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1. Introduction

T he existence of solutions of the two-point boundary value problem of the first order differential equation

dx
dt

= f (t, x(t)), t ∈ (0, T)

have been studied in [1–3]. Also, some nonlocal problems of differential equations have been considered in
[4–17]. Consider the nonlocal two-point boundary value problem with parameters α and β;

dx
dt

= f (t, x(t)), a.e, t ∈ (0, T), (1)

αx(τ) + βx(η) = x0, τ ∈ [0, T), η ∈ (0, T], α + β 6= 0. (2)

Here we study the existence of at least one absolutely continuous solution x ∈ AC[0, T] of the Problem
(1)-(2). The maximal and minimal solutions of the Problem (1)-(2) will be studied. Also the continuous
dependence of the unique solution x ∈ AC[0, T] on the parameters α, β and x0 will be proved. The anti-periodic
boundary value problem will be considered as an application.

2. Existence of solutions

Consider the Problem (1)-(2) under the following assumptions;

(i) f : [0.T]× R→ R is measurable in t ∈ [0, T] for every x ∈ R and continuous in x ∈ R for every t ∈ [0, T].

(ii) There exist an integrable function m ∈ L1 [0, T] and a constant b ≥ 0 such that

| f (t, x)| ≤ m(t) + b |x|.

(iii) 2bT < 1.

2.1. Integral equation representation

Here we give the integral representation of the solution of the Problem (1)-(2) if it exists. We have the
following lemma.

Open J. Math. Anal. 2020, 4(2), 64-73; doi:10.30538/psrp-oma2020.0063 https://pisrt.org/psr-press/journals/oma

https://pisrt.org/psr-press/journals/oma/
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/oma


Open J. Math. Anal. 2020, 4(2), 64-73 65

Lemma 1. If the solution of the Problem (1)-(2) exists, then it can be expressed by the integral equation

x(t) =
1

α + β
[x0 − α

∫ τ

0
f (s, x(s))ds− β

∫ η

0
f (s, x(s))ds] +

∫ t

0
f (s, x(s))ds. (3)

Proof. Let the boundary value Problem (1)-(2). Integrating Equation (1), we obtain

x(t) = x(0) +
∫ t

0
f (s, x(s))ds. (4)

For t = τ, we obtain

x(τ) = x(0) +
∫ τ

0
f (s, x(s))ds

and
αx(τ) = αx(0) + α

∫ τ

0
f (s, x(s))ds. (5)

For t = η in (4), we obtain

x(η) = x(0) +
∫ η

0
f (s, x(s))ds

and
βx(η) = βx(0) + β

∫ η

0
f (s, x(s))ds. (6)

Substituting (5) and (6) into (2), we obtain

(α + β)x(0) = x0 − α
∫ τ

0
f (s, x(s))ds− β

∫ η

0
f (s, x(s))ds.

Then

x(0) =
1

α + β

[
x0 − α

∫ τ

0
f (s, x(s))ds + β

∫ η

0
f (s, x(s))ds

]
and

x(t) =
1

α + β
[x0 − α

∫ τ

0
f (s, x(s))ds− β

∫ η

0
f (s, x(s))ds] +

∫ t

0
f (s, x(s))ds. (7)

Now, we have the following existence theorem

Theorem 1. Let the assumption (i)-(ii)-(iii) are satisfied, then there exists at least one absolutely continuous solution
x ∈ AC[0, T] of the Problem (1)-(2).

Proof. Define the operator F by

Fx(t) =
1

α + β
[x0 − α

∫ τ

0
f (s, x(s))ds− β

∫ η

0
f (s, x(s))ds] +

∫ t

0
f (s, x(s))ds.

Define the set

Qr = {x : ||x|| ≤ r} ⊂ C[0, T], r =
|x0|+ 2||m||(α + β)

(α + β)(1− 2b)
.

Let x ∈ Qr, then

|Fx(t)| = | 1
α + β

[x0 − α
∫ τ

0
f (s, x(s))ds− β

∫ η

0
f (s, x(s))ds] +

∫ t

0
f (s, x(s))ds|

≤ 1
α + β

[|x0|+ α
∫ τ

0
| f (s, x(s))|ds + β

∫ η

0
| f (s, x(s))|ds] +

∫ t

0
| f (s, x(s))|ds

≤ 1
α + β

[|x0|+ α
∫ τ

0
(|m(s)|+ b|x|)ds + β

∫ η

0
(|m(s)|+ b|x|)ds] +

∫ t

0
(|m(s)|+ b|x|)ds
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≤ 1
α + β

[|x0|+ α
∫ T

0
(|m(s)|+ b|x|)ds + β

∫ T

0
(|m(s)|+ b|x|)ds] +

∫ T

0
(|m(s)|+ b|x|)ds

≤ 1
α + β

[|x0|+
α

α + β
(||m||+ b||x||T) + β

α + β
(||m||+ b||x||T)] + (||m||+ b||x||T)

≤ 1
α + β

|x0|+ 2(||m||+ b||x||T) ≤ r.

Then the class of functions {Fx} is uniformly bounded on Qr, and F : Qr → Qr. Let x ∈ Qr and
t1, t2 ∈ [0, T], such that |t2 − t1| < δ, then

|Fx(t2)− Fx(t1)| = | 1
α + β

[x0 − α
∫ τ

0
f (s, x(s))ds− β

∫ η

0
f (s, x(s))ds] +

∫ t2

0
f (s, x(s))ds

− 1
α + β

[x0 − α
∫ τ

0
f (s, x(s))ds− β

∫ η

0
f (s, x(s))ds] +

∫ t1

0
f (s, x(s))ds|

≤
∫ t2

t1

| f (s, x(s))|ds

≤
∫ t2

t1

(|m(s)|+ b|x|)ds

≤
∫ t2

t1

|m(s)|ds + b|x|(t2 − t1).

So, the class of functions {Fx} is equi-continuous on Qr. From Arzela Theorem [18] we deduce that the
class of functions {Fx} is compact, and F : Qr → Qr is compact. Now we prove that F is continuous operator.
For this let {xn} ⊂ Qr be convergent sequence such that xn(t)→ x0(t), then

Fxn(t) =
1

α + β
[x0 − α

∫ τ

0
f (s, xn(s))ds− β

∫ η

0
f (s, xn(s))ds] +

∫ t

0
f (s, xn(s))ds

and

lim
n→∞

Fxn(t) =
1

α + β
[x0 − α lim

n→∞

∫ τ

0
f (s, xn(s))ds− β lim

n→∞

∫ η

0
f (s, x(s))ds] + lim

n→∞

∫ t

0
f (s, xn(s))ds.

From assumptions (i), (ii), we have

f (s, xn(s))→ f (s, x0(s))

and
| f (s, x(s))| ≤ |m(s)|+ b|x| ∈ L1[0, T].

Applying Lebesgue dominated convergence Theorem [18], we have

lim
n→∞

Fxn(t) =
1

α + β
[x0 − α

∫ τ

0
lim

n→∞
f (s, xn(s))ds− β

∫ η

0
lim

n→∞
f (s, xn(s))ds] +

∫ t

0
lim

n→∞
f (s, xn(s))ds

=
1

α + β
[x0 − α

∫ τ

0
f (s, lim

n→∞
xn(s))ds− β

∫ η

0
f (s, lim

n→∞
xn(s))ds] +

∫ t

0
f (s, lim

n→∞
xn(s))ds

=
1

α + β
[x0 − α

∫ τ

0
f (s, x0(s))ds− β

∫ η

0
f (s, x0(s))ds] +

∫ t

0
f (s, x0(s))ds = Fx0(t).

Hence, F : Qr → Qr is continuous. Now by Schauder fixed point Theorem [19] there exists at least one
solution x ∈ C[0, T] of the Problem (1)-(2). Let x ∈ C[0, T] be a solution of the Problem (1)-(2). Differentiating
the integral Equation (7), we obtain

dx
dt

=
d
dt
(

1
α + β

[x0 − α
∫ τ

0
f (s, x(s))ds− β

∫ η

0
f (s, x(s))ds] +

∫ t

0
f (s, x(s))ds)

=
d
dt

∫ t

0
f (s, x(s))ds.
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Since f is measurable in t ∈ [0, T] and bounded by integrable function, then f ∈ L1[0, T], and

dx
dt

= f (t, x(t)) a.e, t ∈ (0, T].

Putting t = τ in the integral Equation (7), we get

x(τ) =
1

α + β
[x0 − α

∫ τ

0
f (s, x(s))ds− β

∫ η

0
f (s, x(s))ds] +

∫ τ

0
f (s, x(s))ds.

and

αx(τ) =
α

α + β
[x0 −

α2

α + β

∫ τ

0
f (s, x(s))ds− αβ

α + β

∫ η

0
f (s, x(s))ds] + α

∫ τ

0
f (s, x(s))ds

=
α

α + β
x0 +

αβ

α + β

∫ τ

0
f (s, x(s))ds− αβ

α + β

∫ η

0
f (s, x(s))ds.

Also
βx(η) =

β

α + β
x0 −

αβ

α + β

∫ τ

0
f (s, x(s))ds +

αβ

α + β

∫ η

0
f (s, x(s))ds.

Then
αx(τ) + βx(η) = x0, τ ∈ [0, T), η ∈ (0, T].

2.2. Maximal and minimal solution

Let u(t) be a solution of the integral Equation (7), then u(t) is said to be a maximal solution of (7), if for
every solution of (7) satisfies the inequality:

x(t) ≤ u(t), t ∈ [0, T].

A minimal solution v(t) can be defined by similar way by reversing the above inequality i.e.,

x(t) > v(t), t ∈ [0, T].

We will use the following lemma to prove the existence of the maximal and minimal solutions.

Lemma 2. Let the assumption of Theorem 1 are satisfied and x(t) and y(t) are two continuous functions on [0, T]
satisfying

x(t) ≤ 1
α + β

[x0 − α
∫ τ

0
f (s, x(s))ds− β

∫ η

0
f (s, x(s))ds] +

∫ t

0
f (s, x(s))ds,

y(t) ≥ 1
α + β

[x0 − α
∫ τ

0
f (s, y(s))ds− β

∫ η

0
f (s, y(s))ds] +

∫ t

0
f (s, y(s))ds,

and one of them is strict. If f is monotonic nondecreasing in x, then

x(t) < y(t), t ∈ [0, T]. (8)

Proof. Let the conclusion (8) is false, then there exist t1 such that

x(t1) = y(t2) t1 > 0,

and
x(t) < y(t), 0 < t < t1.
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From the monotonicity of f (t, x(t)) in x, we have

x(t1) ≤
1

α + β
[x0 − α

∫ τ

0
f (s, x(s))ds− β

∫ η

0
f (s, x(s))ds] +

∫ t1

0
f (s, x(s))ds, t ∈ [0, T]

<
1

α + β
[x0 − α

∫ τ

0
f (s, y(s))ds− β

∫ η

0
f (s, y(s))ds] +

∫ t1

0
f (s, y(s))ds,

< y(t1).

This contradicts the fact that x(t1) = y(t1), then

x(t) < y(t), t ∈ [0, T].

For the existence of the maximal and minimal solutions we have the following theorem.

Theorem 2. Let the assumptions of Theorem 1 are satisfied. If f (t, x(t)) is monotonic nondecreasing in x for each
t ∈ [0, T], then the Equation (7) (consequently the Problem (1)-(2)) has maximal and minimal solutions.

Proof. Firstly we shall prove the existence of the maximal solution of (7). Let ε > 0 be given then consider the
integral equation

xε(t) ≤
1

α + β
[x0 − α

∫ τ

0
fε(s, xε(s))ds− β

∫ η

0
fε(s, xε(s))ds] +

∫ t1

0
f (s, x(s))ds, (9)

where
fε(t, xε(t)) = f (t, xε(t)) + ε.

It is clear that the Equation (9) has at least one solution xε(t) ∈ C[0, T]. Now, let ε1 and ε2 be such that
0 < ε2 < ε1 < ε, then

xε2(t) =
1

α + β
[x0 − α

∫ τ

0
fε2(s, xε2(s))ds− β

∫ η

0
fε2(s, xε2(s))ds] +

∫ t

0
fε2(s, xε2(s))ds

=
1

α + β
[x0 − α

∫ τ

0
( f (s, xε2(s)) + ε2)ds− β

∫ η

0
( f (s, xε2(s)) + ε2)ds] +

∫ t

0
( f (s, xε2(s)) + ε2)ds.

Also

xε1(t) =
1

α + β
[x0 − α

∫ τ

0
fε1(s, xε1(s))ds− β

∫ η

0
fε1(s, xε1(s))ds] +

∫ t

0
fε1(s, xε1(s))ds

=
1

α + β
[x0 − α

∫ τ

0
( f (s, xε1(s)) + ε1)ds− β

∫ η

0
( f (s, xε1(s)) + ε1)ds] +

∫ t

0
( f (s, xε1(s)) + ε1)ds

>
1

α + β
[x0 − α

∫ τ

0
( f (s, xε2(s)) + ε2)ds− β

∫ η

0
( f (s, xε2(s)) + ε2)ds] +

∫ t

0
( f (s, xε2(s)) + ε2)ds.

Applying Lemma 2, we obtain
xε2 < xε1 , t ∈ [0, T].

As shown before the family of function xε(t) is equi-continuous and uniformly bounded. Then, by Arzela
Theorem [18], there exist a decreasing sequence εn such that ε0 → 0 as n → ∞, and u(t) = limn→∞ xεn(t)
exists uniformly in [0, T] and denote his limit by u(t). From the continuity of the functions fε(t, xε(t)), we get
fε(t, xε(t))→ f (t, x(t)) as n→ ∞ and

u(t) = lim
n→∞

xεn(t) =
1

α + β
[x0 − α

∫ τ

0
f (s, x(s))ds− β

∫ η

0
f (s, x(s))ds] +

∫ t

0
f (s, x(s))ds.
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Now we prove that u(t) is the maximal solution of (7). To do this, let x(t) be any solution of (7), then

1
α + β

[x0 − α
∫ τ

0
f (s, x(s))ds− β

∫ η

0
f (s, x(s))ds] +

∫ t

0
f (s, x(s))ds (10)

and

xε(t) =
1

α + β
[x0 − α

∫ τ

0
fε(s, xε(s))ds− β

∫ η

0
fε(s, xε(s))ds] +

∫ t

0
fε(s, xε(s))ds

=
1

α + β
[x0 − α

∫ τ

0
( f (s, xε(s) + ε))ds− β

∫ η

0
( f (s, xε(s)) + ε)ds] +

∫ t

0
( f (s, xε(s)) + ε)ds

>
1

α + β
[x0 − α

∫ τ

0
f (s, xε(s))ds− β

∫ η

0
f (s, xε(s))ds] +

∫ t

0
f (s, xε(s))ds = x(t).

Applying Lemma 2, we obtain
x(t) < xε(t) t ∈ [0, T].

From the uniqueness of the maximal solution, it is clear that xε(t) tends to u(t) uniformly in [0, T] as
ε→ 0. By similar way as done above we can prove the existence of the minimal solution.

2.3. Uniqueness of the solution

Consider the problem (1)-(2) under the following assumptions

(i∗) f : [0, T]× R→ R is measurable in t ∈ [0, T] for every x ∈ R satisfied the Lipschitz condition

| f (t, x)− f (t, y)| ≤ L|x− y|, and | f (t, 0)| = m(t).

Theorem 3. Let the assumptions (i∗) be satisfied. If 2LT < 1, then the solution of the nonlocal two-point boundary
value Problem (1)-(2) is unique.

Proof. From assumption (i∗) we get

| f (t, x)| − | f (t, 0)| ≤ | f (t, x)− f (t, 0)| ≤ b|x|

and
| f (t, x)| ≤ b|x|+ | f (t, 0)| = m(t) + b|x|.

Then the assumptions (ii) is satisfied, so there exists at least one solution x ∈ AC[0, T] of the Problem
(1)-(2). Let x and y be two solutions of the Problem (1)-(2), then we have

|x(t)− y(t)| = | 1
α + β

[x0 − α
∫ τ

0

∫ t

0
f (s, x(s))ds− β

∫ η

0
f (s, x(s))ds] +

∫ t

0
f (s, x(s))ds

− 1
α + β

[x0 − α
∫ τ

0

∫ t

0
f (s, y(s))ds− β

∫ η

0
f (s, y(s))ds] +

∫ t

0
f (s, y(s))ds|

≤ α

α + β

∫ τ

0
| f (s, x(s))− f (s, y(s))|ds +

β

α + β

∫ η

0
| f (s, x(s))− f (s, y(s))|ds

+
∫ t

0
| f (s, x(s))− f (s, y(s))|ds

≤ α

α + β
L
∫ τ

0
|x(s)− y(s)|ds +

β

α + β
L
∫ η

0
|x(s)− y(s)|ds + L

∫ t

0
|x(s)− y(s)|ds

≤ α

α + β
L
∫ T

0
|x(s)− y(s)|ds +

β

α + β
L
∫ T

0
|x(s)− y(s)|ds + L

∫ T

0
|x(s)− y(s)|ds

≤ α

α + β
LT||x− y||+ β

α + β
LT||x− y||+ LT||x− y||.
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Then
||x− y|| ≤ 2LT||x− y||

and
||x− y||(1− 2LT) ≤ 0⇒ ||x− y|| = 0⇒ x = y.

Hence, the solution of the integral Equation (7) (consequently the Problem (1)-(2)) is unique solution
x ∈ AC[0, T].

3. Continuous dependence of the solution

Definition 1. The solution of the nonlocal two-point boundary value Problem (1)-(2) depends continuously
on x0, if ∀ ε > 0, ∃ δ > 0, we have

|x− x∗0 | ≤ δ⇒ ‖x− x∗‖ ≤ ε.

where x∗ ∈ AC[0, T] is the unique solution of the nonlocal two-point boundary value Problem (1)-(2).

Theorem 4. Let the assumption of Theorem 3 are satisfied, then the solution of a nonlocal two-points boundary value
Problem (1)-(2) is dependence continuously on x0.

Proof. let x, x∗ be the solutions of a nonlocal two-points boundary value Problem (1)-(2), then

|x(t)− x∗(t)| = | 1
α + β

[x0 − β
∫ τ

0
f (s, x(s))ds− β

∫ η

0
f (s, x(s))ds] +

∫ t

0
f (s, x(s))ds

− 1
α + β

[x∗0 − β
∫ τ

0
f (s, x∗(s))ds− β

∫ η

0
f (s, x∗(s))ds] +

∫ t

0
f (s, x∗(s))ds|

≤ 1
α + β

|x0 − x∗0 |+
α

α + β

∫ τ

0
| f (s, x(s))− f (s, x∗(s))|ds

+
β

α + β

∫ η

0
| f (s, x(s))− f (s, x∗(s))|ds +

∫ t

0
| f (s, x(s))− f (s, x∗(s))|ds

≤ 1
α + β

|x0 − x∗0 |+
α

α + β
L
∫ T

0
|x(s)− x∗(s)|ds

+
β

α + β
L
∫ T

0
|x(s)− x∗(s)|ds + L

∫ T

0
|x(s)− x∗(s)|ds

≤ δ

α + β
+ 2LT||x− x∗||.

Then

||x− x∗||(1− 2LT) ≤ δ

α + β
implies ||x− x∗|| ≤ δ

(1− 2LT)(α + β
= ε.

This prove the continuous dependence of solution of the nonlocal two-point boundary value Problem
(1)-(2) on x0.

Definition 2. The solution of the nonlocal two-point boundary value Problem (1)-(2) depends continuously
on α and β, if ∀ ε > 0, ∃ δ > 0, we have

|α− α∗| ≤ δ1, |β− β∗| ≤ δ2 ⇒ ‖x− x∗‖ ≤ ε,

where x∗ is the unique solution of the nonlocal two-points boundary value Problem (1)-(2).

Theorem 5. Let the assumption of Theorem 3 is satisfied, then the solution of the nonlocal two-point boundary value
Problem (1)-(2) is depends continuously on α, β.
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Proof. let x, x∗ be the solutions of the nonlocal two-points boundary value Problem (1)-(2), then

|x(t)− x∗(t)| = | x0

α + β
− α

α + β

∫ τ

0
f (s, x(s))ds− β

α + β

∫ η

0
f (s, x(s))ds

+
∫ t

0
f (s, x(s))ds− 1

α∗ + β∗
x0 +

α∗

α∗ + β∗

∫ τ

0
f (s, x∗(s))ds

+
β∗

α∗ + β∗

∫ η

0
f (s, x∗(s))ds−

∫ t

0
f (s, x∗(s))ds|

= | (α
∗ − α)(β∗ − β)

(α + β)(α∗ + β)
x0 −

α

α + β

∫ τ

0
f (s, x(s))ds +

α

α + β

∫ τ

0
f (s, x∗(s))ds

− α

α + β

∫ τ

0
f (s, x∗(s))ds− β

α + β

∫ η

0
f (s, x(s))ds− β

α + β

∫ η

0
f (s, x∗(s))ds

− β

α∗ + β

∫ η

0
f (s, x∗(s))ds +

β

α∗ + β

∫ τ

0
f (s, x∗(s))ds

+
β∗

α∗ + β

∫ η

0
f (s, x∗(s))ds +

∫ t

0
( f (s, x(s))− f (s, x∗(s)))ds|

≤ (α∗ − α)(β∗ − β)

(α + β)(α∗ + β)
|x0|+

α

α + β

∫ τ

0
| f (s, x∗(s))− f (s, x(s))|ds

+
β

α + β

∫ η

0
| f (s, x(s))− f (s, x∗(s))|ds +

α∗(α + β)− α(α∗ + β∗)

(α + β)(α∗ + β)

∫ τ

0
| f (s, x∗(s))|ds

+
β∗(α + β)− β(α∗ + β∗)

(α + β)(α∗ + β)

∫ η

0
| f (s, x∗(s))|ds +

∫ t

0
( f (s, x(s))− f (s, x∗(s)))ds|

≤ δ1 + δ2

(α + β)(α∗ + β)
|x0|+

α

α + β
L
∫ T

0
|x(s)− x∗(s)|ds

+
β

α + β
L
∫ T

0
|x(s)− x∗(s)|ds +

α∗(α + β)− α(α∗ + β∗)

(α + β)(α∗ + β)

∫ T

0
| f (s, x∗(s))|ds

+
β∗(α + β)− β(α∗ + β∗)

(α + β)(α∗ + β)

∫ T

0
| f (s, x∗(s))|ds + L

∫ T

0
|x(s)− x∗(s)|ds.

Then

||x− x∗|| ≤ (δ1 + δ2

(α + β)(α∗ + β∗)
|x0|+

α

α + β
LT||x− x∗||+ β

α + β
LT||x− x∗||+ α∗β− αβ∗

(α + β)(α∗ + β∗)
M

+
β∗α− βα∗

(α + β)(α∗ + β∗)
M + LT||x− x∗||

≤ δ1 + δ2

(α + β)(α∗ + β∗)
|x0|+ 2LT||x− x∗||

and

(1− 2LT)||x− x∗|| ≤ δ1 + δ2

(α + β)(α∗ + β∗)
|x0| implies ||x− x∗|| ≤ |δ1 + δ2

(α + β)(α∗ + β∗)(1− 2LT)
|x0| = ε.

This prove that ∀ε > 0, ∃δ(ε) > 0 such that

|α− α∗| ≤ δ1, |β− β∗| ≤ δ2 ⇒ ||x− x∗|| ≤ ε.

4. Anti-periodic boundary value problem

Consider the nonlocal boundary value problem of the differential equation (1) with the anti-periodic
nonlocal condition

x(τ) = −x(1− τ), τ ∈ [0, T],

we have the following corollary;
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Corollary 6. If α = 1, β = 1 and η = 1− τ and x0 = 0 in Theorem 1, then the anti-periodic boundary value problem

dx
dt

= f (t, x(t)), t ∈ (0, T)

x(τ) = −x(1− τ), τ ∈ (0, T)

has the at lease one solution x ∈ AC[0, T]

x(t) = −
∫ τ

0
f (s, x(s))ds−

∫ 1−τ

0
f (s, x(s))ds +

∫ t

0
f (s, x(s))ds.

Now, let τ = 1
2 , then

x(t) = −
∫ 1

2

0
f (s, x(s))ds−

∫ 1
2

0
f (s, x(s))ds +

∫ t

0
f (s, x(s))ds

=
∫ t

0
f (s, x(s))ds− 2

∫ 1
2

0
f (s, x(s))ds.

5. Examples

Example 1. Consider the differential Equation (1) with the backward condition x(T) = x0, we have the
following corollary;

Corollary 7. Let α = 1, β = 0 and η = T in Theorem 1, then the backward problem

dx
dt

= f (t, x(t))

x(T) = x0

has the solution x ∈ AC[0, T]

x(t) = x0 −
∫ T

0
f (s, x(s))ds +

∫ t

0
f (s, x(s))ds

= x0 −
∫ T

t
f (s, x(s))ds.

Example 2. Consider the differential Equation (1) with the forward condition x(0) = x0, we have the following
corollary;

Corollary 8. Let α = 0, β = 1 and τ = 0 in Theorem 1, then the initial value problem

dx
dt

= f (t, x(t))

x(0) = x0

has the solution x ∈ AC[0, T]

x(t) = x0 +
∫ t

0
f (s, x(s))ds

6. Conclusions

We proved here, under certain conditions, the existence of at least one absolutely continuous solution
x ∈ AC[0, T] of the nonlocal two-point, with parameters ( α, β and xo ) boundary value Problem (1)-(2). The
maximal and minimal solutions of the Problem (1)-(2) have been proved. The continuous dependence of the
unique solution on the parameters α, β and xo ) have been also proved. The anti-periodic boundary value
problem have been considered as an application.
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