MNIST data,
respectively, determined by the cost function of the VQOCC algorithm.
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Appendix E. Deep convolutional autoencoder (DCAE)

The deep learning architecture for DCAE is determined to match the number of parameter in deep learning
model to be comparable to the number of parameter used in VQOCC quantum circuit model for fair
comparison. The DCAE model is composed of encoder and decoder. For the encoder part of DCAE, we use
LeNet-type convolutional neural networks (CNNs), where each convolutional layers are followed by leaky
ReLu activation functions and 2× 2 max-pooling. The decoder has a symmetrical structure to the encoder,
where the max-pooling is substituted by upsampling. The encoder architecture is consisted of 2× (3× 3× 1)
filters followed by 2× (3× 3× 1) filters, and a final dense layer of 4 units. For optimization, the Adam
optimizer is used and the Batch Normalization is applied as [32]. We train the model with the learning rate η
from η ∈ {1.0× 10−4,5.0× 10−4,1.0× 10−3,5.0× 10−3}, the weight decay hyperparameter λ from
λ ∈ {10−6,10−5}, batch size of 10, and 250 epochs, and report the better results.

Appendix F. Normalized data

Amplitude encoding encodes data into the amplitude of quantum states, which naturally leads data to be
normalized. In this section, we compare the VQOCC result from amplitude encoding to the result from
kernel PCA and OC-SVM with the normalized input data in table 3. A few cases show a decrease in
performance after normalization, such as the third and fifth class of the Fashion-MNIST dataset. This result
implies that the normalization process that is implicitly included in the amplitude encoding can deteriorate
the classification performance.
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Table 3. Average AUCs in % and one standard deviation (over 10 seeds) of the one-class classification on the handwritten digit and
Fashion-MNIST dataset under normalization.

Average AUC (%)

Dataset Normal class Amplitude Kernel PCA OC-SVM

Handwritten digit 0 99.9± 0.1 99.9 99.5
1 97.2± 0.8 98.6 80.0
2 97.6± 0.9 99.3 95.4
3 98.1± 0.3 98.5 97.7
4 98.0± 0.6 97.0 93.9
5 98.7± 0.5 99.7 95.3
6 99.8± 0.1 99.1 99.0
7 99.0± 0.5 95.5 98.7
8 92.6± 1.8 95.2 81.8
9 94.9± 1.3 97.7 87.9

Fashion-MNIST 0 90.6± 0.6 89.0 87.2
1 98.2± 0.2 98.5 91.3
2 86.4± 0.6 86.2 87.8
3 91.9± 1.0 91.0 91.9
4 93.6± 0.2 93.6 93.6
5 64.0± 2.5 75.3 43.2
6 80.2± 0.4 79.9 80.4
7 97.8± 0.3 98.1 97.0
8 90.0± 1.0 89.4 80.8
9 99.0± 0.3 98.9 98.3
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