

Ideally Statistical Convergence in n-normed Space

Nazneen Khan¹ *∗* **and Amani Shatarah**¹

¹*Department of Mathematics, College of Science and Arts, Taibah University, Madina, Saudi Arabia.*

Authors' contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMCS/2020/v35i730305 *Editor(s):* (1) Dr. Metin Basarir, Sakarya University, Turkey. (2) Dr. Raducanu Razvan, Al. I. Cuza University, Romania. (3) Dr. Jacek Dziok, University of Rzeszow, Poland. *Reviewers:* (1) Ekrem Savas, Usak Universirty, Turkey. (2) Ehsan Movahednia, Behbahan Khatam Alanbia University of Technology, Iran. Complete Peer review History: http://www.sdiarticle4.com/review-history/60892

> *[Received: 02 July 2020](http://www.sdiarticle4.com/review-history/60892) Accepted: 07 September 2020*

Original Research Article Published: 03 October 2020

Abstract

The aim of the article is to extend the concept of Ideally statistical convergence from 2 normed spaces to n-normed space. We have also study and prove some important algebraic and topological properties of *Ideally*-statistical convergence of real sequences in n-normed space. In the last part of this article we obtain a criterion for *I*-statistically Cauchy sequence in n-normed space to be *I*-statistically Cauchy with respect to *∥.∥∞*.

Keywords: Statistical convergence; Ideal convergence; Filter; statistically Cauchy sequence; real sequences; n-normed space.

2010 Mathematics Subject Classification: 40A05, 40A35, 40G15.

1 Introduction

The concept of statistical convergence was introduced by Steinhaus in 1951 but the extension of convergence of real sequences to statistical convergence was given by Fast [1]. We can find its

^{}Corresponding author: E-mail: nazneen4maths@gmail.com;*

applications in many areas of mathematics like number theory, trigonometric series and summability theory. Also Maddox [2] extended the concept for sequences in any Hausdorff locally convex topological vector spaces. In the case of real sequences, Fridy and Orhan [3] obtained the statistical analogue of the Cauchy criterion for convergence.

Let K be a subset of N . Then the asymptotic density of K is denoted by

$$
\delta(K) := \lim_{n \to \infty} \frac{1}{n} |k \le n : k \in K|
$$

where the vertical bars indicate the cardinality of the set.

A sequence $x = (x_k)$ is called *Statistically Convergent* to *L* if for $\epsilon > 0$

$$
\delta(\{k \in \mathbb{N} : |x_k - L| \ge \epsilon\}) = 0.
$$

We write this as $st - \lim_{k \to \infty} x_k = L$

It is known that, \mathcal{I} -convergence (where \mathcal{I} stands for ideal) is generalization of the statistical convergence and it was introduced by Kostyrko et al. in [4]. It was further studied by Demirci[5], Das et al. $[6]$, Šalát et al. $[7]$, and many others.

Definition 1.1. *A family of sets* $\mathcal{I} \subseteq 2^X$ *(power set of* X *) is said to be an ideal in* X *if 1*) ϕ ∈ \mathcal{I} .

- *2) I is additive i.e* $\forall A, B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$,
- *3) I is her[ed](#page-8-0)itary i.e* $\forall A \in \mathcal{I}$ *and* $B \subseteq A \Rightarrow B \in \mathcal{I}$.

A non-trivial ideal *I* is called admissible if $\{\{x\} : x \in X\} \subseteq I$. *I* is maximal if there cannot exist any non-trivial ideal $J \neq I$ containing *I* as a subset.

Definition 1.2. *A non-empty family of sets* $\mathcal{F} \subseteq 2^{\mathbb{N}}$ *is said to be filter on* \mathbb{N} *if and only if 1*) ϕ ∉ \mathcal{F} , *2) ∀ A, B ∈ F we have A ∩ B ∈ F, 3*) \forall *A* \in *F and A* \subseteq *B* \Rightarrow *B* \in *F*.

If *I* is a proper ideal of N then the family of sets $\mathcal{F}(\mathcal{I}) = \{M \subset \mathbb{N} : \exists A \in \mathcal{I} : M = \mathbb{N} \setminus A\}$ is a filter of N. It is called as filter associated with the ideal.

Let \mathbb{N}, \mathbb{R} and \mathbb{C} denote the set of natural, real and complex numbers respectively. The set of all sequences is denoted by ω . Any subset of the ω is called sequence space. A sequence(x_k) $\in \omega$ is said to be *I*-convergent to a number L if for every $\epsilon > 0$, $\{k \in \mathbb{N} : |x_k - L| \geq \epsilon\} \in \mathcal{I}$. In this case we write $\mathcal{I} - \lim x_k = L$.

For more details please see [8] and [9]

The theory of 2-normed spaces was first introduced by Gähler[10] in 1964. Later on it was extended to n-normed spaces by Misiak [11] . Since then many mathematicians have worked in this field and obtained many interesting results for instance see Gunawan[12],[13], Gunawan and Mashadi[14], Yamanci and Gürdal [15], E[.](#page-8-2) Savas([\[1](#page-8-3)6], [17], [18]) and so on. Let $n \in \mathbb{N}$ and X^n be a linear metric space over the field K of real or complex numbers of dimensi[on](#page-8-4) *d*, where $d \geq n \geq 2$.

Definition 1.3. *A real value[d fu](#page-8-5)nction* $\|\cdot, \ldots, \cdot\|$ *on* X^n *satisfying the following four conditi[ons](#page-9-1):* (1) (1) (1) ^{$||x_1, x_2, ..., x_n|| = 0$ *[if](#page-9-2) and only if* $x_1, x_2, ..., x_n$ *are linearly [dep](#page-8-6)e[nde](#page-9-0)nt;*}

 $\langle 2 \rangle ||x_1, x_2, ..., x_n||$ *is invariant under permutation;* $(3)||\alpha x_1, x_2, ..., x_n|| = |\alpha| ||x_1, x_2, ..., x_n||$ *for any* $\alpha \in \mathbb{K}$ *; and* $\|f(x)\|x+x',x_2,...,x_n\| \leq \|x,x_2,...,x_n\| + \|x',x_2,...,x_n\|.$

is called an n *−norm on* X *and the pair* $(X, \| \cdot, \ldots, \cdot \|)$ *is called an* n *−normed space over the field* K *.*

Example 1.4. If we take $X = \mathbb{R}^n$, equipped with Euclidean *n*-norm

 $||x_1, x_2, ..., x_n||_E = vol(n-dimensional\ parallelepiped)$

spanned by the vectors x_1, x_2, \ldots, x_n .

It may be given by the formula $||x_1, x_2, ..., x_n||_E = |det(x_{ij})|$, where $x_{ij} = (x_{i1}, x_{i2}, ..., x_{in}) \in \mathbb{R}^n$ for $each i = 1, 2, 3, \ldots n.$

The standard *n*-norm on *X*, is defined as:

 $||x_1, x_2, ..., x_n||_E =$ $\langle x_1, x_1 \rangle$. . . $\langle x_1, x_n \rangle$ *.* $\langle x_1, x_1 \rangle$. . . $\langle x_1, x_1 \rangle$ $\frac{1}{2}$ *,*

 $\langle ., . \rangle$ denotes the inner product on *X*. If *X* = \mathbb{R}^n , then this *n*−norm is exactly the same as the Euclidean *n*−norm $||x_1, x_2, ..., x_n||_E$ mentioned earlier. For $n = 1$ this *n*−norm is the usual norm $||x|| = \langle x_1, x_1 \rangle^{\frac{1}{2}}.$

A sequence (x_k) in an *n*−normed space $(X, ∥, ⋯, ⋯, ⋯)$ is said to converge to some $L \in \mathbb{K}$ if $\lim_{k \to \infty} ||x_k - L, z_1, ... z_{n-1}|| = 0$ for every $z_1, z_2, ... z_{n-1} \in X$.

A sequence (x_k) in an *n−*normed space $(X, \| \cdot, ..., \cdot \|)$ is said to be Cauchy if $\lim_{k,p\to\infty} \|x_k$ $x_p, z_1, ... z_{n-1}$ || = 0 for every $z_1, z_2, ... z_{n-1} \in X$.

If every Cauchy sequence in *X* converges to some $L \in X$, then *X* is said to be complete with respect to the *n*-norm. Any complete *n*- normed space is said to be an *n*-Banach space.

Example 1.5. Let $\mathcal{I} = \mathcal{I}_{\delta}$ where $\mathcal{I}_{\delta} = \{A \subset \mathbb{N} : \delta(A) = 0, \text{ then } \mathcal{I}_{\delta} \text{ is an admissible ideal in } \mathbb{N} \}$ *where ideal convergence coincides with statistical convergence. Define the sequence* (x_k) *in n-normed space* $(X, \| \ldots, \| \boldsymbol{b})$

$$
x_k = \begin{cases} (0, ..., k), & k = i^2, i \in \mathbb{N}, \\ (0, ..., 0), & otherwise. \end{cases}
$$

let $x = (0, ..., 0)$ *. Then for every* $\epsilon > 0$ *and* $x_1, x_2, ..., x_{n-1} \in X$

$$
\{k \in \mathbb{N} : \|x_k - x, x_1, x_2, ..., x_{n-1}\| \ge \epsilon\} \subset \{1, 4, 9, 16, ..., k^2\}.
$$

Also we have that $\delta({k \in \mathbb{N} : ||x_k - x, x_1, x_2, ..., x_{n-1}|| \geq \epsilon}) = 0$ *for every* $\epsilon > 0$ *.* This implies that $\mathcal{I} - \lim_{k \to \infty} ||x_k, x_1, x_2, ..., x_{n-1}|| = ||x, x_1, x_2, ..., x_{n-1}||$ but the sequence (x_k) is not *convergent to x.*

2 *I***-Statistical Convergence and** *I***-Statistically Cauchy Sequence in n-normed Space**

Now we give some useful definitions and examples based on *I*-Statistical convergence and *I*-Statistically Cauchy sequence in n-normed space.

Definition 2.1. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be a non-trivial ideal in \mathbb{N} . The sequence (x_k) of X is said to be *I*_{-statistically convergent to ξ if for each $\epsilon > 0, \exists \delta > 0$ such that for all $z_i \in X, i = 2, 3, 4...$ the} *set*

$$
\left\{n \in \mathbb{N} : \frac{1}{n} |\{k \le n : ||x_k - \xi, z_2, z_3, ... z_n|| \ge \epsilon\}| \ge \delta \right\} \in \mathcal{I}.
$$

or equivalently if for each $\epsilon > 0$

$$
\delta_{\mathcal{I}}(A_n(\epsilon)) = \mathcal{I} - \lim \delta_n(A_n(\epsilon)) = 0
$$

where $(A_n(\epsilon)) = \{k \leq n : ||x_k - \xi, z_2, z_3, ... z_n|| \geq \epsilon\}$ and $\delta_n(A_n(\epsilon)) = \frac{|A_n(\epsilon)|}{n}$. If (x_k) is $\mathcal{I}-$ convergent to ξ then we write $\mathcal{I}-st-\lim_{k\to\infty}||x_k-\xi,z_2,z_3,...z_n||=0$ or $\overline{\mathcal{I}}-st-\lim_{k\to\infty}||x_k,z_2,z_3,...z_n||=0$ *∥* $ξ, z_2, z_3...z_n$ *∥.* The number $ξ$ is called the *I*− limit of the sequence (x_k) *.*

Remark 2.2. *If* (x_k) *is a sequence in X and* ξ *is any element of X then the set*

$$
\left\{ n \in \mathbb{N} : \frac{1}{n} |\{k \le n : ||x_k - \xi, z_2, z_3, ... z_n|| \ge \epsilon\}| \ge \delta \right\} = \emptyset
$$

since if $z_i = 0$ *, for* $i = 2, 3, 4...n$ *then* $||x_k - \xi, z_2, z_3, ...z_n|| = 0 \ngeq \epsilon$

Definition 2.3. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be a non-trivial ideal in \mathbb{N} . The sequence (x_k) of X is said to be *I*-statistically cauchy sequence if for every $\epsilon > 0$, $\delta > 0$ and all nonzero $z_i \in X$, $i = 2, 3, 4...$ there *exists a number N, dependent on* ϵ *such that*

$$
\delta_{\mathcal{I}}\bigg\{n\in\mathbb{N}:\frac{1}{n}|\{k\leq n:\|x_{k}-x_{N(\epsilon)},z_{2},z_{3},...z_{n}\|\geq\epsilon\}|\geq\delta\bigg\}=0,
$$

i.e for every non zero $z_i \in X$,

$$
\left\{ n \in \mathbb{N} : \frac{1}{n} |\{k \leq n : ||x_k - x_{N(\epsilon)}, z_2, z_3, ... z_n|| \geq \epsilon\}| \geq \delta \right\} \in \mathcal{I}.
$$

3 Main Results

Theorem 3.1 Let x_k be a sequence in n-normed space $(X, \|, \ldots, \|)$, \mathcal{I} be an admissible ideal and $L, L' \in X$. For each $z_i \in X$, if \mathcal{I} -st- $\lim_{k \to \infty} ||x_k, z_2, z_3, ... z_n|| = ||L, z_2, z_3, ... z_n||$ and \mathcal{I} -st- $\lim_{k \to \infty} ||x_k, z_2, z_3, ... z_n|| = ||L', z_2, z_3, ... z_n||$ then $L = L'$.

Proof: Assume $L \neq L^{'}$. Then $L - L^{'} \neq 0$, so there exist nonzero $z_2, z_3, ... z_n \in X$, such that $L - L^{'}$ and $z_2, z_3, \ldots z_n$ are linearly independent (such z_i exist as dimension of *X, d* $\geq n$). Therefore for every $\epsilon > 0$ and $\delta > 0$,

$$
\frac{1}{n} |\{k \le n : ||L - L^{'}, z_2, z_3, ... z_n|| \ge \epsilon\}| = 2\delta.
$$

Now,

$$
\frac{1}{n} |\{k \le n : ||L - x_k + x_k - L^{'}, z_2, z_3, ... z_n|| \ge \epsilon\}| = 2\delta,
$$

$$
\frac{1}{n} |\{k \le n : ||(L - x_k) + (x_k - L^{'}), z_2, z_3, ... z_n|| \ge \epsilon\}| = 2\delta,
$$

$$
\frac{1}{n} |\{k \le n : ||(x_k - L), z_2, z_3, ... z_n|| \ge \epsilon\}| + \frac{1}{n} |\{k \le n : ||(x_k - L^{'}), z_2, z_3, ... z_n|| \ge \epsilon\}| \ge 2\delta,
$$

$$
\left\{ n \in \mathbb{N} : \frac{1}{n} |\{k \le n : ||(x_k - L), z_2, z_3, ... z_n|| \ge \epsilon\}| < \delta \right\}
$$

78

$$
\subseteq \left\{ n \in \mathbb{N} : \frac{1}{n} |\{k \leq n : \|(x_k - L^{'}), z_2, z_3, ... z_n\| \geq \epsilon\}| \geq \delta, \right\}.
$$

but $\delta_{\mathcal{I}}\left\{n \in \mathbb{N}: \frac{1}{n}|\{k \leq n : \|(x_k - L), z_2, z_3, ... z_n\| \geq \epsilon\}| < \delta\right\} = 0$ and hence contradicting the fact that $x_n \to L'(\mathcal{I}\text{-st-lim}).$

Theorem 3.2 Let \mathcal{I} be an admissible ideal. For each $z_i \in X$,

(i) If $\mathcal{I}\text{-st-lim}_{k\to\infty}||x_k, z_2, z_3,...z_n|| = ||x, z_2, z_3,...z_n||$ and $\mathcal{I}\text{-st-lim}_{k\to\infty}||y_k, z_2, z_3,...z_n|| =$ $||y, z_2, z_3, ... z_n||$ then *L*-st- $\lim_{k\to\infty} ||x_k + y_k, z_2, z_3, ... z_n|| = ||x + y, z_2, z_3, ... z_n||$ (ii) If *I*-st-lim_{*k*→∞} $||\alpha x_k, z_2, z_3, ...z_n|| = ||\alpha x, z_2, z_3, ...z_n||$ for $\alpha \in \mathbb{R}$.

Proof:(i) Let \mathcal{I} -st-lim_{k→∞} $||x_k, z_2, z_3, ... z_n|| = ||x, z_2, z_3, ... z_n||$ and \mathcal{I} -st-lim_{k→∞} $||y_k, z_2, z_3, ... z_n|| =$ $|y, z_2, z_3, ... z_n|$ for every nonzero $z_i \in X$, then $\delta_{\mathcal{I}}(K_1) = 0$ and $\delta_{\mathcal{I}}(K_2) = 0$ where

$$
K_1 = K_1(\epsilon) := \left\{ n \in \mathbb{N} : \frac{1}{n} |\{k \le n : ||x_k - x, z_2, z_3, ... z_n|| \ge \epsilon\}| \ge \frac{\delta}{2} \right\}
$$

and

$$
K_2 = K_2(\epsilon) := \left\{ n \in \mathbb{N} : \frac{1}{n} |\{k \le n : ||y_k - y, z_2, z_3, ... z_n|| \ge \epsilon\}| \ge \frac{\delta}{2} \right\}
$$

for every $z_i \in X$. Let

$$
K = K(\epsilon) := \left\{ n \in \mathbb{N} : \frac{1}{n} |\{k \le n : \|(x_k + y_k) - (x + y), z_2, z_3, ... z_n\| \ge \epsilon \}| \ge \delta \right\}
$$

To prove that $\delta_I(K) = 0$ it is sufficient to show that $K \subset K_1 \cup K_2$. Let $k_0 \in K$. Then

$$
\frac{1}{n} |\{k \le n : \|(x_{k_0} + y_{k_0}) - (x + y), z_2, z_3, \dots z_n\| \ge \epsilon\}| \ge \delta. \tag{3.1}
$$

Suppose to the contrary that $k_0 \notin K_1 \cup K_2$. Then $k_0 \notin K_1$ and $k_0 \notin K_2$. This implies

$$
\frac{1}{n} |\{k \le n : ||x_{k_0} - x, z_2, z_3, ... z_n|| \ge \epsilon\}| < \frac{\delta}{2}.
$$

$$
\frac{1}{n} |\{k \le n : ||y_{k_0} - y, z_2, z_3, ... z_n|| \ge \epsilon\}| < \frac{\delta}{2}.
$$

Then, we get

$$
\frac{1}{n} |\{k \le n : \|(x_{k_0} + y_{k_0}) - (x + y), z_2, z_3, \dots z_n\| \le \frac{1}{n} |\{k \le n : \|x_{k_0} - x, z_2, z_3, \dots z_n\|
$$

$$
+ \frac{1}{n} |\{k \le n : \|y_{k_0} - y, z_2, z_3, \dots z_n\|
$$

$$
< \frac{\delta}{2} + \frac{\delta}{2}
$$

$$
= \delta,
$$

which contradicts (3.1). Hence $k_0 \in K_1 \cup K_2$, that is $K \subset K_1 \cup K_2$.

(ii) Let $\mathcal{I}\text{-st-lim}_{k\to\infty} ||x_k, z_2, z_3, ... z_n|| = ||x, z_2, z_3, ... z_n||, \alpha \in \mathbb{R}$ and $\alpha \neq 0$. Then

$$
\left\{ n \in \mathbb{N} : \frac{1}{n} |\{k \le n : ||x_k - x, z_2, z_3, ... z_n|| \ge \frac{\epsilon}{|\alpha|} \} | \ge \delta \right\} \in \mathcal{I}.
$$
\n(3.2)

79

Then since $||\alpha x_k - \alpha x, z_2, z_3, ... z_n|| = |\alpha| ||x_k - x, z_2, z_3, ... z_n||$, we have

$$
\left\{ n \in \mathbb{N} : \frac{1}{n} |\{k \le n : ||x_k - x, z_2, z_3, ... z_n|| \ge \frac{\epsilon}{|\alpha|} \} | \ge \delta \right\} \in \mathcal{I},
$$

$$
\left\{ n \in \mathbb{N} : \frac{1}{n} |\{k \le n : |\alpha| ||x_k - x, z_2, z_3, ... z_n|| \ge \epsilon \} | \ge \delta \right\} \in \mathcal{I},
$$

$$
\left\{ n \in \mathbb{N} : \frac{1}{n} |\{k \le n : ||\alpha x_k - \alpha x, z_2, z_3, ... z_n|| \ge \epsilon \} | \ge \delta \right\} \in \mathcal{I}.
$$

Hence from equation (3.2) we get $\mathcal{I}\text{-st-lim}_{k\to\infty} ||ax_k, z_2, z_3, ... z_n|| = ||ax, z_2, z_3, ... z_n||$, for every non $z \in X, i = 2, 3...n.$

Recall that we assume X to have dimension *d*, where $2 \leq n \leq d < \infty$, unless otherwise stated. Let $u = \{u_1, ..., u_{(n-1)}\}$ to be a basis for *X*. Then we have the following:

Theorem 3.3 Let \mathcal{I} be an admissible ideal. A sequence $(x_k) \in X$ is \mathcal{I} -statistically convergent to $x \in X$ if and only if \mathcal{I} -st- $\lim_{k \to \infty} ||x_k - x, \underbrace{u_i, u_i, ..., u_i}$ | {z } (*n−*1) *∥* = 0 for every *i* = 1*, ...,*(*n −* 1)*.*

Proof: Let $(x_k) \in X$ is *I*-statistically convergent to $x \in X$. Then by the definition of *I*-st-convergence, we have

$$
I - st - \lim_{k \to \infty} ||x_k - x, z_2, z_3, ..., z_n|| = 0
$$

Then *I*-st- $\lim_{k\to\infty} ||x_k - x, \underbrace{u_i, u_i, ..., u_i}|| = 0$ for every $i = 1, ..., (n-1)$, is trivial since every z_i can be | {z } (*n−*1)*times*

expressed as a linear combination of u_i , for $i = 1, 2, 3, \ldots, (n-1)$

Next we prove the result conversely.

Let us assume

$$
\mathcal{I} - st - \lim_{k \to \infty} ||x_k - x, u_i, u_i, ..., u_i|| = 0 \quad \text{for every} \quad i = 1, ..., (n-1), \tag{3.3}
$$

We want to show that

$$
\left\{ n \in N : \frac{1}{n} |\{k \le n : ||x_k - x, z_2, z_3, ..., z_n|| \ge \epsilon\}| \ge \delta \right\}
$$
 (3.4)

For this, Let us consider the n-norm

*∥x^k − x, z*2*, z*3*, ..., zn∥*

Also as $u = \{u_1, ..., u_{(n-1)}\}$ is a basis of *X*, then we have

$$
z_2 = \sum_{i=1}^{n-1} \alpha_i^2 u_i, \quad z_3 = \sum_{i=1}^{n-1} \alpha_i^3 u_i, \qquad \dots \qquad z_n = \sum_{i=1}^{n-1} \alpha_i^n u_i
$$

This implies,

$$
||x_k - x, z_2, z_3, ..., z_n|| = ||x_k - x, \sum_{i=1}^{n-1} \alpha_i^2 u_i, \sum_{i=1}^{n-1} \alpha_i^3 u_i, ..., \sum_{i=1}^{n-1} \alpha_i^n u_i||
$$

As *n* is any positive integer, we have

$$
||x_k - x, z_2, z_3, ..., z_n|| \le ||n(x_k - x), \sum_{i=1}^{n-1} \alpha_i^2 u_i, \sum_{i=1}^{n-1} \alpha_i^3 u_i, ..., \sum_{i=1}^{n-1} \alpha_i^n u_i||
$$

Using triangle inequality and distributing corresponding components for each z_i over n-norm we get

$$
||x_{k} - x, z_{2}, z_{3}, ..., z_{n}|| \le ||(x_{k} - x), \underbrace{\alpha_{1}^{2} u_{1}, \alpha_{1}^{3} u_{1}, ..., \alpha_{1}^{n} u_{1}}_{\text{(n-1)}}||
$$

+ $||(x_{k} - x), \underbrace{\alpha_{2}^{2} u_{2}, \alpha_{2}^{3} u_{2}, ..., \alpha_{2}^{n} u_{2}}_{\text{(n-1)}}|| + ...$
+ $||(x_{k} - x), \underbrace{\alpha_{(n-1)}^{2} u_{(n-1)}, \alpha_{(n-1)}^{3} u_{(n-1)}, ..., \alpha_{(n-1)}^{n} u_{(n-1)}}_{\text{(n-1)}}||.$

Let max $\alpha_1^i = \alpha_1$, $\forall i = 2, 3, 4...n$, similarly let max $\alpha_{(n-1)}^i = \alpha_{(n-1)}$, $\forall i = 2, 3, 4, ..., n$.
Substituting these values in above equation, we get

$$
||x_{k} - x, z_{2}, z_{3}, ..., z_{n}|| \le ||(x_{k} - x), \alpha_{1}u_{1}, \alpha_{1}u_{1}, ..., \alpha_{1}u_{1}|| + ||(x_{k} - x), \alpha_{2}u_{2}, \alpha_{2}u_{2}, ..., \alpha_{2}u_{2}||
$$

$$
+...+||(x_{k} - x), \alpha_{(n-1)}u_{(n-1)}, \alpha_{(n-1)}u_{(n-1)}, ..., \alpha_{(n-1)}u_{(n-1)}||
$$

$$
\le |\alpha_{1}|^{n-1}||(x_{k} - x), u_{1}, u_{1}, ..., u_{1}|| + |\alpha_{2}|^{n-1}||(x_{k} - x), u_{2}, u_{2}, ..., u_{2}||
$$

$$
+...+ |\alpha_{(n-1)}|^{n-1}||(x_{k} - x), u_{(n-1)}, u_{(n-1)}, ..., u_{(n-1)}||
$$

By our assumption in equation (3.3) we have,

$$
\mathcal{I}\text{-st-}\lim_{k \to \infty} ||x_k - x, u_i, u_i, ..., u_i|| = 0 \text{ for every } i = 1, ..., (n-1), \text{ which implies,}
$$
\n
$$
\left\{ n \in N : \frac{1}{n} \middle| \{ k \le n : \{ |\alpha_1|^{n-1} || (x_k - x), u_1, u_1, ..., u_1 || + |\alpha_2|^{n-1} || (x_k - x), u_2, u_2, ..., u_2 || + ... + |\alpha_{(n-1)}|^{n-1} || (x_k - x), u_{(n-1)}, u_{(n-1)}, ..., u_{(n-1)} || \} \ge \epsilon^{(n-1)} \cdot \} \middle| \ge \delta \right\}
$$
\nHence we have

$$
\left\{ n \in N : \frac{1}{n} |\{k \le n : ||x_k - x, z_2, z_3, ..., z_n|| \ge \epsilon\}| \ge \delta \right\} \subset
$$

$$
\left\{ n \in N : \frac{1}{n} \Big| \{k \le n : \{||(x_k - x), u_1, u_1, ..., u_1|| \ge \frac{\epsilon^{n-1}}{|\alpha_1|^{n-1}}\} \Big| \ge \delta \right\}
$$

$$
\cup \left\{ n \in N : \frac{1}{n} \Big| \{k \le n : \{||(x_k - x), u_2, u_2, ..., u_2|| \ge \frac{\epsilon^{n-1}}{|\alpha_2|^{n-1}}\} \Big| \ge \delta \right\}
$$

$$
\cup ... \cup \left\{ n \in N : \frac{1}{n} \Big| \{k \le n : \{||(x_k - x), u_{(n-1)}, u_{(n-1)}, ..., u_{(n-1)}||\} \ge \frac{\epsilon^{n-1}}{|\alpha_{(n-1)}|^{n-1}}\} \Big| \ge \delta \right\}
$$

which gives,

$$
\left\{ n \in N : \frac{1}{n} |\{k \le n : ||x_k - x, z_2, z_3, ..., z_n|| \ge \epsilon\}| \ge \delta \right\} \subset
$$
\n
$$
\left\{ n \in N : \frac{1}{n} \left| \{k \le n : \{\|(x_k - x), u_1, u_1, ..., u_1|| \ge \frac{\epsilon}{|\alpha_1|}\} \right| \ge \delta \right\}
$$
\n
$$
\cup \left\{ n \in N : \frac{1}{n} \left| \{k \le n : \{\|(x_k - x), u_2, u_2, ..., u_2|| \ge \frac{\epsilon}{|\alpha_2|}\} \right| \ge \delta \right\}
$$

81

$$
\cup...\cup\bigg\{n\in N:\frac{1}{n}\bigg|\{k\leq n:\{\|(x_{k}-x),u_{(n-1)},u_{(n-1)},...,u_{(n-1)}\|\}\geq\frac{\epsilon}{|\alpha_{(n-1)}|}\}\bigg|\geq\delta\bigg\}
$$

Since the right hand side of the above inclusion belongs to ideal, so does the left hand side. Consequently, we get $\mathcal{I}\text{-st-}\lim_{k\to\infty}||x_k-x, z_2, z_3, ..., z_n||$ for every nonzero $z_i \in X$. This proves the result.

Following theorem 3.3, we have the next lemma:

Lemma 3.4 Let I be an admissible ideal. A sequence $(x_k) \in X$ is I-statistically convergent to x in X if and only if *I*-st- $\lim_{k \to \infty} max||x_k - x, u_i, u_i...u_i|| = 0, \forall i = 1, ..., (n-1).$

Definition 3.1. *In the light of lemma 3.4, we can define a norm on X, denoted by* $||x||_{\infty}$, with *respect to the basis* $u = u_1, \ldots, u_d, by$

$$
||x||_{\infty} = \max{||x, \underbrace{u_i, u_i, ..., u_i}_{(n-1)}|| : i = 1, 2, ..., d}
$$

Using the derived norm *∥x∥∞*, Lemma 3.4 now reads:

Lemma 3.5 Let I be an admissible ideal. A sequence (x_k) in *X* is *I*-statistically convergent to $x \in X$ if and only if $\mathcal{I}\text{-st-}\lim_{k \to \infty} ||x_k - x||_{\infty} = 0.$

Associated to the derived norm $\|\cdot\|_{\infty}$, we can define the balls $B(x,\epsilon)$ centered at *x* having radius ϵ by

$$
B(x,\epsilon) := \{ y : ||x - y||_{\infty} \le \epsilon \}
$$

 $\text{where } \|x - y\|_{\infty} = \max \|x - y, u_i, u_i, ..., u_i\|$ | {z } (*n−*1) *∥.*

Using these balls, Lemma-3.5 becomes:

Lemma 3.6 Let I be an admissible ideal. A sequence (x_k) in *X* is I-statistically convergent to *x* in *X* if and only if $\delta_{\mathcal{I}}(A_n(\epsilon)) = 0$, where $A_n(\epsilon) = \{k \leq n : x_k \notin B(x, \epsilon)\}.$

Theorem 3.7 Any *I*-st-Cauchy sequence (x_k) in an n-normed space $(X, \|, \ldots, \|)$ is *I*-stconvergent if and only if any *I*-st-Cauchy sequence is *I*-st-convergent with respect to $||.||_{\infty}$.

Proof: From previous result, it is clear that *I*-st-convergence in n-norm is equivalent to that in *∥.∥∞*. That is for all *zⁱ ∈ X, i* = 2*,* 3*, ...n*

$$
\mathcal{I} - st - \lim_{k \to \infty} ||x_k - x, z_2, ... z_n|| = 0
$$

$$
\Leftrightarrow \mathcal{I} - st - \lim_{k \to \infty} ||x_k - x||_{\infty} = 0.
$$

It is sufficient to show that (x_k) is *I*-st-Cauchy sequence with respect to n-norm if and only if it is *I*-st-Cauchy sequence with respect to *∥.∥∞.* Let (*xk*) is *I*-st-Cauchy sequence with respect to n-norm. Then there exists $N \in \mathbb{N}$ such that for $k, m \ge N$ we have

$$
\left\{ n \in \mathbb{N} : \frac{1}{n} |\{k \le n : ||x_k - x_m, z_2, z_3, ... z_n|| \ge \epsilon\}| \ge \delta \right\} \in \mathcal{I}
$$

Consider,

$$
||x_k - x_m, z_2, z_3, ... z_n|| \ge \epsilon,
$$

Then from lemma 3.3, we have $||x_k - x_m, u_i, u_i, ... u_i|| > \epsilon$ for all $i = 1, 2...n$. Hence max $||x_k - x_m, u_i, u_i, ... u_i|| \geq \epsilon$ for all $i = 1, 2...n$. By definition, it gives $||x_k - x_m||_{\infty} \geq \epsilon$. Therefore (x_k) is *I*-st-Cauchy with respect to $\|.\|_{\infty}$.

4 Conclusion

In this study, we develop the concept of Ideally-statistical convergence of sequences over n-normed space. Related algebraic and topological properties have been proved. The construction of maxnorm of sequences over n-normed spaces lead to develop criterion for *I*-st-Cauchy sequence to be *I*-st-convergent.

Acknowledgement

The authors are thankful to the anonymous reviewers and the editor, whose helpful suggestions added greatly to improving the quality of this paper.

Competing interests

The authors declare that they have no competing interest.

References

- [1] Fast H. Sur la convergence statistique. Colloq.Math. 1951;2:241-244.
- [2] Maddox IJ. Some properties of paranormed sequence spaces. J. London. Math.Soc. 1969;1:316- 322.
- [3] Fridy JA. Orhan C. Lacunary statistical convergence. Pacific J. Math. 1993;160:43-51.
- [4] Kostyrko P, Šalát T, Wilczyński W. I-convergence. Real Anal. Exch. 2000;26(2):669-686.
- [5] Demirci K. I-limit superior and limit inferior. Math. Commun. 2001;6:165-172.
- [6] Das P, Kostyrko P, Malik P, Wilczy´nski W. *I* and *I ∗* -convergence of double sequences. Math. Slovaca. 2008;58:605-620.
- [7] *Šalát* T, Tripathy BC, Ziman M. On some properties of I-convergence. Tatra Mt. Math. Publ. 2004;28:279-286.
- [8] Khan N. Classes of i-convergent double sequences over n-normed spaces. Journal of Function Spaces. 2016;7. Article ID 7594031 Available:https://doi.org/10.1155/2016/7594031
- [9] Sahiner A, Gürdal M. Ideal convergence in n-normed spaces and some new sequence spaces via n-norm. Journal of Fundamental Sciences. 2008;4:233-244.
- [10] Gähler S. Linear 2-normietre. Räme, Math. Nachr. 1965;28;1-43.
- [11] Misiak A. n-inner product spaces. Math. Nachr. 1989;140;299-319.
- [12] Gunawan H. The space of p-summable sequence and its natural n-norm. Bull. Aust. Math. Soc. 2001;64;137-147.
- [13] Gunawan H. n-inner product, n-norms and the Cauchy-Schwartz inequality. Sci. Math. Jpn. 2001;5:47-54.
- [14] Gunawan H, Mashadi. On n-normed spaces. Int. J. Math. Sci. 2001;27:631-639.
- [15] Yamanci U, Gurdal M. I-statistical convergence in 2-normed space. Arab Journal of Mathematical sciences. 2014;20(1):41-47.
- [16] Sava¸s E. Some new sequence spaces defined by bounded variation in 2-normed spaces. Filomat. 2019;33(2):483-492.
- [17] Savaş E. On two-valued measure and double statistical convergence in 2-normed spaces. J. Inequal. Appl. 2013;347:11.
- [18] Savaş E. Some new double sequence spaces defined by orlicz function in n-normed space. Journal of inequalities and applications; 2011. Article Number: 592840

——- *⃝*c *2020 Khan and Shatarah; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribu-tion and reproduction in any medium, provided the original work is properly cited.*

Peer-review history:

The peer review history for this [paper can be accessed here \(Please copy paste t](http://creativecommons.org/licenses/by/2.0)he total link in your browser address bar)

http://www.sdiarticle4.com/review-history/60892