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Abstract

In this paper, we demonstrate the existence of some fixed points of rational type contraction in context of S-
metric space and we examine the T-stability of the P-property for some mapping. Also, we present few
examples to illustrate the validity of the results obtained in the paper.
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1 Introduction and Preliminaries

Fixed point theory is an active area of research with various application in real life. The Banach contraction
principle [1] is a significant consequence in fixed-point theory. Several authors have refined this well-known
principle which can be studied in (refer [2], [3], [4], [5], [6])- One of the main approaches used in this theory to
demonstrate the existence and uniqueness of fixed point is contraction (see [7], [8], [9], [10], [11], [12]). In1989,

*Corresponding author: Email: ykhatri700@gmail.com;

J. Adv. Math. Com. Sci., vol. 38, no. 10, pp. 1-14, 2023



Yashpal and Agnihotri; J. Adv. Math. Com. Sci., vol. 38, no. 10, pp. 1-14, 2023; Article no.JAMCS.105191

Bakhtin [13] was the first who introduced the concept of b-metrics pace. In 1993, Czerwik [14] extended the
results of Bakhtin [15] and gave generalization of Banach fixed point theorem in b-metric spaces. In 2012, the
idea of S- metric space was established by Sedghi et al. [16], who also proved fixed point theorems there in.
More well-known results in the direction of S-metric space are involved in (refer [17-20]).

Furthermore, we proceed by reviewing some important definitions and key terms that would be used throughout
our discussion.

Definition 1.1 [16]: “Let X be a non-empty set. An S-metric on X is a mapping §: X X X x X - R* which
satisfies the following condition:

(1) S, v,w)=0ifandonlyifu=v=w =0;
S2)Sw,v,w) < S(w,u,a)+Sw,v,a) + S(w,w,a), forall u,v,w,a e X.
The pair (X, S) is called an S-metric space.”

Example 1.2 [16]: “Let X = R. Then §(u, v, w) is an S-metric on R given by S(u, v,w) = lu —w| + [v — w|,
which is known as usual S-metric space on X.”

Manoj K. et al. [21], proved fixed point theorem by using altering distance function in S-metric space.
Theorem 1.3 [21]: “Let T: X — X be a mapping on a complete S-metric space (X, §) such that

S(uwu,Tv)s (v,v,Tv)

STw,Tu,Tv) SAS(w,u,v) +n ===

1

forallu,veX, A,n >0, A+mn < 1. Then T possess a fixed point w € X which is unique.”

Theorem 1.4 [21]: “Let T: XX — X be a mapping on a complete S-metric space (X, §) such that

STu,Tu,Tv) <AS(u,u,v) +1 S(U'U‘Tl?s(ii(:)'u‘fu)]

fixed point w € X which is unique [22].”

,for allu,veX, A,n>0, A+n <1 Then T possess a

Lemma 1.5 [16]: “If (X,S) is an S-metric space on a non-empty set X, then (X, S) satisfy the symmetric
condition, that is S (u,u, v) = S(v,v,u), forall u,v e X.”

Definition 1.6 [16] “Let (X,S) be an S-metric space. For r > 0 and u € X we define the open ball B;(u, r) and
closed ball and Bg[u, r] with a center u and radius r as follows:

B;(u,r) ={veX:S(w,v,u) <r}
Bsu,r]={veX:S(w,v,u) <r}”

Definition 1.7 [17]: “A sequence {u,} in (X,S8) is said to be convergent to some point ue X, if
Sy, uy,u) »>0asn—- .

Definition 1.8 [17]: “A sequence {u,} in (X,S) is said to be Cauchy sequence if S(u,,u,,u,) — 0 as
n,m— .”

Definition 1.9 [17]: “An S -metric space (X,S) is said to be complete if every Cauchy sequence in X is
convergent in X.”

Lemma 1.10 [17]: “Let (X, S) be an S-metric space. If u,, - u and v,, - vthen S(u,,u,,v,) - S, u,v).”

Lemma 1.11 [18]: “Let (X, S) be an S-metric space and {u,, } is a convergent sequence in X. Then lim u, is
n—-oo

unique.”
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Definition 1.12 [18]: “Let (X, ) be S-metric pace. A map 7: X — X is said to be contraction if there exists a
constant k € [0,1) such that

STu,Tu,Tv) <AS(u,u,v), forallu,v € X.”
Lemma 1.13 [18]: “If {u,} is a sequence of elements from S-metric space (X, S) satisfying the following

property S(uy, Uy, Unpq) < kS(Up_q,uy_q,uy), for each k € [0, 1) where ne N, then {u,} is a Cauchy
sequence.”

Finally, in this article we will apply the property introduced by G.S. Jeong and B.E. Rhoades in [22], [23] which
they called the property P in metric spaces.

Definition 1.14: [22] “Let S be a self-mapping of S-metric space (X, S) with a nonempty fixed point set F(T).
Then T is said to satisfy the property P if F(T) = F(T™) foreachn e N."

2 Main Results

In this section, we establish fixed points of rational type contractions in the context of S-metric spaces and
demonstrates that the P property is T-stable for some mappings. In order to show the relevance of the
conclusions drawn in this work, we also provide a few examples.

Theorem 2.1: Let (X, S) be a complete S-metric space and T7: X — X be a mapping such that

SuuTuw)Swv,7u)+S (v,v,7v)S (Wu,Jv)
S(uu,Tv)+ S(v,v,Tu)

S(Tu,Tu,Tv) < a; S(uw,u,v) + a,

, 2.1)

forallu,ve X and a;,a, = 0,5(u,u,Tv) + S(v,v,Tu) # 0 with a; + a, < 1. Then, T has a unique fixed
point X.

Proof: Letu, be an arbitrary in X, we define a sequence {u,} in X such that Tu, = u,,, for alln = 1,2, ...
From condition (2.1) with u = u,, and v = u,,_,, Therefore

S(un'un' un+1) = 5(T’un_1, Tun—l:Tun)
< a; S(Upoy, Upo1, Un)

S(Un—1,Un—1,TUn-1)8 UnUnTUn-1)+8 (UnUn,TUn)S (Un—1,Un-1,T Un)

+a,

S(un—1,un—1,Tun)+S (UnpunTun—1)

< a; S(un—lf Up-1, un)
S(Un—1,Un—1,un)S (UnuUn,Un)+S UnUnUn+1)S (Un—1,Un-1.Un+1)
S(Un—1,Un—1.Un+1)+S Unun,un)

+a,

< a3 S(Up—1, Up—1, Up) + Az S (U, Up, Up ).
It follows that

(1 = az)S (Up, Up, Uny1) < a3 S(Upoyg, Up—q, Up) (2.2)

a

‘S(un' Un, un+1) < ( )S(un—llun—l' un)'

1-ay

a

Putd = (
1-ay
X such that u,, » u* asn — oo.

). In view of a; + a, < 1,then 0 < 1 < 1. Thus, by Lemma 1.13, {u,,} is a Cauchy sequence in
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By (2.2), it is easy to see that

S (Ups1, Uns, TUY) = S(Tuy, Tuy,, Tu*) (2.3)

S (Unun Tun)S W u" Tup)+S (W' u",Tu")S (Up,unTu")

S(Unun, Tu*)+8 (u*,u*,Tuy)

< a S(U.n, Un, u*) + a;

S (Un, UnUn+1)S (W U Up )+ (WU Tu*)S (U un,Tu*) (2.4)

)
< 48 (Un Un W) + S Qi T +8 (U AL tiygn)

Taking the limit as n — oo on both side of (2.4), we have lim §(u,4q1, Upny1, Tu*) = 0.
n—-oo
That is, u,, » Tu*. Hence, u* = u*, u* is a fixed point of 7.

Finally, we prove the uniqueness of the fixed point. Indeed, if there is another fixed point v*, then by (2.1), we
have

S(u*,u*,v) =8Tu",Tu",Tv")

S u, Tu)SW*, v, Tu*) + S(w*, v*, Tv)S', u',Tv")
S(u*,u*,Tv*) + S(w*, v, Tu*)

<a, S, u5,v)+a,

S us,u)Sw*, v, u*) + S, v, v)Su,ut,v")
S(u*,u*,v*) + S, v, u*)

<a S ,u5,v)+a,

S u,v") <a; s, u’,v). (2.5)
Since a; + a, < 1impliesa;, < 1.
Therefore, we obtain that S(u*, u*,v*) = 0, i.e.,, u* = v*.
Hence the fixed point is unique.
This completes the proof. ]

Example 2.2: Let X = [0.1] be equipped with complete S-metric space define by
Sw,v,w) =(u—v|+|u—w|+|v—w|2

Consider a mapping 7: X — X defined by

1 12
T(u)=£uze us

forall u,v,w € X.
STu,Tu,Tv) = (|Tu — Tul + |[Tu — Tw| + |Tu — Tw|)?

= (2 |Tu—Tw]|)?
2 ,-w?

1 2 1
=4 |=u?e % ——w?e —ufe ™™ — —w?e
36 36

18 18

2 2
_|1 2,-u? _ 1 2, -w?

<1 |uze‘“2 - er“"’2|2
-9

4 1
<Zlu—-vl2= = — )2
<Zlu—vl? = £12(u— )

< és(u, v,W)
SuuTuw)S wv,7u)+S(v,v,7v)Ss (u,u,Jv)
<
= S(U., W 1.7) + az S(uuTv)+ S(vv,Tu) '
Clearly by taking a, = % ,we have a; + a, = % + % = Z < 1. Then, from Theorem 2.1 we conclude that, T has a

unique fixed point. Also, 0 is the only fixed point of 7.
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Theorem 2.3: Let (X, §) be a complete S-metric space and T7: X — X be a mapping such that

S(uwu,Tw)s (w,u,7v)+S (v,v,7v)S (v,v,Tu)
Suu,Tv)+ S(v,v,Tu)

STu,Tu,Tv) < a, S(w,u,v) + a,

Swu,T7u)s(w,v,7u)+8 (v,v,7v)S (u,u,Tv)
S(uu,Tv)+ S(w,v,Tu)

+a; , (2.6)

where a,, a,, a; are non-negative constant with a; + a, + a; < 1. Then, T has a unique fixed point X.

Proof: Choose u, € X and construct a Picard iterative sequence {u,} as Tu, = u,,,. If there exists n, € N
such that u,, = Uy 41, then u, = uy 11 = Tuy,, i€, Uy, is a fixed point of 7. Next, without loss of
generality, let u,, # u,,, for all n € N, Using (2.6), we get

S (Uny Uny Uny1) = S(TUp_q, Ty 1, TUy)
< a; S(un—lr Up-1, un)
+a S(un—1,un—1.TuUn-1)8 Un—1.Un—1,TUn)+8 (Un, UnTUn)S (Un Un,TUn-1)
2

S(un-1Un—1,Tun)+S (Un,un,Tun—1)
S(un—1un-1,Tun-1)S WUnuUn TUn-1)+8 (Un Un T un)S (Un—1,Un—1,TUn)
S(un-1Un-1.Tun)+S (UpunTun—1)

< a; S(un—lr Up-1, un)
+a, S(Un—1,Un—1,Uun)S (Un—1,Un—1,Un+1)+S UnUnUn+1)S (UnUnUn)
S(Un—-1.Un-1.Un+1)+S Wnun,Un)
+a, S(Un—1,Un—1,un)S (UnUnUn)+S (UnUnUn+1)S (Un—1.Un—1.Un+1)

S (Un—-1.Un-1.Un+1)+S Wnun,un)
< a; S(un—lr Up-1, un) + az S(un—li Up-1, un) + as S(un' Up, un+1)-

+ a

It follows that

(1 = a3)S (Up, Up, U 1) < (a1 + a2)S (Up—q, Up—1, Up) 2.7)

aj+as

S (U, Upy Uny1) < ( )5(un—1: Up_1, Up).

1-as

Put 2 = 2% |n view of a, + a, + a; < 1, we have 0 < 2 < 1. Thus, from Lemma 1.13 {u,,} is Cauchy
1-az

sequence in X. Since, (X,S) is a complete S-metric space, so there exists some point u* € X such that u,, - u*
asn — oo,

Again from (2.6) it is easy to see that

Shu',Tu") <28W"u", Upsq) + S (Upyq, Upsr, TUY) (2.8)
<28 ut upyq) + ST uy, Tuy, Tu®)
<28, u", upyq) +ay S(Uy, Up, u°)
+a S (Unun,Tun)S (Un,Uun,Tu*)+8 (W' u* Tu*)S (uu*,Tuy)
2 S (untn, Tu®)+8 (W u* Tup)
+a S(upun,Tun)S (W* u* Tuy)+S (u*,u*,Tu*)s (up,unTu*)
3 S (unttn, Tut)+8 (u*u* Tuy)
<28, u" Ungq) +ay S(Uy, up, u”)
+a S (Un UnUnt1)S WU un Tu)+S W u"Tu")S (W u" un+1)
2

S (upun, Tu*)+S (U* u*un4+1)
S(UpUpting1)S WU Uupn 1) +S W u*,Tu*)S (upup,Tu*)

+as

(2.9)

S (Uupun, Tu*)+S (W* u*un+1)

Taking the limit as n — oo on both side of (2.9), we have lim §(u*,u*,Tu*) = 0.
n—-oo

Hence, Tu* = u” it follows that u* is a fixed point of T.

Next, we claim the uniqueness of fixed point.



Yashpal and Agnihotri; J. Adv. Math. Com. Sci., vol. 38, no. 10, pp. 1-14, 2023; Article no.JAMCS.105191

Indeed, if there is another fixed point v*, then by (2.6), we have

S(u*,u*,v") =8(Tu",Tu*,Tv")
S ur,Tu)S W urTv)+SW v TS v Tu”
<a SWHu',v") +a, ( )5 )
Su*u*Tv*)+S (w*v*Tu*)
SW*urTuNSW v TuN)+S (W v TS (W ut,Tv)
Su*u*Tv*)+S (w* v*,Tu*)
S u*un)SWurv)+S W v v)Ss(w v u®)
Su*u*v*)+S(W* v*u*)
Swrutu)SW* v ut)+swr vt vh)swt ut vt
Su*u*v*)+S(W*v*u*)

+ as

<a SWus,vY) +a,

+as

S, u,v*) <a, SsW,u’,v). (2.10)
Sincea; + a, + a; < 1= a, <1, weobtain that §(u*,u*,v*) =0, i.e., u* = v".
Hence the fixed point is unique.
This completes the proof. ]

Theorem 2.4: Let (X, S) be a complete S-metric space. Let 7: X — X be a mapping satisfying

S(uw,u,Tu)s(v,v,7v) S, Tv)[1+8 (wu,Tu)]
S(uu,v) 3 1+S (u,u,v)

STu,Tu,Tv) < a, S(u,u,v) + a, , (2.11)
for all u,v € X and a,, a,, a; are non-negative constant with a; + a, + a; < 1. Then T has a unique fixed
point X.

Proof: Choose u, € X. Construct a sequence {u,} in X by Tu,, = u,,,. For alln € N, from condition (2.11)
with u = u, and v = u,,_,, we have

S (Uny Uny Uny1) = S(TUp_q, Ty 1, TUy)
S(un—1,Un—1,TuUn-1)S WnunTun)

S (Un—1,Un—1,Un)

< a; S(un—lr un—lrun) + a;
S (Unun, Tun)[1+8 (Un-1,Un-1,TUn-1)
1+S(Up—1,Un—1,Un)

+as

S(Uun—1,uUn—1,un)S (UnUnUn+1)
S(up—1,Un-1,Un)

< a; S(un—lr un—lrun) + a;
S (Unun Unt+1)[148 (Un—1,Un—1,Un)]

1+8 (Up—1,Un—1,Un)
< a; S(un—lr Up-1, un) + a; S(unr Unp, un+1) + as S(unr Un, un+1)-

+as

It follows that

(1 —ap — a3)S(Up, Up, Upt1) < A1S (Upq, Up—1, Uy) (2.12)
a
S (U, Un, Uny1) < (1_a2_a3) S (Un—1, Up_1, Up)-

ay

Put A = P In view of a; + a, + a; <1, we have 0 < 1 < 1. Thus, from Lemma 1.13 {u,} is Cauchy
—dz2—04s

sequence in X. Since, (X, S) is a complete S-metric space, so there exists some point u* € X such that u,, —» u*
asn — oo,

Again from (2.11) it is easy to see that

SHu',Tu") < 28W' u upyq) + S(Upyq, Upg, TUY) (2.13)
<28 u upyq) + ST uy, Tuy,, Tu)

S (Unun,Tun)S (W*u*,7u*)
<28Whut unyq) + ag S(up, up, u*) +a, ——=

S(up,un,u*)
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Su*u*,Tu®) [1+S (upun,Tun)]
1+S (up,un,u*)
<28 ut, upeq) +ag S(uy, uy, u¥) + a,
S ur Tu")[1+48 (UununTun+1)]
1+S (up,un,u*)

+as

S (UnUununt+1)S (" u"Tu")

S (up,un,u*)

+ a3

(2.14)
Taking the limit as n — oo on both side of (2.14), we have lim §(u*,u*,Tu*) = 0.
n—oo

Hence, Tu* = u™ it follows that " is a fixed point of T
Next, we claim the uniqueness of fixed point.
Indeed, if there is another fixed point v*, then by (2.11), we have

S(u*,u*,v) =8({Tu,Tu*,Tv")

S ur,TuNS (v v Tv* SW* v Tv)[1+s (W ut,Tu®)
<a Sw,u,v)+a )5¢ ) 4 ¢ L ]

1

S(u*u*v*) 148 (u*u*v*)
. % % S utuM)S(w* v v*) SW* v v [1+S (W utu)]
< al ‘S(u yu,v ) + a2 Su*urv®) + a3 1+8 (W u* v*)

S, u*,v") <a S, u*,v).
Since0 < a; +a,+a; <1=a; <1,thus, we obtain S(u*,u*,v*) =0, i.e,u* =v".
Hence, we proved that 7 have a unique fixed point in X.
Here completes the proof. [ |
Example 2.5: Let X = [0.1] and (X,8) be a usual S-metric space which is complete, define by
Sw,v,w) =|lu—w|+|v—w|.

Consider a mapping T:X — X be define as (u) = g , for all u, v, w € X. Obviously,

S(Tw,Tu,Tv) = 2 |Tu — Tv| = 2 |§—§ =2 [u—vl,
Su,u,v) =2 |lu—vl.
Also,
7u

’

4
Sw,v,Tv) =2lv=Tv| =2 |v—§|=%,
S(Tu,Tu,Tv) =i |lu —v|

=12|u—v|
8

Su,u,7u) =2 |lu —Tu| = 2 |u—§| —Tu

1 S(uu,Tu)s(w,v,7v) 1 S(ww,Tv)[1+S (uwu,Tu)]
4 S(u,u,v) 7 1+85(u,u,v)

Sé S(u,u,v) +
It is clear that, a; + a, + a; = §+ i +% = 2 < 1. Thus, we conclude that inequality (2.11) of Theorem 2.4
remains valid. Hence, T has a unique fixed point and the fixed point is 0.

Theorem 2.6: Let (X,S) be a complete S-metric space and 7: X — X be a mapping satisfying the following
condition:

STu,Tu,Tv) <a; S(u,u,v) +a, S(u'ug(z)i%”'”) 3 S(u‘u;fi(:)'v‘h)
+a, [Sw,u,Tu) + S, v,Tv)] + as [S(v,v,Tu) + S(u,u, Tv)], (2.15)



Yashpal and Agnihotri; J. Adv. Math. Com. Sci., vol. 38, no. 10, pp. 1-14, 2023; Article no.JAMCS.105191

for all u,v € X and a,, a,, as, a4, as are non-negative constant a; + a, + a; + 2 a, + 3 as < 1. Then, T has a
unique fixed point X.

Proof: Choose u, € X. Construct a sequence {u,} in X by Tu, = up1.
For all n € N, from condition (2.15) with u = u,, and v = u,,_,, we have
S(Up) Un, Uny1) = CS‘(Tun—l: Tup_q, Tuy)

S(Un—1,un—1T Un—1)S (Un,un,Tun)

S(Up—1,Un—1,un)

< a3 S(Un—1, Un_1,Un) + 4z
S (Un—1,Un—1.Tun)S (UnunTUn—1)
+as
S(Up—1,Un—-1,Un)

+a4 [S(un—lr Up-1, Tun—l) + CS‘(un: Un, Tun)]

+a5 [S(unr Un, Tun—l) + S(Un_l, Un-1, Tun)]
S(Un—1,Un—1,Un)S WUnUnUn+1)

S(up-1,Un-1Un)

+ Ay [S(un—li Up—1, un) + ‘S(un' Up, un+1)]

< a; S(Up-1,Un_1,Up) + @y
S (Un—1,Un—1,Un+1)S (Un,UnUn)

+a3 S(un—1.un-1,un)

+a5 [S(unr Un, un) + CS‘(un—lr Up—1, un+1)]

< a S(Un_l, Un-1, un) + a; S(un: Unp, un+1)
+a4 [S(un—lr Up-1, un) + S(unr Unp, un+1)]
+a5 [2 CS‘(un—l' Un-1, un) + ‘S(un' Un, un+1)]-

It follows that:

(1 —a; —ay — as)S(Up, Up, Uptq) < (a1 + ay + 2a5) S(Up_1, Up—1, Up) (2.16)
+a,+2
S(un, Unp, un+1) = (%) S(un—l' Un-1, un)-

Put 1 = % In view of a; + a, + a; + 2a, + 3as < 1, we have 0 < 1 < 1. Thus, from Lemma 1.13,
—Uz2—0U4~0Us

{u,} is Cauchy sequence in X. Since, (X, 8) is a complete S-metric space, so there exists some pointu* € X
such that u,, » u*asn — oo.

Again from (2.15) it is easy to see that:

S u',Tu*) <28Wu*, Upsr) + S (Upyq, Upsr, TUY) (2.17)
<28 ut upyq) + ST uy, Tuy, Tu®)
<28 Ut upypq) +a; S(uy, up, u*) + a,

S(unun,u®)
5(un.un.Tu*)5(u*.u*;Tun)

+a; S o) + a,[S(uy, Uy, Tuy) +S™,u”, Tu")]

+as[S(u, u*, Tu,) + S (U, Uy, Tu*)]

<28 U, Uupyq) +a; S(ug, Uy, u*) + a,
S (U, Up, TUN)S (U, U Uy q)

1+ S(uy, uy, u*)
+as[SW, U™, Uupyq) + S(uy, uy, Tu¥)
(2.18)

S (Un,un,Tun)S (W*u*,7u*)

S (UnUnUnt+)S W U Tu")
S (up,up,u*)

+as + as[S (Un, Up, Unyr) + S, u", Tu")]
Taking the limit as n — oo on both side of (2.18), we have lim §(u*,u*,Tu*) = 0.
n—-oo

Hence, Tu* = u™ it follows that u* is a fixed point of T.

Finally, we prove the uniqueness of fixed point.
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Indeed, if there is another fixed point v*, then by (2.15), we have

S(u*,u*,v") =8§Tu",Tu*,Tv")
% % S urTuN)S(w v Tv") SWwrurTv)S(Wr v, Tu")
<
<a SWHu',v") +a, ) +a, S )
+a, [Sw,u",Tu) + S, v, Tv)] + as[SW*, v, Tu") + S(u', u*, Tv*)]
v % S utun)Ss vt vt S u'w)sw* v u’)
<
s a; S(u yu,v ) + a; Su*utv®) + as S*urv®)
+a, [S@Wuu) + S v, v)] +as[SWW, v, u") + S, ut, v)]

S u'vY) < (ag + az + 2as) S(u*,u*, v*). (2.19)

Since 0<a; +a,+as+2a,+3as<1= a;+as+2as <1, thus, we obtain §(u*,u*,v*) =0, which
further implies u* = v*.

Therefore, T have a unique fixed point in X.
Here completes the proof. [ |

Theorem 2.7: Let (X, 8) be a complete S-metric space and 7: X’ — X be a self map that satisfies the following
inequality

S(uu,7u)s(wv,v,Tv) S(uu,Tv)s(v,v,Tu)
S(uu,w) 3 S(uu,v)

. (2.20)

STu,Tu,Tv) < a, S(w,u,v) +a,
Swy,Tv)[1+S (wu,Tu)]
1+S (w,u,v)

+a,

for all w,v € X and a4, a,,as, a, are non-negative constant a, + a, + a; + a, < 1. Then, T has a unique
fixed point X.

Proof: Choose u, € X and construct a Picard iterative sequence {u,}as Tu, = up4;.
For all n € N, from condition (2.20) with u = u,, and v = u,,_;, we have
S (Uny Uny Uny1) = S(TUp_q, Ty 1, TUy)

S (Un—1,Un—1,TUn-1)S Un,unTun)

S (Un—1,Un-1,Un)

< a; S(Up-1, Un_1, Up) + @y
5(un—l.un—l.Tun)S(un.un.fun—l)

S(Un—1,Un—1,Un)
S (UnunTun)[1+S (Up—1,Un—1,TUn-1)]

+as

+ay,

1+S(Up—1,Un—1,Un)
S(Un—1,Un—1,un)S (UnUn,Un+1)
< a; S(Up-1, Un_1, Up) + @y S (n 1t 1 tt)
S(un—1,Un—1,Un+1)S WnUnUn) +a S(upunun+1)[1+S (Un—1,Un—1,Un)]
S(Un-1,Un-1,Un) 4 1+8 (Uun—1,Un—1,Un)

< a; S(un—llun—llun) + a; S(un,un, un+1) + a45(un' Unp, un+1),

+as

which further implies,

(1 —a; — a4—)5(un' un:un+1) < S(un—l' un—l:un) (2-21)

a
. )S(un—lﬂun—ll un)-

CS‘(un' Un, un+1) < 1-ay-a,

Puti=—2
1-az—ay

Cauchy sequence in X. Since, (X,S) is a complete S-metric space, so there exists some point u* € X such that
u, > u*asn - oo.

In view of a; + a, + a3 +a, <1, we have 0 <1< 1. Thus, from Lemma 1.13, {u,} is
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Again from (2.20) it is easy to see that:

SWhu,Tu) <28W"u" Upsr) + S (WUpgq, Upsr, TUY) (2.22)
=285Wu upyq) +STu,, Tu,, Tu™)
<28 U Uper) +ag S(uy, uy, u*) + a, S(u"u';?lzl”ii(z*)u Jw)

S (Upup, Tu™)S (W u*,Tuy) S uSTuN)[1+8 (UnunTun)]
+as + ay,
S (up,un,u*) 148 (up,un,u*)

S(upununs)S@ u*,Tu*
<28 Ut Upyq) + ag S(up, Uy, u*) + a, — ( . )
S(upupu*)

ta S(Upunp,Tu®)S (W u*unsq) ta S utTu")[14+8 (Uup,upn,unt+1)]
3 1+8 (up,unp,u*) 4 148 (up,un,u*)

(2.23)
Taking the limit as n — oo on both side of (2.23), we have lim §(u*,u*,Tu*) = 0.
n—-oo

Hence, Tu* = u* it follows that u* is a fixed point of 7.
Finally, we prove the uniqueness of fixed point.

Indeed, if there is another fixed point v*, then by (2.20), we have

S(u*,u*,v) =8Tu",Tu",Tv")

. x % S urTuN)Ss @ v Tv") S u,Tv)sW* v, Tu*)
<
<a, Su,u',v)+a, S o) +a; S )

SV Tv)[1+S(u*u*,Tu®))

1+S (u*u*,v*)
<a SW,u',v*)+a,
SW*v* v [1+S (W' u*u)]
1+S(u*u*v*)
S, u*,v") < (a; + az) S(u™,u*, v")
S u,v) < (a; +ay, +az +a,) S, u’,v), (2.24)

+a,

S utun)Ss v v") Swrurv*)s v u®)
S(u*u*v*) 3 Su*u*v*)

+a,

a contradiction.

Thus, we obtain § (u*, u*, v*) = 0, which further implies u* = v*.
Therefore, T have a unique fixed point in X

Here completes the proof. [
Example 2.8: Let X = [0.1] be equipped with complete S-metric space define by
Sw,v,w) =(u—v| +lu—w|+|v—w[)2

Let the mapping 7: X — X be defined by

T(u)=§.

Then, for all u, v,w € X, we have,

S, u,v) = 4lu—v|?,
S(u1,L7"1,L)—4|1,L—27"u|2—4-|u—z|2—Eu2
T h - 51 25

2
16
=—v?

S, v,Tv) =4lv—Tv|*> = 4|v—z
5 25

10
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Also,
STu,Tu,Tv) = (|Tu — Tul + |Tu — Tw| + |Tu — Tw|)?
= (2 |Tu—Tw]|)?
4 2
= lu — vl
1 4 SuuTuw)sS(wv,Tv) 2 S(wwy,Tv)[1+S (w,u,Tu)]
S ES(H, v, W) + E S(uu,v) + E 1+S(w,u,v)

Clearly, we have a; + a, + a; = % + % +§ = z < 1. Then, from Theorem 2.7 we conclude that, T has a
unique fixed point. Also, 0 is the only fixed point of 7.

Theorem 2.9: Let (X, S) be a complete S-metric space. Let T: X’ — X be a mapping satisfying

S(Tu,Tu,Tv) < a; S, w,v) + a, THTRLEETIIIIENTE 4 0, S(Tw, Tw, Tv),  (225)

forallu,v € X and ay,a,,a; = 0. S(u,u,Tv) + S(v,v,Tu) # 0 with a; + a, + a; < 1. Then T has a unique
fixed point X.

Proof: Choose u, as an arbitrary point in X. We define a sequence {u,} in X by Tu, = u,,,.Thenoralln € N,
from condition (2.25) with u = u,, and v = u,,_,, we have

S(U‘mun' un+1) = CS‘(:run—lr Tun—lr Tun)
< a; S(Un_l, Un-1, un)
+a, S(un—1,Un—1,TUn—-1)8 WUn—1,Un—1,TUn)+S Un,Un,TUn)S (Un,UnTun—1)
S(un-1Un-1,Tun)+8(un,unTun-1)
+a; S(Tup_q, Tup_q, Tuy)
< a; CS‘(un—li Up—1, un)
+a, S(Un—1,Un—1,Un)S (Un—1,Un-1,Un+1)+S (UnUnUn+1)S (UnUnUn)
S (Un-1Un—1,Un+1)+S (Un,Unun)
+a3$(unr Up, un+1)
< a; S(un—lr Up-1, un)+a25(un—1' Up-1, un) + a35(un» Un, un+1)-

Which further implies

(1 = a3)S (Up, Up, U 1) < (a1+a2)S (Up—q, Up—1, Up) (2.26)

ai+a
S (U, Upy Uny1) < (11_—‘132) S (Up—1, Up—1, Uy).

Put A = % In view of a; +a, + a; <1, we have 0 <1 < 1. Thus, from Lemma 1.13 {u,} is Cauchy
—U43
sequence in X. Since, (X, S) is a complete S-metric space, so there exists some point u* € X such that u,, - u*

asn — oo,
Again from (2.25) it is easy to see that

Sru',Tu") <28W"u", Upsq) + S(Upyq, Upsr, TUY) (2.27)
<28 u upyqr) +STu,, Tu, Tu®)
S 28U Upyr) + g S(Uy, Up, u)
+ S (UnUn,Tun)S (Un,un,Tu)+S (W' u* Tu*)S (u u*,Tuy)
a2 S(UpupTu*)+S(Ww*u*Tuy)
+a; S(Tuy, Tu,, Tu*)
<28, u", Ungq) +ay S(Uy, up, u°)
+ S(Upununt1)S (UnUn, TuH)+S (W' u*Tu*)S (W* u*  upnsq1)
az S(Unun,Tu*)+S (u*,u*unt1)

+a; S(Upyq, Unse, TUY) (2.28)

11
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Taking the limit

asn — oo on both side of (2.28), we have lim §(u*, u*,Tu*) = 0.
n—-oo

Hence, Tu* = u” it follows that u* is a fixed point of T.

Finally, we claim the uniqueness of fixed point.

Indeed, if there is another fixed point v*, then by (2.25), we have

S u*,v*) =8S@Tu",Tu",Tv*)
<a, Su,u",v*)+a,
+a; S(Tu,Tu",Tv")
<a SW,u',v*)+a,
+az; S(u*,u*,v*)

Swhu'v*) < (aq +az) S, u,v).

(2.29)

St TuN)S (W utTv)+S W v Tv)S (Wt vt Tu*)
Su*u*Tv*)+S (w* v*,Tu*)

S utu)Srut v +S (W vt st vt ut)
S(u*u*v*)+SWw*v*u*)

Since0 < a; +a,+a; <1=a; +a; <1,thus, we obtain §(u*, u*,v*) =0, i.e.,u" =v".

Hence, we proved that 7" have a unique fixed point in X.

Here completes the proof. [ |

Remark 2.10.

1. Ifweputa, =a; =a, = as = 0in Theorem 2.6, we get the Banach Contraction Theorem [1] in S-metric
space.

2. Ifweputa; = a, = a; = ag = 0in Theorem 2.6, we get the Kanan Theorem [5] in S-metric space.

3. If weputa, = a; = as = 0in Theorem 2.6, we get the Fisher Theorem [24] in S-metric space.

4. If we put a;, =a, = a; = a, = 0in Theorem 2.6, we get the result of Chaterjee Theorem [25] in S-
metric space.

5. If we puta, = a; = 0in Theorem 2.9, we get the result of Dass and Gupta Theorem [26] in S-metric

space.

Theorem 2.11: Let (X,S) be a complete S-metric space and 7: X’ — X be a mapping such that F(7") # ® and

that

S(Tuw,Tu, T?u) < 18w, u,Tu), (2.30)

for all u € X, where 0 < 1 < 1 isaconstant. Then T has the P property.

Proof: We always assume that n > 1. Since the statement for n =1 is trivial. Let w € F(T"). By the
hypotheses, we get

Sw,w,Tw) = S(TT" tw, 77" w, 727" 1w)
<AS@T™ w, T tw, Tw)
S AS@TT 2w, TT" 2w, T2 2w)
< A2 S@T 2w, T 2w, T w)
<< A'S(w,w,Tw) — 0,as n —» oo,

Hence S(w,w,Tw) = 0, thatis Tw = w.

Theorem 2.12: Under the condition of Theorem 2.3, T has the P property.

12
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Proof: We have to prove that the mapping T satisfies (2.30). In fact, for any u € X, we have

STu,Tu, T?u) = S(Tu, Tu, TTu)
Suu,Tw)s (wu,TTu)+S (Tu,Tu,TTu)S (Tu,Tu,Tu)

<a; Swu,Tu) +a, SWuTTW+ S([TuTuTw)
S(uu,Tu)S (Tu,Tu,Tuw)+S (Tu,Tu,TTu)S (u,u,TTu)
S(uu,TTuw)+ S(Tu,T7u,Tu)
<a, Sw,u,Tu) +a, S(u,u,Tu) + a3 S(Tu, Tu, TTu)
(1 - a3)S§(Tu, Tu, T?u) < (a; + ay)S (u, u, Tu)
S(Tuw,Tu,T?u) < %S(u,u,?‘u)

+as

Deduce that 2 = % Note that a; + a, + a; < 1, then 2 < 1. Accordingly, (2.30) is satisfied. Consequently,
—t3

by Theorem 2.3, 7" has the P property.

3 Conclusion
In this article, we have established the existence of fixed points theorems of rational type contractions

mappings in the framework of S-metric spaces and also studied the P property for some mappings. To further
demonstrated the reliability of the findings in the article, we additionally offer a few examples.
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