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ABSTRACT

This paper presents a novel explanation of the cause of quantum probabilities and the Born
rule based on the intuitionistic interpretation of quantum mechanics where propositions obey
constructive (intuitionistic) logic. The use of constructive logic makes it possible (through a
replacement of the concept of truth with the concept of constructive probability) to abandon the law
of excluded middle in the intuitionistic interpretation.
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1 INTRODUCTION

Whence comes indeterminism in physics?
Really, assuming that the Schrödinger dynamics
is universally valid, i.e., that each process in
physics is governed by the (linear differential)
Schrödinger equation and so is continuous,
causal, and reversible, how is that there
are processes involved in measurement that
are indeterministic, i.e., whose outcomes are
probabilities? It is no exaggeration to say that
the problem this question relates to is the most
difficult in the foundation of quantum mechanics.

Under the Copenhagen interpretation, quantum
probabilities enter physics through the Born rule,
which cannot be investigated as it is a postulate
of the theory (the same one as the Schrödinger
equation is). However, the problem with such an
ab initio postulation is not that it does not offer
any deeper understanding of how probabilities
come into existence. The real problem here is
that there is nothing inherent in the Copenhagen
interpretation that can either reject the mutual
application of the Schrödinger equation and the
Born rule to a system of interest or select one
postulate over another [1].

Hence, attempts to understand the cause of
indeterminism in quantum physics are being
made beyond the Copenhagen interpretation.

For example, in the relative state (also referred
to as many-worlds) interpretation (henceforward
RS/MWI for short), the behavior of a rational
agent in quantum-mechanical situations is
thought to provide a natural account of the
probability concept [2, 3, 4, 5, 6]. As it is
argued in the quantum-mechanical version of
decision theory, being strongly constrained in
their behavior the rational agents would quantify
their subjective uncertainty in the face of the wave
function “splitting” (or “branching”) by the use of
probability given by the Born rule.

But then the fact that the RS/MWI contains
neither element nor quality nor attribute related
to a notion of belief makes a doubt if there be

a way to derive probabilities i.e., degrees of
beliefs from such an interpretation.1 What is
more, even if this notion had been added to
the RS/MWI, it still would be flatly inconsistent
with the universally applicable (deterministic)
Schrödinger dynamics and the splitting picture
[9]. Such an argumentation may explain why no
decisive conclusion on the possibility of emergent
probabilities and randomness in the RS/MWI has
been reached yet.

Meanwhile, the decoherence program is seeking
the solution to the problem of the origin of
quantum probability by including the environment
but without relying on the key elements of
decoherence that presume the Born rule and
would thus render the contention circular [10, 11].
For example, as it has been proposed in the
decoherence program, the Born rule is originated
from the environment-assisted invariance (in
other words, from a symmetry of composite
quantum states) [12, 13, 14].

But then again, it is hard to see how probabilities
can emerge within the framework, in which only
unitary evolutions (without collapse mechanism)
are allowed and thus there do not exist
measurement outcomes, that is, the bearers of
probabilities.2

So, the intention of this paper is to give
explanation of the cause of quantum probabilities
and the Born rule using a completely different
approach. The key idea is to employ the
intuitionistic interpretation of quantum mechanics
[17] in which propositions concerning quantum-
mechanical situations obey constructive
(intuitionistic) logic. As the objects of belief
that bear logical values (‘true’ ⊤ and ‘false’ ⊥)
[18], propositions let one pave the way for the
entrance of a probabilistic concept into quantum
theory. Also, the use of intuitionistic logic makes it
possible (through a replacement of the concept of
truth with the concept of constructive provability)
for the assumption of the universal validity of
the Schrödinger dynamics to become weaker.
Such a deregulation allows one to drop the law of
excluded middle in the intuitionistic interpretation

1The concept of an agent’s degree of confidence, a graded belief, is one of the main concepts of
probability. See papers [7, 8] that analyze in depth this and other concepts of probability.

2According to the propensity, subjective, and logical interpretations of probability, measurement
outcomes (or events) are the bearers of probabilities; see, for example [15, 16].
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so that the last-named does not “fall victim to
Schrödinger’s cat and the like” [19].

The rest of the paper is structured as follows: The
essence of the points maintained in the paper
is put in the next Section 2, while the Section 3
concludes the arguments of this paper.

2 HOW IRREDUCIBLE
PROBABILITIES APPEAR
IN THE INTUITIONISTIC
INTERPRETATION

Assume that a (typical microscopic) system S,
whose pure quantum states are determined by

the eigenstates |a1⟩ and |a2⟩ of the observable
A (that takes on only two possible values a1 and
a2), interacts for the duration of the measurement
t with a (typical macroscopic) apparatus M
designed to measure (observe) A.

Suppose that the state of the system S is
a superposition |ψ⟩ = c1|a1⟩ + c2|a2⟩ where
coefficients c1 and c2 meet with the normalization
condition c1

2 + c2
2 = 1 (whose reason will be

explained later). In this case, the sample space
of the measurement – i.e., the set of all possible
outcomes of the measurement of the observable
A – can be defined as Ω ≡ {a1, a2}. Let us
evaluate the following proposition:3

({a1, a2}) ≡
(
({a1})⊕ ({a2})

)
≡

((
({a1}) ∨ ({a2})

)
∧
(
¬ ({a1}) ∨ ¬ ({a2})

))
, (2.1)

where ⊕ stands for the logical operation of exclusive disjunction (corresponding to the construct
“either ... or”) that outputs ‘true’ only when its inputs – i.e., the propositions of events {a1} and
{a2} (subsets of {a1, a2}) – differ, namely, ({a1}) ̸= ({a2}). The proposition ({a1, a2}) is logically
equivalent to the assertion that there is a final (i.e., at the moment t in the last part of the measurement)
state |Ψt⟩ of the composite system S +M in which the observable A has a definite value, in other
words, there is an event which contains only one true outcome – either {a1} or {a2} in the sample
space {a1, a2} of the measurement.

Consider the first part of the compound expression (2.1), that is, the proposition (({a1}) ∨ ({a2})). In
view of the fact that this proposition contains the logical constant ∨, constructive logic [20] (adopted in
the intuitionistic interpretation of quantum mechanics presented here) requires that if this proposition
is asserted to be true, then witness must be given, which chooses ({a1}) or ({a2}) and provides
(an explicit, constructive) proof for it.4 What counts as “witness” is open to interpretation though. In
the said case, witness can be understood as an outcome of either an actual measurement of A or
a decision problem that determines the logical value of the proposition (({a1}) ∨ ({a2})) before the
actual measurement of A.

This decision problem can be defined as the following propositional formula:

(
({a1}) ∨ ({a2})

)
≡

(
|Ψt⟩ = |a1⟩|M1⟩ ∨ |Ψt⟩ = |a2⟩|M2⟩

∣∣∣P (|Ψt⟩)
)

, (2.2)

3In this paper, propositions and statements are used interchangeably and denoted (if not stated
otherwise) as enclosed in parentheses expressions (·) which are capable of being true or false.

4Another logical constant whose interpretation requires constructive proof is ∃.
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where |M1⟩ and |M2⟩ represent mutually
orthogonal quantum states ofM , both orthogonal
to |M0⟩ (which is the initial – i.e., at the moment
t = 0 preceding the measurement – quantum
state of M , so-called ready state), corresponding
to different macroscopic configurations of M
similar to different positions of a pointer along
a scale, while P (|Ψt⟩) represents a statement
– i.e., a predicate – that may be true or false
depending on the particular final state |Ψt⟩ of the
composite system S +M .

By contrast, when the state of the system
S is just one of the eigenstates |an⟩ of the
observable A, that is, |ψ⟩ = |an⟩ (where n ∈
{1, 2}), the sample space of the measurement
correspondingly consists of a single element, i.e.,
Ω ≡ {an}. In the given case, a witness for
the proposition of the elementary event ({an})
(asserting that in the final state |Ψt⟩ = |an⟩|Mn⟩
the observable A has the definite value an) is

required to do nothing but only exist if ({an}) is
true. Therefore, the proposition ({an}) can be
treated in accordance with the laws of classical
logic [21]. In particular, the following propositional
expression

({an}) ≡ (|an⟩|Mn⟩) = ⊤ (2.3)

(where symbol = positioned after the parentheses
defines the notion of evaluation) can be taken as
a postulate assuming the eigenvector-eigenvalue
link the perfect correlation between the initial
state |an⟩ of the system S and the final state
|Mn⟩ of the apparatus M .5

Let us return to the propositional formula (2.2).
Since the quantum evolution of the system S+M
is given as |Ψt⟩ = Û(t)|ψ⟩|M0⟩, where Û(t)
stands for the time evolution operator, namely,
Û(t) = exp(−itHS+M/~), the predicate P (|Ψt⟩)
is defined such

P (|Ψt⟩) ≡
((

|Ψt⟩ = Û(t)|Ψ0⟩
)
∧
(
|ψ⟩ = c1|a1⟩+ c2|a2⟩

)
∧
(
∃|M0⟩∈H P (|M0⟩)

))
(2.4)

that it includes the statement (|Ψt⟩ = . . . ) asserting the validity of the Schrödinger dynamics for the
measurement process, the statement (|ψ⟩ = . . . ) declaring the validity of the quantum superposition
principle for the system S, and the statement (∃|M0⟩ . . . ) affirming the existence of the ready state of
the apparatus M as a quantum state vector |M0⟩, in which H denotes an abstract (separable, infinite-
dimensional) Hilbert space and P (|M0⟩) stands for the propositional function of the vector |M0⟩.

As it follows, to assign a logical value to the proposition (({a1}) ∨ ({a2})) in advance of the measurement,
the predicate P (|Ψt⟩) must be calculated. But to do so, a witness is required that can provide
computational evidence supporting the statement (∃|M0⟩ . . . ) since this is the one in the formula
(2.4) that involves the existential quantification ∃.

Were the state vector |M0⟩ to exist, it would be a vector of the Hilbert space HM ⊆ H of the apparatus
M (as much as the state vectors |M1⟩ and |M2⟩ would be). From another side, the eigenvectors |Mn⟩
of the Hamiltonian operator HM corresponding to the total energy of the apparatus M must provide
an orthonormal basis {|Mn⟩} for the Hilbert space HM they span. For this reason, let us consider
the decision problem of the Schrödinger equation Π(HM ) for the Hamiltonian operator HM

Π(HM ) ≡
(
{|Mn⟩} ̸= ∅

)
(2.5)

whose output is taken to be true if the solution set {|Mn⟩}
5Here it is also assumed the absence of degeneracy meaning there is only one eigenstate for

each eigenvalue.
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{|Mn⟩} ≡
{
|Mn⟩∈H

∣∣∣ i~ ∂
∂t

|Mn⟩ = HM |Mn⟩
}

(2.6)

(i.e., the set of all vectors |Mn⟩ for which the
Schrödinger equation with HM holds) is not
empty and ‘false’ otherwise.

Most generally, the decision problem of the
Schrödinger equation can be presented in the
form

Π(HC) ≡
(
∃|u⟩ ∈ H P (|u⟩, HC)

)
, (2.7)

where the predicate P (|u⟩, HC) encloses the
general time-dependent Schrödinger equation

P (|u⟩, HC) ≡
(
i~ ∂
∂t

|u⟩ = HC |u⟩
)

, (2.8)

in which HC symbolizes a completely arbitrary
Hamiltonian operator (which means that the term
HC is free for substitution for any element in the
set of all allowable Hamiltonian operators H) and
the vector |u⟩ represents the exact solution to this
equation.

Contrary to microsystems, a typical macroscopic
object with its uncontrolled and unlimited degrees
of freedom cannot be assigned a specific (i.e.,
explicit, detailed and unambiguous) Hamiltonian
operator HM . This means that the truthfulness
of the statement (∃|M0⟩∈H P (|M0⟩)) would be
secured if and only if the solution set {|u⟩} of the
Schrödinger equation was in no case empty, that
is, the decision problem of this equation had to
be universally true (i.e., had the truth output for
all physical systems), namely,

Π(HC) ↔
(
∃|M0⟩∈H P (|M0⟩)

)
(2.9)

(where – in line with the notion of
constructiveness – the symbol ↔ may be viewed
as an abbreviation of “can be replaced in a proof
with”).

Let us consider the following claim

Π(HC) = ⊤ . (2.10)

It is clear that this claim (logically equivalent
to the assertion of the universal validity of the
Schrödinger dynamics) could be proved if the
Schrödinger equation was capable of being
exactly solved by a generic algorithm, i.e., for
the Hamiltonian operator HC .

However, such an algorithm does not exist (at
least as it is known in the present state of our
knowledge [22]). To be exact, the decision
problem Π(HC) is known to be undecidable, i.e.,
there does not exist a single (generic) method
that can in a finite number of steps correctly
solve this problem for any allowable Hamiltonian
operator H (even though methods of finding the
solution set {|u⟩} of the Schrdinger equation with
some particular H are known).

Indeed, as it is argued in [17], the decision
problem of the Schrödinger equation is parallel
to the general spectral gap problem that asks
whether a given Hamiltonian operator H has
a spectral gap (i.e. the energy difference
between the ground state and the first excited
state of the system in the thermodynamic limit).
To be sure, if there were a generic algorithm
capable of obtaining the solution set {|u⟩}
of the Schrödinger equation for all allowable
Hamiltonian operators H, then such an algorithm
would be able to answer not only the question
whether this solution set {|u⟩} is empty or not but
also the question whether the spectrum of the
eigenvalues corresponding to {|u⟩} is discrete
and gapped or continuous and gapless. Yet,
according to the result of the paper [23], the
general spectral gap problem is undecidable.
One can infer from this conclusion that the
generic algorithm for solving the Schrödinger
equation with an arbitrary HC does not exist
and consequently the decision problem Π(HC)
is undecidable.
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In order to ensure the general undecidability of
this problem, in the intuitionistic interpretation
of quantum mechanics the declaration of
the universal validity of the Schrödinger
dynamics is weakened (in comparison with other
interpretations that are based on classical or
quantum logic). Specifically, it is asserted that
unless one has a proof that for the particular
system Π(H) = ⊤, the Schrödinger dynamics
can be considered only being possibly valid for
this system. Symbolically, this can be written
down as the following entailment

(
∃H Π(H) = ⊤

)
⊢
(
3Π(HC) = ⊤

)
, (2.11)

where 3 stands for the modal operator of

possibility [24]. This entailment assigns the truth
value ⊤ to the proposition “it is possible that
Π(HC)” as a logical consequence of the fact that
for some Hamiltonian operators H the solution
set of the Schrödinger equation can be explicitly
demonstrated6 .

By the axioms of seriality and reflexivity of modal
logic, i.e., 2Π(HC) → 3Π(HC) and 2Π(HC) →
Π(HC) respectively (where 2 is the operator of
necessity), the equality 3Π(HC) = ⊤ suggests
Π(HC) = ⊤ but it equally may be Π(HC) =
⊥. This means that the entailment (11) declares
contingency of the decision problem Π(HC) (in
other words, the outcome of Π(HC) is asserted
to be uncertain). As a result, from the formula
(2.9) one infers the following evaluation

(
∃|M0⟩∈H P (|M0⟩)

)
= {} , (2.12)

where symbol {} represents the lack of the

logical values. The meaning of the evaluation
(2.12) is that the statement asserting the
existence of the state vector |M0⟩ cannot be
decided computationally, i.e., by means of the
Schrödinger equation.

This implies that the predicate P (|Ψt⟩)
presented in the formula (2.4) simply cannot
be known: Its truth or falsehood cannot be
analyzed (computed). The unknowingness
of the predicate P (|Ψt⟩) in turn implies that
it is impossible to assign a definite logical
value to (({a1}) ∨ ({a2})) – and so to the
proposition ({a1, a2}) – in advance of the actual
measurement of the observable A. In other
words, because of the undecidability of the
decision problem Π(HC), the logical values of
the propositions of elementary events ({a1}) and
({a2}) cannot be decided (and thus exist) ahead
of the measurement.

In passing, let us note that postulating the
universal validity of the Schrödinger dynamics
and in this way the existence of the ready
state of the apparatus M as a state vector
|M0⟩, one gets a contradiction known as the
quantum measurement problem (or, to be more
exact, the problem of definite outcomes). Truly,
when the both statements (∃|M0⟩∈H P (|M0⟩))
and (ψ = c1|a1⟩+ c2|a2⟩) are presumed to be
true, the statement asserting the validity of
the Schrdinger dynamics for the measurement
process, (|Ψt⟩ = Û(t)|Ψ0⟩), cannot be true: The
linearity of the Schrdinger equation entails that in
this case the initial state of the composite system
S +M evolves into the following final state

(
c1|a1⟩+ c2|a2⟩

)
|M0⟩

t−→ c1|a1⟩|M1⟩+ c2|a2⟩|M2⟩ , (2.13)

6In contrast to the intuitionistic interpretation, the RS/MWI and the decoherence program infer the
universal validity of the Schrödinger dynamics from the same fact, i.e., (∃H Π(H) = ⊤) ⊢ (Π(HC) =
⊤). Indeed, as it is stated for example in [25], since “there is satisfactory and often excellent evidence”
that the quantum mechanical (QM) framework “is quantitatively valid” and at the same time “there is,
at least at present, no positive experimental evidence that it is not valid in other regions where it
has not been directly tested”, then “the principle of Occam’s razor would certainly suggest that the
intellectually economical attitude is to assume that the general conceptual scheme embodied in QM
is in fact valid for the whole of the physical universe without restriction”.
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in which the symbol + representing the linear superposition cannot be replaced by the coordinating
conjunction “or” such that |Ψt⟩ = |a1⟩|M1⟩ or |Ψt⟩ = |a2⟩|M2⟩ (meaning the inclusive or exclusive
disjunction). So, without supplying an additional postulate (for example, the wave-packet reduction
postulate) or giving a suitable interpretation of the superposition c1|a1⟩|M1⟩+c2|a2⟩|M2⟩, it is impossible
to explain the definite pointer position |Mn⟩ corresponding to the value an, that is, the logical value
‘true’ of the proposition ({a1, a2}), which is always perceived as the outcome of the actual measurement
of the observable A.

Let us now evaluate the intuitionistic (Heyting) negation of the predicate P (|Ψt⟩):

¬P (|Ψt⟩) ≡ ¬¬
((

|Ψt⟩ ̸= Û(t)|Ψ0⟩
)
∨
(
ψ ̸= c1|a1⟩+ c2|a2⟩

)
∨¬

(
∃|M0⟩∈H P (|M0⟩)

))
. (2.14)

From the definition of the decision problem
Π(HC) it follows that its negation, namely,
¬Π(HC) ≡ (∀|u⟩ ∈ H ¬P (|u⟩,HC)), is not
constructively provable: In order to produce direct
evidence of the truthfulness of this negation,
one would have to demonstrate falsity of the
Schrödinger equation, that is, ¬P (|u⟩, HC) ≡(
i~ ∂

∂t
|u⟩ ̸= HC |u⟩

)
= ⊤, for all vectors |u⟩ in the

abstract infinite dimensional Hilbert space H.

Instead, let us consider the double negation
introduction

¬Π(HC) ↔ ¬
(
¬¬Π(HC)

)
, (2.15)

which is a theorem in constructive logic. Since
to prove ¬¬Π(HC) intends to show that the
solvability of the general Schrödinger equation
would not be contradictory, the double negation
¬¬Π(HC) has ‘true’ output when there is no
evidence against universal validity of Schrödinger
dynamics. Otherwise stated, ¬¬Π(HC) = ⊤
holds if Π(HC) cannot be falsified or it is possibly
true.

As it has been already noticed, the truthfulness
of ¬¬Π(HC) (i.e., 3Π(HC) = ⊤) can be inferred
from the existence of any known exactly solvable
quantum model. Thus, from (2.15) it follows that

¬Π(HC) = ⊥ . (2.16)

The last inference means that in the intuitionistic
interpretation not-Schrödinger dynamics is
considered impossible (i.e., false and necessarily
false, that is, 2¬Π(HC) = ⊥).7

Taking into account the negation of the
equivalence (2.9), this impossibility yields

(
¬Π(HC) = ⊥

)
⊢
(
¬
(
∃|M0⟩∈HP (|M0⟩)

)
= ⊥

)
.

(2.17)

At the same time, in view of the deduction
(¬Π(HC) = ⊥) ⊢ (¬P (|uC⟩,HC) = ⊥), where
|uC⟩ denotes a completely arbitrary vector in H,
and the equivalence (holding true for small t or if
the Hamiltonian operatorHS+M does not depend
on t)

(
|Ψt⟩ = Û(t)|Ψ0⟩

)
↔ P (|Ψ⟩, HS+M ) , (2.18)

where the propositional function P (|Ψ⟩, HS+M )
encloses the Schrödinger equation for |Ψ⟩ and
HS+M , one infers that

(
¬P (|uC ⟩,HC) = ⊥

)
⊢
((

|Ψt⟩ ̸= Û(t)|Ψ0⟩
)
= ⊥

)
.

(2.19)

The expressions (2.17) and (2.19) together with
the evaluation (ψ ̸= c1|a1⟩+ c2|a2⟩) = ⊥ (which

7It also generates Π(HC)∨¬Π(HC) ̸= ⊤, which means that in the presented intuitionistic
interpretation of quantum mechanics, the law of excluded middle is not admitted as an axiom.

7
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is trivial if the system S is microscopic8 ), result in
that the negation ¬P (|Ψt⟩) must be false for any
predicate variable |Ψt⟩.

As it follows, the negation of the formula (2.2)
must be ‘false’: (¬ ({a1}) ∧ ¬ ({a2})) = ⊥.

Furthermore, since the predicate P (|Ψt⟩) of
the propositional formula for the second part
of the compound expression (2.1), namely,
(¬ ({a1}) ∨ ¬ ({a2})), is the same as one
presented in the formula (2.4), that is,(

¬ ({a1}) ∨ ¬ ({a2})
)

≡
(
|Ψt⟩ ̸= |a1⟩|M1⟩ ∨ |Ψt⟩ ̸= |a2⟩|M2⟩

∣∣∣P (|Ψt⟩)
)

,

(2.20)

the negation of this part must be ‘false’ too:
(¬¬ ({a1}) ∧ ¬¬ ({a2})) = ⊥.

So, if the propositions ({an}) can be assigned
logical values and for that reason double
negation elimination ¬¬({an}) ↔ ({an})
can be applicable to them, one will get the
following equalities: (({a1}) ∨ ({a2})) = ⊤ and
(({a1}) ∧ ({a2})) = ⊥.

Together these two equalities mean that after
the measurement of the observable A – that is,
in the moment when the records of the logical
values of ({a1}) and ({a2}) are created – these
propositions turn out to be mutually exclusive

({a1, a2}) ≡
(
({a1})⊕ ({a2})

)
= ⊤ . (2.21)

Apropos of the normalization requirement c12 +
c2

2 = 1, let us observe that it would match the
operation of exclusive disjunction (2.21), if the
squared norms c12 and c2

2 were viewed as the
elements of the Boolean domain {⊤,⊥} ≡ {1, 0}
corresponding respectively to the logical values

of the propositions ({a1}) and ({a2}) once these
values were created in the measurement of A.

As regards the squared norms involved,
according to Gleason’s theorem (modified for
the case of two-dimensional state spaces [26]), if
one would like to assign a real valued function
m({an}) ≥ 0 – e.g., a post-measurement
logical value of the proposition ({an}), namely,
m({an}) = ({an}) ∈ {1, 0} – to the vector |an⟩
of the orthonormal set {|a1⟩, |a2⟩} such that the
following sum

m({a1, a2}) = m
(
({a1}) ∨ ({a2})

)
= m ({a1}) +m ({a2}) = 1 (2.22)

holds true whenever the equality entailing the
mutual exclusiveness of the outcome events {a1}
and {a2}

m
(
({a1})∧({a2})

)
= m ({a1})×m ({a2}) = 0

(2.23)

is valid, then the only possible choice is
m({an}) = |⟨an|ψ⟩|2 in which |ψ⟩ is an arbitrary
but fixed vector |ψ⟩ = c1|a1⟩+ c2|a2⟩.

For the sake of clarity and simplicity, let us
suppose that |ψ⟩ is the state of an equal
superposition (i.e., a superposition in which
all the coefficients have equal norms) such
that this state can be written down as |ψ⟩ =
1/

√
2(eiϕ1 |a1⟩ + eiϕ2 |a2⟩) where phases ϕ1

and ϕ2 are real. As it can be readily seen,
in that case the eigenstates |a1⟩ and |a2⟩ are
interchangeable in |ψ⟩ up to the phase factors of
the superposition coefficients c1 and c2, that is,
eiϕ1 |a1⟩ � eiϕ2 |a2⟩.9

On the other hand, the exclusive disjunction
|c1|2 + |c2|2 = 1 demonstrates that only the

8This evaluation is due to the easily verifiable assumption that the microsystem S can be prepared
in two different eigenstates of the observable A and in a superposition of two such states.

9Such an interchangeability results by letting the unitary “swapping” operator Ŝ =
eiϕ1 |a1⟩⟨a2|e−iϕ2 + eiϕ2 |a2⟩⟨a1|e−iϕ1 act on |ψ⟩. This operator satisfies the invariance relation
Ŝ|ψ⟩ = |ψ⟩.
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magnitudes of the superposition coefficients c1
and c2 can correspond to the logical values
{1, 0} of the propositions of elementary events
({a1}) and ({a2}) once these values are
created. That is, the phase factors eiϕ1

and eiϕ2 do not indicate which one of these
propositions become 1. Accordingly, the
symmetry eiϕ1 |a1⟩ � eiϕ2 |a2⟩ possessed by the
equal superposition state |ψ⟩ implies that prior
to the measurement the propositions ({a1}) and
({a2}) are indistinguishable from one another
except for their names, i.e., ({a1}) � ({a2}).

So, considering that the equal superposition state
|ψ⟩ contains no physical evidence favoring one
proposition over another, one can invoke the
principle of indifference [15] and deduce from
the a priori nonexistence of the logical values of
({a1}) and ({a2}) in the state |ψ⟩ that both of
these propositions are equally likely to become 1
during the measurement.10

In a word, due to the fact that the propositions
of elementary events ({a1}) and ({a2})
are indistinguishable (equivalent) in the
equal superposition state |ψ⟩ and after the
measurement correspond to the mutually
exclusive events such that ({a1}) + ({a2}) = 1,
one can assign both of these propositions an
equal probability Pr({a1}) = Pr({a2}) = 1/2 of
coming out 1 in the course of the measurement
as ({a1}) and ({a2}) cannot be evaluated before
the measurement.11

This concludes the presentation of the way in
which irreducible probabilities a central element
of the Born rule appear in the intuitionistic
interpretation of quantum mechanics in the

case of the superposition coefficients of equal
magnitude and the two-dimensional state space
of the measured system S.

The generalization of the presented account to
the case of N coefficients with equal norms
is rather straightforward12 . As to the extension
of the account to the case of the superposition
|ψ⟩ =

∑N
n=1 cn|an⟩ with the coefficients cn of

non-equal magnitudes, it can be achieved by
means of logical theories of probability (see,
for example, [28, 29]) which (in order to save
the principle of indifference and extend it to the
case of unsymmetrical evidence) assert that
the elementary events {an} may be assigned
unequal weights wn (that are nothing more
than replication counts indicating duplicated
observations) and probabilities can be computed
whatever the evidence may be, symmetrical or
not.

Along these lines, let us suppose that the
squared norms of the coefficients cn (of non-
equal in general magnitudes) can be expressed
as a fraction of two positive integers, namely,
|cn|2 = wn/(

∑N
n=1 wn). Then, the proposition of

elementary event ({an}) can be brought into the
following formal form

({an}) ≡
( (

{an}1
)
∨
(
{an}2

)
· · · ∨

(
{an}wn

) )
=

wn∑
i=1

(
{an}i

)
, (2.24)

where the subscript i indicates replicated disjoint
events {an}i which are all identical with respect
to ({an}). The association of the propositions
({an}) with the a priori probabilities Pr({an}) =

10This inference is in line with Jayne’s invariance condition [27] according to which equal
probabilities should be assigned to equivalent propositions.

11The premeasurement logical values of the propositions ({an}) cannot be found (computed)
by means of the Schrödinger equation and since not- (i.e., other-than-) Schrödinger dynamics is
impossible, the probabilities of the events {an} are interpreted as corresponding to a genuine
stochastic process.

12Strictly speaking, the operation of exclusive disjunction, XOR, is true when an odd number of
propositions ({an}) are true. So, in the case, in which the dimension N of the sample space of the
measurement Ω is greater than 2, the proposition of a definite outcome must contain the additional
to the operation XOR term BN providing for the true output when only a single ({an}) is true. For
example, when N = 4, this proposition takes the form (Ω) = (XOR4 ∧ ¬B4), where XOR4 =
(({a1})⊕ ({a2})⊕ ({a3})⊕ ({a4})) and B4 = max({({ai})× ({aj})× ({ak})}i>j>k∈{1,2,3,4}).

9
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1/N has been already established in the special
case where all the possible events {an} have
unity weights wn. Thus, in the case of the weight
wn > 1, a similar line of reasoning can be used
to prove the next formula

Pr({an}) =
wn∑
i=1

Pr
(
{an}i

)
=

wn∑N
n=1 wn

.

(2.25)

So, the presented account is restricted to a finite
dimensional sample space Ω and thus a finite
dimensional state space. But even if a Hilbert
space is countably infinite, the given account
may still be held up whenever a replacement
of a countably infinite orthonormal basis of the
measured system S with some truncated (finite-
dimensional) basis can be justified. Such is the
case of a typical microsystem for which one can
safely assume a discrete spectrum of energies
limited by some finite upper level whose order
of magnitude is similar to ones of energies of
electrons in an atom or a solid.

However, the shown intuitionistic account may not
be extended to an uncountable (i.e., uncountably
infinite) Hilbert space which is the case of a
typical macroscopic system whose degrees of
freedom in particular the macroscopic ones
can vary continuously and in an unconfined,
unbounded manner. Apparently, this is equivalent
to the elimination of the applicability of quantum
probabilities and the Born rule to common
macroscopic systems.

But then again, due to the equivalence of
boundedness and continuity [30], unbounded
linear Hermitian operators in an uncountable
Hilbert space are discontinuous and thus
generate noncomputability [31]. This means
that the application of quantum formalism
to a typical macroscopic system necessarily
causes the existence of mathematical entities
in the theoretical representation of the system
that are incapable of being computed by any
deterministic algorithm in any finite amount

of time.13 Clearly, those entities cannot be
verifiable (demonstrable) which makes the
quantum mechanical description of any typical
macroscopic system constructively unprovable
and for that reason inapplicable.

3 CONCLUSION

The essential question that may raise now
is whether probabilities appearing in the
intuitionistic interpretation are objective (i.e.,
fundamentally ingrained in nature) or subjective
(i.e., due to the rational agent’s ignorance). The
peculiarity here is that neither answer to this
question can be regarded as a correct one.

Really, according to the explanation presented
in the previous section, quantum probabilities
are introduced to account for the agent’s lack
of knowledge about the premeasurement logical
values of the propositions of elementary events
({an}) in the case where the state |ψ⟩ does
not belong already (i.e., before the act of
measurement) to one of the vectors |an⟩ of the
eigenbasis of the observable A that is going
to be measured (and so the sample space of
the measurement Ω contains more than one
element). As long as these propositions are
considered symmetrical with respect to the state
|ψ⟩, the agent has no other information than
the number of the mutually exclusive events
{an} that can occur during the measurement.
Consequently, the agent is justified in assigning
each of the possible events the equal probability.
In this manner, the resultant probabilities may
be called subjective seeing as they reflect the
agent’s incomplete knowledge of the world.

But, on the other hand, quantum probabilities are
objective in that they are a consequence of the
fact that the decision problem of the Schrdinger
equation Π(HC) is undecidable. That is, for this
problem it is impossible to construct an algorithm
(applicable to all systems, i.e., all allowable
Hamiltonian operators H) that would always lead

13To be precise, one can no longer speak of the Hilbert space of a typical macroscopic
system since “the observables of an infinite system usually have a host of physically inequivalent
representations, corresponding to macroscopically different classes of states” [32].
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to a correct ‘true’-or-‘false’ answer. Hence, the
origin of the undecidability of the problem Π(HC)
is not subjective, i.e., it is not just a lack of
agent’s imagination: No matter how ingenious
the rational agent is, there is no way to exactly
solve the Schrödinger equation for any given
physical system. As a result, the validity of the
linear, deterministic Schrödinger evolution for an
arbitrary system such as a typical macroscopic
apparatus M cannot be proven constructively,
i.e., by demonstrating a procedure of finding the
solution set {|u⟩} of the Schrödinger equation for
a completely arbitrary Hamiltonian operator.

The similar ambiguity characterizes the question
whether or not the formalism of quantum
mechanics in agreement with the intuitionistic
interpretation can be considered complete.
Definitely, as stated by the intuitionistic
interpretation, the quantum description of reality
can be considered incomplete as it contains
the proposition ({a1, a2}) = {} which is
undecidable from within theory (the truth value
of this proposition cannot be predicted through
calculations with the Schrödinger equation),
but which is, nonetheless, decidable through
experiment (i.e., the measurement of the
observable A). And yet, no further accumulation
of information about the composite system S+M
could help the agent to decide (compute) the
logical values of the propositions ({a1}) and
({a2}) before the measurement, inasmuch as the
fact of the statement ({|u⟩} ̸= ∅) being neither
provable nor disprovable is not determined by
any finite amount of the information available to
the agent. In view of that fact, the presented
intuitionistic account of quantum description may
be regarded as complete.
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