

11(1): 1-12, 2019; Article no.AJEBA.48036 ISSN: 2456-639X

Wenqing Liu¹, Daniel Yuh Chao¹, Mike Y. J. Lee^{1,2*} and Tingyu Chen¹

 ¹Department of Management Information Systems, National Chengchi University, No. 64, Sec. 2, ZhiNan Rd., Wenshan Dist., Taipei City 11605, Taiwan (R.O.C).
²Department of Business Administration, China University of Technology, No. 56, Sec. 3, Xinglong Rd., Wenshan Dist., Taipei City 11695, Taiwan (R.O.C).

Authors' contributions

This work was carried out in collaboration between all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJEBA/2019/v11i130120 <u>Editor(s):</u> (1) Dr. Gerasimos T. Soldatos, American University of Athens, Greece. <u>Reviewers:</u> (1) Pedro Miguel Alves Ribeiro Correia, University of Lisbon, Portugal. (2) Dr. Sachin Kamley, Samrat Ashok Technological Institute, India. (3) Romer C. Castillo, Batangas State University, Philippines. Complete Peer review History: <u>http://www.sdiarticle3.com/review-history/48036</u>

Original Research Article

Received 07 February 2019 Accepted 21 April 2019 Published 27 April 2019

ABSTRACT

Aims: In this paper, we try to study the evolution and emerging trends of High Frequency Trading (HFT) research by examining papers published in the Web of Science (WOS) between 1993 and 2017.

Study Design: A total of 241 papers were included, and 1876 keywords from these articles were extracted and analyzed.

Place and Duration of Study: For tracing the dynamic changes of the HFT Research, the whole 24 year was further separated three consecutive periods: 1993-2002, 2003-2012, and 2013-2017.

Methodology: The Ucinet is adopted to get keywords network, or knowledge network, to study the relationship of each research theme. NetDraw was applied to visualize network. We used social network analysis (SNA) technique to reveal patterns and trends in the research by measuring the association strength of terms representative of relevant publications produced in HFT field.

Results: Results indicate that HFT research has been strongly influenced by "market", "prices",

"finance", "liquidity", "statistics", "financial markets", "stock", "stochastic", "model" and "trades" as shown in Table 1, which represent some established research themes. They are major focuses and the bridges connecting to other research themes in HFT. The detailed analysis in results and discussion provides an overview of evolution and emerging trends in HFT Research. **Conclusion:** It concludes that market performance related keywords, which represent some established research themes, have become the major focus in HFT research. It also changes rapidly to embrace new themes. Especially, this research may make contribution to enlarge research method in that there is no SNA research in HFT research before.

Keywords: High frequency trading; HFT; social network analysis; SNA; emerging trends.

1. INTRODUCTION

As the stock market has become nearly exclusively electronic, advances in computer technology and automated algorithm trading have speeding the transmission and execution of security transaction orders, and thus establishing High Frequency Trading (HFT) [1]. HFT is an emerging, ever changing and rapidly evolving area with highly interdisciplinary in nature for the markets, regulators, and the public [2]. This diversity may root from the emerging nature of computing technology and its wide appeal as well as unique researcher and practitioner Many academics raised the viewpoints. controversy concerning about HFT [3]. Even SEC Division of Trading and Markets Director Brett Redfearn admitted, "There are a lot of different definitions of HFT." The diverse issues and findings in the field of HFT represent the introduction of ideas and even new concepts about HFT. What are the areas of focus in HFT? What are the developing trends in current research? Keywords have been generally identified as the words that reflect the research themes of individual publications that concern researchers. Further. keywords network represents relationships of keywords among HFT papers. When two keywords occur in a same article, it is an indication of connection between the themes which they represent. Therefore, a comprehensive network perspective analysis is required to reveal the developmental trends or future orientation of possible new research field from HFT.

Social network analysis (SNA), sometimes also referred to as "structural analysis" [4], is a broad strategy for investigating social structures. For measurement, social network analysis (SNA) measures are a vital tool for understanding the behavior of networks and graphs. These algorithms use graph theory to calculate the importance of any given node in a network [5]. When they're well implemented, SNA measures allow the analyst to cut through noisy data and hone into the parts of a network that require further attention.

In this paper, our focus is to construct and analyze keywords network by using the Social network analysis (SNA) techniques which have already been widely applied in many disciplines of science. Specifically, this study will quantitatively analyze existing empirical and theoretical HFT papers to address the following objectives:

- To construct keywords network from HFT papers published in world leading journals during the period from 1993 to 2017.
- To investigate the characteristics of keywords network of HFT papers by utilizing Social Network Analysis (SNA) techniques.
- To find and compare the changes in keywords network of HFT papers over time.

These investigations can help researchers to realize the breadth of HFT research and to establish future research directions and to provide an entry point to any academic, regardless of their prior knowledge of the theme.

2. METHODOLOGY

2.1 Publication Search

The objective of the present work is to identify the important keywords from the scientific output on the latest advances in HFT, and to describe the characteristics of the network of keywords of HFT research. To achieve these goals, we selected the Web of Science (WOS), which includes SCIE and SSCI and A&HCI from the Institute of Scientific Information (ISI) Web of Science databases. WOS is the most important and frequently used source for a broad review of scientific accomplishment in all research fields [6]. We constructed a database composed of keywords from HFT papers published in the WOS during the 24-year period from 1993 to 2017. The keywords were obtained from following two sources: (1) Author Keywords and (2) Keywords Plus in the ISI database [7].

2.2 Refinement of Keywords and Keywords Databases

Due to different words may represent same or similar ideas and concepts, we standardize the keywords before constructing the keywords network. The basic rule for the refinement of keywords was that all keywords with identical meaning or similar ideas or concepts or even misspelled keywords from different articles will be grouped and considered as a single keyword. This refinement leads to a meaningful keywords database. The example of SNA steps in literature-based research was shown in Fig. 1.

2.3 Constructing Keywords Network

The construction of keywords network is based on three continuous stages which include data collection, data extraction, and data transformation. During the data extraction stage, core keywords are identified from HFT papers and are changed to a standard form. Then in the data transformation stage, all the refined keywords will be input to the most popular social network research tool, Ucinet 6 for Windows [8] to get keywords network, or knowledge network, to study the relationship of each research theme.

2.4 Centrality Measures of the SNA Network

Network centrality [9] in the keywords network can measure the degree of relations among keywords. Social network analysis (SNA) measures include measuring degree centrality, betweenness centrality, closeness centrality, EigenCentrality or PageRank for each network quantitatively [10]. In order to understand the characteristics of the overall keywords network in HFT research, we selectively used betweenness centrality measuring to study the relationship of each research theme. Betweenness centrality is the extent to which a node lies on the paths between other nodes. It is measured as the fraction of the shortest paths between all pairs of other nodes in the network containing the node. A keyword that lies between two distinctive research themes can have high betweenness centrality even though it may have a small number of connections to other keywords in each theme [11]. In the keywords network, this represents the importance of a keyword in bridging subsets of keywords.

Fig. 1. Example of SNA steps in literature based research

2.5 Network Visualizations

Network visualizations is generally known as network mapping which can be generated from raw network data within Netdraw, a mapping program in Ucinet. NetDraw was applied to visualize network. It helps to obtain a clear sense of connectivity of keyword networks and to illustrate the overall patterns of networks over time. This method enables the researchers to explicitly understand representation of emerging themes.

3. RESULTS AND DISCUSSION

3.1 Keywords Network

Fig. 2 shows keywords network by co-occurrence (1993-2017). The nodes are the keywords. The size of nodes can reflect the frequency of keywords. Larger size of node means higher frequency of occurrence of keyword. The lines between two nodes stand for the associations of two keywords, or represent the co-occurrence of these keywords in a paper. The thickness of line indicates the co-occurrence frequency of keyword pairs, or represents the number of times each pair of keywords was mentioned together in papers. The thickness of line is proportional to the closeness of connections between two keywords. The thicker line between two keywords, the closer their relationship is. The more co-occurrence between two keywords, the closer their relationship is. It shows the strength of the connection. According to Fig. 2, we can see that keywords such as "market", "prices", "statistics", "liquidity", "financial "finance". markets", "stock", "stochastic", "model" and "trades" became important keywords, which means that they have played an important role in bridging other research themes.

3.2 Betweenness Centrality Measuring for All Period (1993-2017)

Keywords serve as an indicator of the importance of the research themes they represent. The top ten keywords from betweenness centrality measuring for all period (1993-2017) are "market", "prices", "finance", "liquidity", "statistics", "financial markets", "stock", "stochastic", "model" and "trades" as shown in Table 1. The results indicate that these research themes are major focuses and the bridges

connecting to other research themes in HFT. These findings show that these research themes attract more attention and have a closer relationship with other research themes in HFT. Notice that keywords like "High Frequency Trading" and "Algorithm(s)" have very broad meanings. Due to this kind of keywords are meaningless for this study, we excluded them from the above analysis.

3.3 Changes in Important Keywords Over Time

How have the important keywords changed over time and what are the recent important keywords? In order to trace dynamic changes of the HFT Research, the whole 24 year was further separated three consecutive periods: 1993-2002. 2003-2012, and 2013-2017. We constructed three keywords networks as shown in Figs. 3 to 5. For showing statistics of keywords network in different time slices, we compared the rank of the important keywords in the three keywords networks constructed as shown in Fig. 6 in order to thoroughly and precisely analyze the variations of trends. Please notice that the important keywords are from top ten keywords in Table 1. For the full lists of keywords in these three periods, see Appendix A through Appendix C.

This comparison reveals some notable results. "Market" revealed to be the most important keyword by betweenness centrality measuring for all three periods, because it has received consistent upward attention. "Stock" even received sharply upward attention since 1993 until 2017. "Liquidity" and "finance" and "financial markets" are emerging theme since 2003 year due to they were not appeared in period of 1993 to 2002. "Model" and "trades" were paid growing attention from 1993 through 2012 period, while 2013 to 2017 were not. The reason may be that "model" and "trades" are viewed as common sense already in HFT research until recent years. "Prices" and "stochastic" emerged since 2003 year, but they were paid less attention from 2013 through 2017 period. The above analysis provides an overview of HFT research and it concludes that market performance related keywords, which represent some established research themes, have become the major focus in HFT research. It also changes rapidly to embrace new themes.

Liu et al.; AJEBA, 11(1): 1-12, 2019; Article no.AJEBA.48036

Fig. 2. Keywords network by co-occurrence (1993-2017)

Fig. 3. Keywords network by co-occurrence (1993-2002)

Liu et al.; AJEBA, 11(1): 1-12, 2019; Article no.AJEBA.48036

Fig. 5. Keywords network by co-occurrence (2013-2017)

Fig. 6. Changes in important keywords over time

1993 - 2017				1993 - 2017			
rank	Keywords		rank	Keywords			
1	High-frequency trading	20972.666	46	costs	479.408		
2	Algorithms	14873.707	47	empirical-analysis	428.283		
3	market	11343.833	48	quality	425.657		
4	prices	9020.214	49	volume	425.474		
5	Finance	8998.353	50	variance	420.01		
6	Liquidity	8372.251	51	sociology	403.265		
7	Statistics	6550.62	52	power	381.97		
8	Financial markets	6365.009	53	Technical analysis	378.11		
9	stock	5479.472	54	Foreign exchange	343.948		
10	Stochastic	5255.224	55	universal portfolios	339.003		
11	model	5207.57	56	impact	305.744		
12	trades	4817.368	57	Exchange rate	291.833		
13	systems	4643.722	58	Prediction	284.327		
14	dynamics	4483.216	59	options	283.819		
15	time	3957.8	60	equilibrium	253.83		
16	volatility	3471.744	61	competition	241.319		
17	management	3040.512	62	Agent-based modelling	209.288		
18	information	2945.935	63	Innovation	207.791		
19	Order flow	2761.069	64	neural-networks	194.051		
20	strategies	2683.609	65	individual investors	186.9		
21	performance	2651.219	66	covariance	172.821		
22	Efficiency	2355.799	67	Content-based	161.023		
23	behavior	1895.172	68	bid-ask spread	158.613		
24	Market microstructure	1890.566	69	decision	150.691		
25	optimization	1622.698	70	sharpe ratio	140.984		
26	returns	1461.738	71	evolution	129.907		
27	index	1404,703	72	profitability	124.693		
28	limit order book	1389.61	73	selection	123,284		
29	canital	1313 427	74	Manipulation	117 729		
30	portfolio	1312 679	75	turbulence	115 056		
31	arbitrage	1276 097	76	execution costs	98 260		
32	Latency	12/7 031	77	law/	0/ 131		
32	futures	1177 844	78	rules	85 183		
24	socurition	1120 502	70	Load log relationship	92 500		
34	technology	1065.072	/9	Leau-lay relationship	76.026		
30	technology	1005.972	00	exchange	70.930		
30	nsk .	1020.679	81	Adverse selection	70.177		
37	investment	974.707	82	Approximation	68.299		
38	economics	806.251	83	experience	63.362		
39	news	750.328	84	ask	51.969		
40	transactions	713.42	85	Asymmetry	40.406		
41	Automation	681.092	86	Codings	40.025		
42	diffusion	652.382	87	dealer	39.832		
43	distributions	584.501	88	classification	39.252		
44	crashes	532.398	89	speculative prices	38.483		
45	Online learning	501 978	90	Intraday	38 163		

Table 1:Betweenness centrality measuring for all period (1993-2017)

4. CONCLUSION

In this article, we used social network analysis (SNA) technique to give a comprehensive understanding of HFT research during 1993 to 2017. We obtain some clear and reasonable results which can provide useful insights to better understand evolution and emerging trends in HFT research.

Results indicate that HFT research has been strongly influenced by "market", "prices", "finance", "liquidity", "statistics", "financial markets", "stock", "stochastic", "model" and "trades", which represent some established research themes. They are major focuses and the bridges connecting to other research themes in HFT. "Market" revealed to be the most important keyword by betweenness centrality measuring for all three periods, because it has received consistent upward attention. "Stock" even received sharply upward attention since 1993 until 2017. "Liquidity" and "finance" and "financial markets" are emerging theme since 2003 year due to they were not appeared in period of 1993 to 2002. "Model" and "trades" were paid growing attention from 1993 through 2012 period, while 2013 to 2017 were not. The reason may be that "model" and "trades" are viewed as common sense already in HFT research until recent years. "Prices" and "stochastic" emerged since 2003 year, but they were paid less attention from 2013 through 2017 period. The above analysis provides an overview of HFT research and it concludes that market performance related keywords, which represent some established research themes, have become the major focus in HFT research. It also changes rapidly to embrace new themes.

This research is just a preliminary and still has limitations need to be addressed. The main limitation of SNA technique is that it is just one of the tools that can be used to understand evolution and emerging trends in HFT research. It is just one piece of the puzzle. Subject matter experts are needed to provide a context for the research. On the other hand, this study tries to explore the evolution and emerging trends in HFT papers published in world leading journals but the Web of Science database may not completely cover the scientific research of HFT.

In the future, comparative research with other method in the same HFT field could also be explored because different methods may have very different research emphases which would also be worthy of further exploration to extend HFT research theme.

This study utilizes the advantage of SNA technique and such keywords analysis might be helpful to stimulate further research or identify some fruitful future research opportunities.

ACKNOWLEDGEMENT

We want to grate everyone, who has supported the creation of this work, although any errors are our own and should not tarnish the reputations of these esteemed persons. Special thanks to Jerome Chih-Lung Chou who provided insight and expertise that greatly assisted the research.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Brogaard J, Carrion A, Moyaert T, Riordan R, Shkilko A, Sokolov K. High frequency trading and extreme price movements. Journal of Financial Economics. 2018;128(2):253-265.
- Chung KH, Lee AJ. High-frequency trading: Review of the literature and regulatory initiatives around the world. Asia-Pacific Journal of Financial Studies. 2016;45(1):7-33.
- Kirilenko A, Kyle AS, Samadi M, Tuzun T. The flash crash: High-frequency trading in an electronic market. The Journal of Finance. 2017;72(3):967-998.
- 4. Wellman B, Berkowitz SD, (Eds.). Social structures: A network approach. Cambridge: Cambridge University Press, Archive. 1988;2.
- 5. Available:https://cambridgeintelligence.com/keylines-faqs-socialnetwork-analysis/
- Aghaei Chadegani A, Salehi H, Yunus M, Farhadi H, Fooladi M, Farhadi M, Ale Ebrahim N. A comparison between two main academic literature collections: Web of Science and Scopus databases. Asian Social Science. 2013;9(5):18-26.
- Zhang J, Yu Q, Zheng F, Long C, Lu Z, Duan Z. Comparing keywords plus of WOS and author keywords: A case study of patient adherence research. Journal of the Association for Information Science and Technology. 2016;67(4):967-972.
- Borgatti SP, Everett MG, Freeman LC. Ucinet for Windows: Software for social network analysis. Harvard, MA: Analytic Technologies; 2002.
- Larsen EN. An introduction to structural analysis: The network approach to social research: SD Berkowitz, Toronto: Butterworth; 1986.
- Available:https://cambridgeintelligence.com/keylines-faqs-socialnetwork-analysis/
- 11. Freeman LC. Centrality in social networks conceptual clarification. Social Networks. 1978;1(3):215-239.

		1993 - 2002	
No.	rank	Keywords	
8	1	futures	91.474
1	2	arbitrage	69.006
11	3	index	68.29
27	4	volume	68.29
26	5	volatility	46.118
5	6	crashes	9.371
14	7	market	9.371
2	8	bid-ask spread	C
3	9	components	C
4	10	costs	C
6	11	distributions	C
7	12	equilibrium	C
9	13	High-frequency trading	C
10	14	hypothesis	C
12	15	information	C
13	16	margin requirements	C
15	17	Market microstructure	C
16	18	model	C
17	19	performance	C
18	20	profitability	C
19	21	returns	C
20	22	risk	C
21	23	securities	C
22	24	speculative prices	C
23	25	stock	C
24	26	trades	C
25	27	variance	C

Appendix A Betweenness centrality measuring for the first sub-period (1993-2002)

		Deturner or tellt	Appe	endix	В	ad auto presided (2002, 2012)	
		Betweenness centrality	measuring t	or the	e secol	nd sub-period (2003-2012)	
NIa	male	2003 - 2012 Karawanda		NIa	nonle	2003 - 2012 Karawanda	
INO.	rank	Keywords	2722.200	110.	rank	Keywords	01 544
C CO	1	Algorithms	2723.209	119	40	risk accoromica	21.041
110	2	righ-frequency trading	1947.709	44	47	economics futures	21.007
113	3	prices	1943.302	02	40	Tutures	19.741
153	4	volatility	1592.97	13	49	Did-ask spread	18.193
80	5	market	1400.007	149	50	Value-at-risk	15.594
129	6	Stocnastic	1124.416	/5	51	Intraday	12.218
136	1	systems	1108.412	15	52	Boosting	2.133
144	8	trades	844.66	1	53	1st passage	0
128	9	Statistics	844.355	2	54	Active measurement	0
131	10	strategies	776.203	3	55	Adaptive trader-agents	0
92	11	model	714.488	4	56	Agent-based modelling	0
141	12	time	550.082	6	57	amorphous solids	0
84	13	Liquidity	393.819	7	58	anomalous diffusion	0
73	14	information	387.353	8	59	Approximation	0
12	15	behavior	379.06	10	60	Asynchronous data	0
55	16	Finance	330.972	14	61	Binary classification	0
87	17	Market microstructure	305.516	16	62	C33	0
130	18	stock	276.927	17	63	C41	0
41	19	distributions	198.327	18	64	C50	0
137	20	Technical analysis	190.978	19	65	cascades	0
95	21	news	186.846	20	66	choice	0
80	22	Latency	164.73	21	67	classification	0
9	23	arbitrage	163.332	22	68	Cloud computing	0
45	24	Efficiency	135.079	23	69	Codes of conduct	0
46	25	empirical-analysis	134.262	24	70	Codings	0
100	26	Order flow	130.235	25	71	Commodity hardware	0
58	27	Foreign exchange	128.547	26	72	Common factor	0
76	28	investment	128.284	27	73	Commonality	0
118	29	returns	114.102	28	74	competition	0
83	30	limit order book	109.02	29	75	component analysis	0
56	31	Financial markets	97.433	30	76	components	0
107	32	performance	87.288	31	77	continuous double auction	0
71	33	index	56.19	32	78	costs	0
115	34	profitability	56.01	33	79	covariance	0
36	35	decision	55.881	34	80	crashes	0
52	36	experience	54.663	35	81	Data stream processing	0
50	37	Exchange rate	52.486	37	82	Detrending	0
70	38	impact	50.131	38	83	diffusion	0
98	39	optimization	45.131	39	84	disposition	0
121	40	securities	34.477	40	85	Distributed processing	0
116	41	rate dynamics	31.575	42	86	dynamics	0
154	42	volume	30.481	43	87	EaaS	0
11	43	Automation	26.278	47	88	equilibrium	0
112	44	Prediction	26.052	48	89	error-correction	0
94	45	neural-networks	22.656	49	90	evolution	0

		2013 - 2017	y measuring			2013 - 2017	
No	rank	Keywords		No	rank	Keywords	
163	1	High-frequency trading	15349 117	255	46	options	322 945
10	2	Algorithms	9033,231	277	47	power	320 466
217	3	market	8454 144	248	48	news	298 916
211	4	Liquidity	7070 412	365	49	volume	244 794
143	5	Finance	6733.11	362	50	variance	210.176
144	6	Financial markets	5455 364	246	51	neural-networks	206 152
280	7	prices	5301 453	7	52	Agent-based modelling	185 942
333	8	stock	5137 49	279	53	Prediction	181 464
331	9	Statistics	4706 375	62	54	competition	168 874
234	10	model	3940 322	171	55	impact	158 898
353	11	trades	3479 517	74	56	Content-based	144 998
111	12	dynamics	3275 315	309	57	selection	135 227
346	13	systems	2731 716	203	58	law	107.017
275	14	nortfolio	2696 57	216	59	Manipulation	104 194
332	15	Stochastic	2543 021	120	60	empirical_analysis	97 351
215	16	management	2533 632	305	61	rules	95.875
256	17		2000.002	83	62	covariance	85 314
352	18	time	2174.244	181	63	Innovation	85 282
180	19	information	2104.56	127	64	equilibrium	79 572
260	20	nerformance	1684 337	178	65	individual investors	77 577
203	20	ontimization	1560 585	134	66	exchange	75.6
117	22	Efficiency	1499 502	33	67	hid-ask spread	74 350
44	23	canital	1204 612	136	68	execution costs	68 596
297	24	returns	1120 310	6	69	Adverse selection	64 104
31	25	hehavior	1043 882	315	70	sharne ratio	58 98/
210	26	limit order book	081 /2	3/8	70	Technical analysis	53 715
349	20	technology	929 715	17	72	ack	52 004
218	28	Market microstructure	885.26	135	72	Exchange rate	48 534
175	20	index	855 817	22	74	Asymmetry	45.004
364	30	volatility	833 310	130	75	facts	42 178
1/	31	arbitrage	755.86	0/	76	dealer	35 /65
200	32	rick	752 568	34	70	book	33.400
209	33	securities	745.66	07	78	decision	31 873
101	34	invectment	711 8/3	132	70	evolution	31.073
155	35	futuros	635 551	102	80	issues	27 821
354	36	transactions	618 7/3	327	81	sproad	27.021
324	30	etrataniae	500 264	106	82	discovery	20.040
202	38	Latency	570 702	100	82	Evolutionany computation	22.218
202	30		500 524	236	84	Momentum	18 850
102	10	diffusion	405 750	200	94	classification	17 17/
116	40	aconomics	456,811	245	88	networks	16.005
285	41	quality	400.011	100	87	Inventory risk	16.062
200	42	sociology	410.741	190	0/	aggressiveness	15 195
021	43	costs	409.009	122	00	ayyressiveness	14 707
02	44	orachao	401.1/8	123	09	encopy	14.797
64	40	CIASTIES	334.0/3	89	90	CIUSS-Section	14.07

Appendix C

© 2019 Liu et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://www.sdiarticle3.com/review-history/48036