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Abstract: The problem discussed is the Navier-Stokes problem (NSP) in R3. Uniqueness of its solution is
proved in a suitable space X. No smallness assumptions are used in the proof. Existence of the solution in X
is proved for t € [0, T], where T > 0is sufficiently small. Existence of the solution in X is proved for ¢ € [0, 0)
if some a priori estimate of the solution holds.
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1. Introduction

T here is a large literature on the Navier-Stokes problem (NSP) in R3 ( see [1], Chapter 5) and references
therein). The global existence and uniqueness of a solution in R3 was not proved. The goal of this
paper is to prove uniqueness of the solution to NSP in a suitable functional space. No smallness assumptions

are used in our proof.
The NS problem in R? consists of solving the equations

o'+ (v,Vo=—-Vp+vAv+f, xeRt>0, V-v=0, v(x,0)=0y(x). 1)

Vector-functions v = v(x,t), f = f(x,t) and the scalar function p = p(x,t) decay as |x| — oo uniformly
with respect to t € R := [0,00), v/ := v, v = const > 0 is the viscosity coefficient, the velocity v and the
pressure p are unknown, vg and f are known, V - vp = 0. Equations (1) describe viscous incompressible fluid
with density p = 1.

We use the integral equation for v:

v(x,t) =F — /Ot ds /R3 G(x —y,t—s)(v, V)ovdy. 2

Equation (2) is equivalent to (1), see [2]. Formula for the tensor G is derived in [2], see also [1], p.41. The
term F = F(x, t) depends only on the data f and vy (see equation (18) in [2] or formula (5.42) in [1]):

= éag(x_y)vo(y)dy‘F/otdS/MG(x—y,t—s)f(y,s)dy. 3)

We assume throughout that f and vy are such that F is bounded in all the norms we use.
Let X be the Banach space of continuous functions with respect to t with the norm

ol := [, 182, 01(1+I])de, @

where t > 0,and 7 := (271) 2 [ps v(x, t)e~¢*dx. Taking the Fourier transform of (2) yields

~ t -~
o= F— /O dsGo « ico = B(d), 5)
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where * denotes the convolution in R® and for brevity we omitted the tensorial indices: instead of Gmpﬁ]- *
(i¢;)Tp, where one sums up over the repeated indices, we wrote G(&, t — s)3 * (i&@). From formula (5.9) in [1]
it follows that

|G| < ce e, ©)

By ¢ > 0 we denote various constants independent of t and ¢. Let S(R® x R;) and S(R®) be the
L.Schwartz spaces. Our results are:

Theorem 1. Assume that f and vy are in S(R® x R) and S(R®) respectively. Then there is at most one solution to
NSP in X.

Theorem 2. The solution to NSP in X exists for t € [0, T] if T > 0 is sufficiently small.

Theorem 3. The solution v(x,t) to NSP in X exists for all t > 0 if an a priori estimate sup,~ [|[0(&, t)[| < cq holds,
where c; > 0 is a constant depending only on the data.

2. Proofs

Proof of Theorem 1. Let 7 and @ belong to X and solve equation (5). Denote z := @ — @. Then (5) implies
t ~
7= —/ dsG (2 % &5 + @ x i2). @)
0
Let ||z(&, t)|| := u(t) and [gs := [. From (7) and (6) one gets

() <c [[ds [dee PO e | [ - CoElo@ e+ [ o - L ollEE | ©

Let# := ¢ — C. One has:

faeiclel [ aza-+ iyiae gy 0 < fefut max {0
{€R? 1+ 5|
Furthermore,
P LI+ 1 Pty gy S
max T AL A A

where ¢, = cv0%. Indeed, if h(r) = (1 + r)e’V(t’s)rZ, then max,~oh(r) = h(R) < 1+ %, where R =

=
3+ (bt ) and 1 (R) = 0.

A similar estimate holds for the second integral in (8):

[ a2+ 12D (@) [ dee P01+ fela(E - ,9)] < u(s) max [ avla(p,9)| 1+ p+ghe 2.

)
The right side of (11) is u(s)], where
_ ; 1+|P+€|v¢2<ts>> ( Cv)
= [ aplatp 91+ pymax (FEEL <ol (1+ =57 ). 12)
From (7)—(12) one gets
t
) < ) [ (14 =57z ) ks, Clo) = e guax (Io(p)] + (7, )], 13

where C(t) > 0 is a continuous function and u(t) > 0. Note that C(t) is a continuous function of ¢ for all
t > 0 because we assume that the solutions ¢ and @ belong to X and C(t) is the sum of the norms of the two
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elements of X. The Volterra inequality (13) has only the trivial solution u(t) = 0, as follows from Lemma 1,
proved below. Theorem 1 is proved. [

Lemma 1. Inequality (13) has only the trivial non-negative solution u(t) = 0.

Proof of Lemma 1. Denote é((g = ¢(t). Then

0

q(t) < /Ot (1 + (t_cs)l/2> C(s)q(s)ds := /tK(t,s)q(s)ds. (14)

The kernel K(t,s) > 0 is weakly singular. Any solution g > 0 to (14) satisfies the estimate 0 < g < Q,
where Q > 0 solves the Volterra equation

Q) = [ K(t,s)Q()as (15)

This equation has only the trivial solution Q = 0. Lemma 1 is proved. [

Proof of Theorem 2. From (5) after multiplying by 1 + |¢|, integrating over R® and using calculations similar
to the ones in equation (12), one gets

Cy

u(t) < b(t)+ C/Ot <1 + (t—s)1/2> u?(s)ds :== A(u), (16)

where b(t) := [|F(&t)|(1+ |¢])d¢ and u(t) := ||6(¢,t)||. For sufficiently small T equation U = AU is
uniquely solvable by 1terat10ns according to the contraction mapping principle. If sup; (o 1y b(t) <copand T
is sufficiently small, then a ball sup,( 1) u(t) < c1, 1 > cp, is mapped by the operator A into itself and A is
a contraction mapping. The operator A maps positive functions into positive functions. Thus, u(t) < U(t).
Theorem 2 is proved. [J

Proof of Theorem 3. Under the assumption of Theorem 3 inequality (16) implies:

u(t) <b(t)+ceq /O‘t (1 + (C)l/z> u(s)ds := Ay(u), (17)

The corresponding equation U = A;U is a linear Volterra integral equation. It has a unique solution
defined for all + > 0, and 0 < u(t) < U(t). Theorem 3 is proved. [

Remark 1. The following a priori estimates for solutions to NSP hold:

t
lollizgy e [ 1V00x,9) Baqaads <, 18)

and

Sl[lpl [0(5, )] < e+ T2, supsozeps(81]0]) < c. (19)
te[0,T

Proof of (18). First estimate (18) is well known. It remains to prove the second estimate (18). For this, multiply
(1) by v and integrate over R3 to get (see [1]):

O.Sd il v2dx
dt

+v/\VU|2dx:/fvdx.

Integrating over t one gets:

t t
O.S/Ude+/ ds/|Vv(x,s)|2dx < O.S/U%dx—!—/ ds/fvdx.
Jo . 0o .
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One has [, ds [ fodx < [y ds([ |f(x,5)?)2([ [0(x,s)|?)!/2 < c. Indeed, it is assumed that f decays fast,
SO SUpP;~ fot ds( [ |f]?dx)'/? < c. Using this and estimates (18) we get fot ds [ |fvldx < c. Thus, the second
estimate (18) is proved. O

Proof of estimate (19). From Equation (5) one gets:
~ t ~
13| < |F| —1—0/0 e‘”gz(t_s)|5| * (|€||9]|)ds := |F| + L. (20)

One has sup, |F| < c under the assumptions of Theorem 1. By the Cauchy inequality, the first estimate
(18) and Parseval’s equality one gets |3 x (|¢[[0) < [|3][[;2(ra)[[|¢|7]|12(r3)- Thus, using the Cauchy inequality,
and the second estimate (18), one gets

t t
1<e [ e PO igfollaguayds < e[ 12162 gey 2 < et e

From (20) and (21) estimate (19) follows.
The second estimate (19) is proved in [1], p. 50, inequality (5.39), under the assumption of Theorem 1. [
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