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Abstract
A relative measure of informational distance between two distributions is introduced in this paper.
For this purpose the Hellinger distance is used as it obeys to the definition of a distance metric
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1 Introduction
The discrimination, or information divergence, between two random variables (r.v.-s), say X
and Y , refers, in principle, to an information-theoretic method that measures the increase,
or decrease, of the amount information regarding an experiment. The term information
distance is also used. However, the term “distance” it is not mathematically accurate, as the
information divergence is often not a distance metric. In the context of Information Geometry,
the search for information divergences that are also distance metrics on a statistical manifold
is essential.

To measure the information distance between two distributions, the Kullback-Leibler (KL)
divergence is one of the most commonly used measures, also known as relative entropy. The
KL divergence serves as a simple quantification method of the amount of information “gained”
when a given distribution (characterizing an I/O system) is substituted by another one. Recall
that, for the discrete probability distributions P and Q, the KL divergence from Q to P is
defined to be

DKL(P||Q) :=
n∑

i=1
Pi log Pi

Q i
, (1.1)

which is the expectation of the logarithmic differences between probability values Pi := P(i)
and Q i :=Q(i), i = 1,2, . . . ,n. Note that probability values such that Q i = 0 are considered only
if Pi = 0, i ∈ {1,2, . . . ,n}. In general, for probability measures P and Q on the same space, with
p and q denoting probability densities (with respect to a common probability measure µ on
their space), the KL information divergence is defined as, [1, 2],

DKL(P∥Q) :=
∫

p(x) log
p(x)
q(x)

dµ(x). (1.2)

In principle DKL(P∥Q) ̸= DKL(Q∥P). In this paper we shall adopt continuous probability
distributions for the KL divergence as well as for all the other information measures/divergences.

Here is a well known example: The “distance”, or better to say “how far is” the standard
normal distribution P ∼N (0,1)≡ P from the Laplace distribution L (0,1)≡Q, is given by

DKL(P∥Q)= 1
2 log 2

π
− 1

2 +
√

1
2 = 0.07209 and DKL(Q∥P)= 0.22579, (1.3)

considering that

p(x) := (2π)−1/2 e−x2/2, x ∈R, q(x) := 1
2 e−|x|, x ∈R, with

EP (|X |)=
p

2/π, and EQ(|X |)= 1,

with EP (X2)= 1 and EQ(X2)= 2.

Information distances are often used in practice as in Cryptography. Typical example being
the set of 2n binary words of length n, say Wn, with the distance D(a,b) between words a
and b, defined to be the number of bits in which word a differs from word b. As an example,
D(1010101,1100100) = 3. In such cases we are interested in evaluating Dmin, which is the
minimum information distance between two distinct codewords in a given set. The above
discussion shows that there is a reason for the experimenter to know how “close” can be
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(from the informational point of view) two given distributions that correspond to some to
Input/Output system.

If it is to investigate how close two distributions are, from the classical statistical point of
view, the known Kolmogorov-Smirnov test can be simply applied. Recall that, as far as
the estimation problems are concerned, the minimum distance property is also a statistical
property, embedded in the notions of likelihood, regression, χ2 etc. Therefore, adopting
a measure of distance for given probability measures P and Q, it would be of interest to
calculate the minimum distance. Moreover, [3] defined a conceptual distance metric which
applied to bioassays, while in [4] a mini-max distance method was introduced, based on an
entropy measure.

In this present work, the idea of Relative Risk (RR), fundamental to Logit methods, see [5],
shall be transferred in a more information-theoretic framework: The well-known odds ratio,
defined to measure a dichotomous exposure-outcome scenario, is eventually evaluated as the
exponential of the logistic regression coefficient (to the given data), say b. This exponentiated
function ed −1 is a distance, provided d is a distance, see [6], and remains invariant under
linear transformation; see [7, 8]. Therefore, evaluating the Hellinger distance for two γ-order
Generalized Normal (γ-GN) distributions, the exponentiation (as above) of this distance, is
also an informational distance metric, acts as a Relative Risk to what γ-GN we are closer.

Recall the γ-GN family of distributions, consisted of a three parameters exponential-power
generalized form of the usual multivariate Normal distribution defined below; see [9, 10] for
details.

Definition 1.1. The p-variate random variable X follows the γ-order Generalized Normal
distribution, i.e. X ∼ N

p
γ (µ,Σ), with location parameter vector µ ∈ Rp, shape parameter γ ∈

R\ [0, 1] and positive definite scale parameter matrix Σ ∈Rp×p, when the density function fX
of X is of the form

fX (x)= fX (x; µ,Σ,γ, p) := CX exp
{
−γ−1

γ
Qθ(x)

γ
2(γ−1)

}
, x ∈Rp, (1.4)

where Qθ denotes the p-quadratic form Qθ(x) := (x−µ)Σ−1(x−µ)T, x ∈Rp, θ := (µ,Σ). with the
normalizing factor CX is defined as

CX = CX (Σ,γ, p) :=max fX =
( p

2 +1
)

πp/2
(
p γ−1

γ
+1

)p|Σ|
(γ−1

γ

)p γ−1
γ , (1.5)

where |A| := detA denotes the determinant of any A ∈Rp×p.

The p.d.f. fX as above shall be adopted for the probability densities p and q discussed in
(1.2). Notice that the location parameter vector µ of X is essentially the mean vector of X ,
i.e. µ = µX := E(X ). Moreover, for the shape parameter value γ = 2, N

p
2 (µ,Σ) is reduced to

the well known multivariate normal distribution, where Σ is now the covariance of X , i.e.
Cov X =Σ.

The family of N
p
γ (µ,Σ) distributions, i.e. the family of the elliptically contoured γ-order

Generalized Normals, provides a smooth bridging between some important multivariate (and
elliptically countered) distributions. Indeed, [11]:
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Theorem 1.1. For the elliptically contoured p-variate γ-order Normal distribution N
p
γ (µ,Σ)

with µ ∈Rp and Σ ∈Rp×p, we obtain the following special cases:
γ := 0. For the limiting case of the shape parameter γ→ 0−, the degenerate Dirac distribution

D(µ) with pole at µ is derived in dimensions p := 1,2, while for p ≥ 3 the p.d.f. of
N0(µ,Σ) is flattened (p.d.f. is everywhere zero).

γ := 1. For the limiting case of γ → 1+ the elliptically contoured Uniform distribution
U p(µ,Σ) is obtained, which is defined over the p-ellipsoid Qθ(x) = (x−µ)Σ−1(x−
µ)T ≤ 1, x ∈Rp.

γ := 2. For the “normality” case of γ := 2 the usual p-variate Normal distribution N p(µ,Σ)
is obtained.

γ :=±∞. For the limiting case of γ → ±∞ the elliptically contoured Laplace distribution
L p(µ,Σ) is derived.

One of the merits of the Nγ family of distributions is that it can provide “heavy-tailed”
distributions as the shape parameter γ influences the “probability mass” at the tails; see
[11, 10, 12].

The corresponding cumulative distribution function (c.d.f.) of the γ-GN, as in (1.4), is expressed
as [12],

FX (x)= 1− 1
2
(
2 γ−1

γ

) (
γ−1
γ

, γ−1
γ

( x−µ
σ

)γ/(γ−1)
)
, x ∈R, (1.6)

where (·, ·) denotes the upper (or complementary) incomplete gamma function. Alternatively,
using positive arguments for the upper (complementary) incomplete gamma function (a, x),
x ∈R, a ∈R+ (which is more computationally oriented approach), it holds that

FX (x)= 1+sgn z
2 − (sgn z)

(
g, g|z|1/g)

2(g)
, z = z(x; µ,σ) := x−µ

σ
, x ∈R. (1.7)

In such a case, the quantile function is then given by

QX (P) := inf
{
x ∈R : FX (x)≥ P

}= sgn(2P −1)σ
[

1
g
−1(g, |2P −1|)]g

, P ∈ (0, 1). (1.8)

2 KL Divergence and the γ-GND
In this section the information divergence, between two γ-GN distributions of the same order
and mean is obtained through the KL measure of information divergence. Recall that the KL
divergence DKL(X∥Y ) from a r.v. Y to another r.v. X (of the same dimension) can be defined,
through (1.2), as

DKL(X∥Y ) := DKL(FX∥FY ), (2.1)

where FX and FY being the cumulative distribution functions of r.v.-s X and Y respectively.
The KL divergence, which is the most frequently used information distance measure in practice,
is not a genuine distance metric, as it is not non-negative in general, violating the “positive
definiteness” or, alternatively, the “identity of indescernibles” property (i.e. is a distance pseudo-
metric). Moreover, DKL does not obeys the “subadditivity” property, also known as the triangle
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inequality (i.e. is a distance semi-metric), while also violates symmetricity (i.e. is a distance
quasi-metric). That is why we shall refer to it as a “divergence” rather than a “distance”
measure. Note also that the KL divergence can be adopted to evaluate the transfer entropy
between stationary processes whose continuous probability distributions are known. For the
γ-GN case see [13].

Specifically, for two spherically contoured γ-order normally distributed r.v.-s with the same
mean and shape, i.e. X ∈ Nγ

(
µ1,σ2

1Ip
)
, Y ∼ Nγ

(
µ2,σ2

2Ip
)
, with µ := µ1 = µ2 ∈ Rp, the KL

divergence of X over Y is given by, [14],

DKL(X∥Y )= p log σ2
σ1

− p
(γ−1

γ

)[
1− (σ1

σ2

) γ
γ−1

]
, (2.2)

while for µ1 ̸=µ2 and γ= 2, it holds

DKL(X∥Y )= p
2

[
2log σ2

σ1
−1+ (σ1

σ2

)2 + ∥µ2 −µ1∥2

pσ2
2

]
, (2.3)

which is the usual KL divergence between two normally distributed r.v.-s. For the KL divergence
of the γ-GN distribution over the Student’s t-distribution see [15].

Remark 2.1. It is worth mentioning that the expression (2.2) is always positive definite as well
as proportional to the dimension of X and Y for every σ1,σ2 ∈ R+ and γ ∈ R\ [0,1]. Indeed,
DKL(X∥Y ) ∝ p ∈N∗ :=N\ {0}. Moreover, writing (2.2) as D(s) := DKL(X∥Y ) = p log s− pg

(
1−

s−1/g)
where s :=σ2/σ1 and g := (γ−1)/γ, the relation D′(s) := d

ds D(s)= s−1−s−(g+1)/g = 0 yields
s−1/g = 1, and hence s = 1 while D(1) = 0. It is then easy to see that D′(s) > 0 for s > 1,
and D′(s) < 0 for s < 1. Therefore, (2.2) admits always a (global) minima when σ1 := σ2 or
equivalently when X = Y . As a result, the global minima of D at 1 and the fact that D(1) = 0
implies the positiveness of DKL(X∥Y ), while the fact that σ= 1 is also a global minima implies
that X = Y when D(X∥Y ) = 0 is assumed, i.e. the KL divergence between two spherically
contoured γ-GN distributions of the same mean obeys positive definiteness. Moreover, (2.2)
is also a non-bounded information divergence. In particular, concerning the limiting behavior
of (2.2) with respect to the scale parameters σi, i = 1,2, it holds that limσi→+∞ DKL(X∥Y ) =
+∞, i = 1,2. Indeed, it holds that limσ2→+∞ DKL(X∥Y ) = −pg+ p limσ2→+∞ log(σ2/σ1) = +∞.
On the other hand, limσ1→+∞ DKL(X∥Y ) = −pg+ p lims→0+

(
log s+ s−1/g) = lims→0+ s−1/g(

1+
s1/g log s

)= lims→0+ s−1/g(
1− gs1/g)= lims→0+ s−1/g =+∞, since g ∈R+.

One can also notice that the relation (2.2) implies, for appropriate choices of the γ value
(recall Theorem 1.1), that the KL divergence between two uniformly distributed r.v.-s Ui ∈
U p(

µ,σ2
i Ip

)
, i = 1,2, is given by,

DKL
(
U1∥U2

)= lim
γ→1+

DKL(X∥Y )=
{

p log σ2
σ1

, σ1 ≤σ2,

+∞, σ1 >σ2,
(2.4)

while the KL divergence between two Laplace distributed r.v.-s L i ∈ L p(
µ,σ2

i Ip
)
, i = 1,2, is

given by
DKL

(
L1∥L2

)= lim
γ→+±∞DKL(X∥Y )= p

(
log σ2

σ1
−1+ σ1

σ2

)
. (2.5)
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From (2.2), it is easy to see that

Dp
KL(γ)< Dp+1

KL (γ), p = 1,2, . . . , (2.6)

where Dp
KL(γ) := DKL(X∥Y ), X ∼N

p
γ

(
µ,σ2

0Ip
)

and Y ∼N
p
γ

(
µ,σ2

1Ip
)
. Similar inequalities hold

also in case of Laplace probability function for γ→+∞. Note also that for given p, µ1 = µ2,
and σ1 ̸= σ2 the KL divergence in (2.2) appears in a strict descending order as γ ∈ R\ [01]
rises. In particular,

Dp
KL(γ1)> Dp

KL(γ2), for γ1 < γ2. (2.7)

Therefore with Laplace, γ→+∞, we obtain a lower bound, i.e.

Dp
KL(∞)< Dp

KL(γ), for every γ and p ∈N. (2.8)

3 Families of Information Divergences and Symmetry
Recall that the Fisher’s entropy type information measure IF(X ) of an r.v. X with p.d.f. f on
Rp, is defined as the covariance of r.v. ∇ log f (X ), i.e. IF(X ) := E[∥∇ log f (X )∥2], with E[·] now
denotes the usual expected value operator of a random variable with respect to the its p.d.f.
Hence, IF(X ) can be written as

IF(X )=
∫
Rp

f (x)∥∇ log f (x)∥2 dx =
∫
Rp

f (x)−1∥∇ f (x)∥2 dx =
∫
Rp
∇ f (x)·∇ log f (x)dx = 4

∫
Rp

∥∥∥∇√
f (x)

∥∥∥2
dx.

(3.1)
The Fisher’s entropy type information of an r.v. X is a special case of information measures
defined by the general form

I(X ) := I(X ; g,h) := g
(
E

[
h
(
U(X )

)])
, (3.2)

where g and h being real-valued functions and U being the score function, i.e. U(X ) :=∥∥∇ log f (X )
∥∥. Indeed, letting g := i.d. and h(X ) := X2 we obtain the entropy type Fisher’s

information measure of X as in (3.1), i.e.

IF(X )=E
[∥∥∇ log f (X )

∥∥2]
. (3.3)

Other entropy type information measures, such as the Vajda’s, Mathai’s and Boeke’s information
measures, denoted with IV, IM and IB respectively, are defined as follows:

IV(X ) := I(X ), with g := id. and h(u) := uα, α≥ 1, (3.4a)

IM(X ) := I(X ), with g(x) := x1/α and h(u) := uα, α≥ 1, (3.4b)

IB(X ) := I(X ), with g(x) := xα−1 and h(u) := u
α

α−1 , α ∈R+ \1. (3.4c)

For a generalisation of the Fisher’s entropy type information measure see [16].

We define here a general formulation for information divergences of a p-variate r.v. X over a
p-variate r.v. Y , which is given by

DKT(X∥Y ) := g

( ∫
Rp

h( fX , fY )

)
, (3.5)

6



Kitsos and Toulias; BJMCS, 21(2), 1-16, 2017; Article no. BJMCS.32229

where fX and fY are the p.d.f.-s of X and Y respectively. We are then reduced to a series
of known divergencies, [17, 18, 19, 20, 21], such as the Kullback-Leibler DKL, exponential
De, Vajda’s DV, Kagan (or χ2) Dχ2 , Csiszár DC, Rényi DR, Tsallis DT, Amari DA, Chernoff

α-divergence (of the first type) D(α)
Ch, Chernoff α-divergence (of the second type) D′(α)

Ch , and the
Chernoff DCh divergence, as well as the distances, such as the Hellinger DH, Bhattacharyya
DB, and total variation δ:

DKL(X∥Y ) : With g := id. and h( fX , fY ) := fX log fX
fY

, (3.6a)

De(X∥Y ) : With g := id. and h( fX , fY ) := fX

(
log fX

fY

)2
, (3.6b)

DV(X∥Y ) : With g := id. and h( fX , fY ) := fX

∣∣∣1− fY
fX

∣∣∣α , α≥ 1, (3.6c)

Dχ2 (X∥Y ) : With g := id. and h( fX , fY ) := 1
2 fX

(
1− fY

fX

)2
, (3.6d)

DC(X∥Y ) : With g := id. and h( fX , fY ) := fYϕ
( fX

fY

)
,

ϕ convex,
ϕ(1) := 0, (3.6e)

DR(X∥Y ) : With g := 1
α−1 log and h( fX , fY ) := f αX f 1−α

Y , 0<α ̸= 1, (3.6f)

DT(X∥Y ) : With g(u) := 1−u
1−α and h( fX , fY ) := f 1−α

X f αY , 0<α ̸= 1, (3.6g)

DA(X∥Y ) : With g(u) := 4(1−u)
1−α2 and h( fX , fY ) := f (1−α)/2

X f (1+α)/2
Y , α ̸= ±1, (3.6h)

D(α)
Ch(X∥Y ) : With g := id. and h( fX , fY ) := f αX f 1−α

Y , α ∈ (0, 1), (3.6i)

D′(α)
Ch (X∥Y ) : With g(u) := 1−u

α(1−α) and h( fX , fY ) := f αX f 1−α
Y , α ∈ (0, 1), (3.6j)

DCh(X∥Y ) : With g := − log min
α∈(0,1)

and h( fX , fY ) := f αX f 1−α
Y , α ∈ (0, 1), (3.6k)

DH(X ,Y ) : With g(u) := p
u and h( fX , fY ) := 1

2

(√
fX −

√
fY

)2
, (3.6l)

DB(X ,Y ) : With g := − log and h( fX , fY ) :=
√

fX fY , (3.6m)

δ(X ,Y ) : With g := id. and h( fX , fY ) := ∣∣ fX − fY
∣∣. (3.6n)

Alternatively, the above divergencies belong also to the wider Ali-Silvey class of information
divergencies [18], expressed in the form

DAS(X∥Y ) := g
(
E

[
η
(
ℓ(Y )

)])
, (3.7)

where g is a non-decreasing function, η is convex, E[·] is the expected value operator (with
respect to the p.d.f. of Y ), and ℓ denotes the likelihood ratio fX / fY . For example, KL is an Ali-
Silvey divergence as in (3.7) with g := i.d. and η(x) := x log x, x ∈ R∗+. Chernoff α-divergence
(of the first type) D(α)

Ch is also an Ali-Silvey divergence with g := i.d. and η(x) :=−xα, x ∈R. For
the Chernoff divergence DCh we must adopt as g(x) :=− log(−x), x ∈R∗−.

Note that Tsallis and Rényi divergences are related through the mappings

DT(X∥Y )= 1
1−α

[
1− e(1−α)DR(Y ∥X )

]
, or DR(X∥Y )= 1

α−1 log
(
1−DT(Y ∥X )

)
. (3.8)

7
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Regarding Bhattacharyya distance, Hellinger distance, and Chernoff α-divergence, between
two multivariate normally distributed r.v.-s, the known computations are given in the following
example:

Example 3.1. Let X ∼ N p(µX ,ΣX ) and Y ∼ N p(µY ,ΣY ) with means µX ,µY ∈ Rp, µX ̸= µY ,
and covariances ΣX ,ΣY ∈Rp×p, ΣX ̸=ΣY . Then

DB(X ,Y ) = 1
2 log

|ΣX |p|ΣX ||ΣY | +
1
8 (µX −µY )Σ−1(µX −µY )T, Σ := 1

2 (ΣX +ΣY ), (3.9a)

D2
H(X ,Y ) = 1−

4p|ΣX | 4p|ΣY |p|Σ| exp
{

1
8 (µX −µY )Σ−1(µX −µY )T

}
, (3.9b)

D(α)
Ch(X∥Y ) = 1

2 log
|αΣX + (1−α)ΣY |
|ΣX |α|ΣY |1−α . (3.9c)

For the univariate case of X ∼N
(
µX ,σ2

X
)

and Y ∼N
(
µY ,σ2

Y
)

it holds that

DB(X ,Y ) = 1
4 log

{
1
4

(
σ2

X
σ2

Y
+ σ2

Y
σ2

X
+2

)}
+ (µX −µY )2

4
(
σ2

X +σ2
Y

) , (3.10a)

D2
H(X ,Y ) = 1−

√
2σXσY

σ2
X +σ2

Y
exp

{
− (µX −µY )2

4
(
σ2

X +σ2
Y

)}
, (3.10b)

D(α)
Ch(X∥Y ) = 1

2 log
ασ2

X + (1−α)σ2
Y

σ2α
X σ2(1−α)

Y

. (3.10c)

The KL divergence belongs also to a much wider class of divergences called Bregman divergence,
[17], defined by

DBr(X∥Y ) :=
∫

ϕ( fX )−ϕ( fY )− ( fX − fY )ϕ′( fX ), (3.11)

for a strictly convex and differentiable generator ϕ, where fX and fY are the p.d.f.-s of r.v.-s X
and Y . Indeed, for ϕ(x) := x log x, x ∈R∗+ :=R+ \{0}, Bregman divergence is reduced to the KL
divergence. Note that the Amari divergence DA generalizes also the KL distance in the sense
that DA(X∥Y ) = DKL(X∥Y ) for the limiting case of α := −1, while DA(X∥Y ) = DKL(Y ∥X ) for
α := 1; see [17]. Moreover, KL divergence belongs, in limit, to the Rényi and Tsallis divergence
classes for α→ 1. We try to summarize and clarify the existent relations between the different
divergence measures, in the analytical form, since in technical/engineering interpretation
have a different meaning and use. Given the one we can evaluate a series of other divergence
measures.

4 Information Relative Risk
Consider the (upper) bounded Hellinger distance, 0≤ DH ≤ 1, which obeys the triangle inequality.
For the related Bhattacharyya distance, DB =− log

(
1−D2

H

)
, the triangle inequality does not

hold, although both measures are usually referred as “distances” since both are symmetric.
Therefore, like the total variation distance (which is usually referred as the statistical distance),

8
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the Hellinger distance can be considered as a statistical distance metric, since it is essential a
distance metric with the usual mathematical meaning, while the Bhattacharyya distance is
considered to be a (statistical) distance semi-metric, as it is a distance metric not obeying the
triangle inequality. Recall also the inequalities between the total variation and the Hellinger
distance, i.e.

D2
H ≤ δ≤

p
2DH, (4.1)

which follow clearly from the inequalities between the 1-norm and the 2-norm. Moreover, the
Hellinger distance can be alternatively defined with the help of other divergences, through
the mappings

DH = e
1
4 DR(1/2) =

√
1− 1

2 DT(1/2)= 1
2

√
4−DA(0)=

√
eDB −1, (4.2)

where the parameter values 1/2, 1/2 and 0, in DR, DT and DA respectively, corresponds to the
parameter α of each divergence, e.g. DR(1/2) := DR(X∥Y )

∣∣
α:=1/2. Alternatively,

DR(1/2)= 4logDH, DT(1/2)= 2
(
1−D2

H
)
, DA(0)= 4

(
1−D2

H
)
, DB = log

(
D2

H −1
)
, (4.3)

and thus, Rényi, Tsallis and Amari divergencies can be considered as generalized forms of the
Hellinger distance.

Now, for two spherically contoured γ-GN r.v.-s with the same mean and shape parameter γ,
their corresponding Hellinger distance is given in the following:

Proposition 4.1. Let X ∼ N
p
γ

(
µ,σ2

1Ip
)

and Y ∼ N
p
γ

(
µ,σ2

2Ip
)
, with mean vector µ ∈ Rp and

σ1,σ2 ∈R+. The Hellinger distance between X and Y is then given by

DH(X ,Y )=

√√√√√√1− 2p γ−1
γ sp/2(

1+ s
γ

γ−1
)p γ−1

γ

, s := σ2
σ1

. (4.4)

Proof. Consider the p.d.f. (1.4) for r.v.-s X and Y . Substituting them into (3.6l) we obtain
consecutively

D2
H(X ,Y ) = 1−

∫ √
fX fY = 1−

√
CX CY

∫
Rp

exp
{
− g

2

∥∥∥ x−µ
σ1

∥∥∥1/g − g
2

∥∥∥ x−µ
σ2

∥∥∥1/g
}

dx

= 1−
√

CX CY

∫
Rp

exp
{
−σg∥x−µ∥1/g

}
dx = 1−

√
CX CY

∫
Rp

e−σg∥x∥1/g
dx,

where g := (γ−1)/γ and σ := 1
2

(
σ
−1/g
1 +σ

−1/g
2

)
. Switching to hyperspherical coordinates, it holds

that
D2

H(X ,Y )= 1−ωp−1
√

CX CY

∫
R+
ρp−1 e−σgρ1/g

dρ,

where ωp−1 := 2πp/2/(p/2) denotes the volume of the unitary (p − 1)-sphere. Applying the
variable transformation du = du(ρ) := d

(
σgρ1/g) = σρ(1−g)/g dρ, the above can be written

successively as

D2
H(X ,Y ) = 1−σ−1ωp−1

√
CX CY

∫
R+
ρ

(p−1)g+g−1
g e−u du

9
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= 1−σ−pg g1−pgωp−1
√

CX CY

∫
R+

(
σgρ1/g)pg−1 e−u du

= 1−σ−pg g1−pgωp−1
√

CX CY

∫
R+

upg−1 e−u du

= 1−σ−pg g1−pgωp−1(pg−1)
√

CX CY .

By substitution of ωp−1 and the normalizing factors CX and CY , as in (1.5), we get

D2
H(X ,Y )= 1− pgσ−pg (pg)

(pg+1)
(σ1σ2)−p/2. (4.5)

Utilizing the additivity of the gamma function, i.e. (x+1)= x(x), x ∈R, (4.5) can be written as

D2
H(X ,Y )= 1−σ−pg(σ1σ2)−p/2, (4.6)

and by substitution of σ and g into (4.6), the expression (4.4) is finally derived.

It is easy to see that DH(X ,Y ) → 1 as σi → +∞, i = 1,2, as, i.e. the Hellinger distance
approaches its (upper) bound as the scale parameters of either X or Y are getting larger.
The lower bound 0 is achieved only when X =Y , or σ1 =σ2.

Corollary 4.1. The Hellinger distance between two spherically contoured normally, or Laplace,
or uniformly distributed r.v.-s of the same mean, are given by

DH(X1, X2) =
√

1−
(

2s
s2 +1

)p/2
, X i ∼N p(

µ,σ2
i IP

)
, i = 1,2, (4.7a)

DH(X1, X2) =
√

1−
(

2
p

s
s+1

)p

, X i ∼L p(
µ,σ2

i Ip
)
, i = 1,2, (4.7b)

DH(X1, X2) =
√

1− ssgn(1−s)p/2, X i ∼U p(
µ,σ2

i Ip
)
, i = 1,2, (4.7c)

respectively, where s :=σ2/σ1. For the univariate cases, it holds

DH(X1, X2) =

√√√√1−
√

2s
s2 +1

, X i ∼N
(
µ,σ2

i
)
, i = 1,2, (4.8a)

DH(X1, X2) =
∣∣ps−1

∣∣
p

s+1
, X i ∼L (µ,σi), i = 1,2, (4.8b)

DH(X1, X2) =
√

1−
√

ssgn(1−s), X i ∼U (µ−σi,µ+σi), i = 1,2. (4.8c)

Proof. For the normality case as well as for the (limiting) Laplace case, the corresponding
expressions (4.7a), (4.8a), and (4.7b), (4.8b), are derived straightforward from (4.4) with γ := 2
and with γ→±∞ respectively.

For the (limiting) uniformity case of X i ∼ U p(
µ,σ2

i Ip
)
, i = 1,2, consider the γ-GN r.v.-s

Xγ ∼N
p
γ

(
µ,σ2

1Ip
)

and Yγ ∼N
p
γ

(
µ,σ2

2Ip
)
. Recalling Theorem 1.1 and expression (4.4), it holds

that
D2

H(X1, X2) := lim
γ→1+

D2
H(Xγ,Yγ)= 1− sp/2 lim

g→0+
(
1+ s1/g)−pg, g := γ−1

γ
. (4.9)

The following three cases are then distinguished:

10
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Case σ2 >σ1, or s > 1. In such a case (4.9) can be written as

D2
H(X1, X2)= 1− sp/2 e−pℓ(s), (4.10)

where

ℓ(s) := lim
g→0+

log
(
1+ s1/g)
1/g

= lim
g→0+

s1/g(− g−2)
log s

−g−2
(
1+ s1/g

) = (log s) lim
g→0+

s1/g

1+ s1/g = log s,

and hence D2
H(X1, X2)= 1− s−p/2.

Case σ2 <σ1, or s < 1. Then relation (4.9) yields that D2
H(X1, X2)= 1− sp/2.

Case σ2 = σ1, or s = 1. Then relation (4.9) yields easily that D2
H(X1, X2) = 1−1 = 0 as it

was expected, since in this case X1 = X2.

From the above discussion we conclude that (4.7c) holds.

Finally, the corresponding univariate expressions (4.8a) and (4.8b) are obtained straightforward
from (4.8a) and (4.8b) respectively.

For the univariate case of X i ∼ U p(
µ,σ2

i Ip
) = U 1(

µ,σ2
i
)
, i = 1,2, recall that, in general,

the (univariate) Uniform distribution U 1(
µ,σ2)

, σ ∈ R+, can be written in its classical form
U (a,b) with a :=µ−σ and b :=µ+σ, and thus (4.8c) is obtained.

Remark 4.1. Note that (4.7a) and (4.8a) are in accordance with (3.9b) and (3.10b) respectively,
for µX := µY . For the Uniform case, (4.8c) can be expressed alternatively, considering r.v.-s
X i ∼U (ai,bi), i = 1,2, where a1 +b1 := a2 +b2 (common mean assumption), in the form

DH(X1, X1)=
√

1−
√

(σ2/σ1)sgn(σ2−σ1) =

√√√√
1−

√(
b2 −a2

b1 −a1

)sgn(b1+a2−b2−a1)
, (4.11)

since U 1(
µ,σ2)

:=N 1
1

(
µ,σ2)

is written in the Uniform’s usual notation U (a,b), with a :=µ−σ

and b :=µ+σ, or alternatively, when µ := (a+b)/2 and σ := (b−a)/2.

Remark 4.2. For the degenerate case of the zero-order Normal distributions, i.e. for X i ∼
N

p
0

(
µ,σ2

i Ip
)
, i = 1,2, the Hellinger distance between X1 and X2, is then given, through (4.4),

by

D2
H(X1, X2)= lim

γ→0−
D2

H(Y1,Y2)= 1− sp/2 lim
g→+∞

(
2

1+ s1/g

)pg
= 1− sp/2 epL(s), (4.12)

where Yi ∼Nγ

(
µ,σ2

i Ip
)
, i = 1,2, s :=σ2/σ1, and

L(s) := lim
g→+∞g log

2
1+ s1/g = lim

g→+∞
log

(
2/

(
1+ s1/g))

1/g
= lim

g→+∞

(
1+ s1/g) d

dg
(
1+ s1/g)−1

−g−2

= − lim
g→+∞

s1/g(− g−2)
log s

−g−2
(
1+ s1/g

) =− 1
2 log s. (4.13)

Therefore, by substitution of (4.13) into (4.12), we finally derive that D2
H(X1, X2) = 1−1 = 0,

which is expected as N
p

0
(
µ,σ2

i Ip
)
, i = 1,2, coincide both with the multivariate degenerate

11
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Dirac distribution Dp(µ) with pole at µ ∈Rp for p = 1,2, or are both flattened for p ≥ 3; recall
Theorem 1.1.

Note that we can also derive the Bhattacharyya distance between two γ-GN distributions of
the same order and mean, with the following:

Corollary 4.2. The Bhattacharyya distance between two spherically contoured γ-order normally
distributed r.v.-s X i ∼N

p
γ

(
µ,σ2

i Ip
)
, i = 1,2, of the same order γ ∈ R\ [0, 1] and mean µ ∈ Rp, is

given by

DB(X1, X2)= p γ−1
γ

log
σ

γ
γ−1
1 +σ

γ
γ−1
2

2(σ1σ2)
γ

2(γ−1)
. (4.14)

For the special cases of Normal, Laplace and Uniform distributions, it holds

DB(X1, X2) = p
2 log

σ2
1 +σ2

2
2σ1σ2

, X i ∼N p(
µ,σ2

i IP
)
, i = 1,2, (4.15a)

DB(X1, X2) = p log
σ1 +σ2

2
p
σ1σ2

, X i ∼L p(
µ,σ2

i Ip
)
, i = 1,2, (4.15b)

DB(X1, X2) = sgn(σ2 −σ1) p
2 log σ2

σ1
, X i ∼U p(

µ,σ2
i Ip

)
, i = 1,2, (4.15c)

Proof. Since the Hellinger and Bhattacharyya distances are related via DB = − log
(
1−D2

H

)
,

Proposition 4.1 implies that

DB(X1, X2)=−p γ−1
γ

log
2(σ2/σ1)

γ
2(γ−1)

1+ (σ2/σ1)
γ

γ−1
, (4.16)

or, equivalently, (4.14), while Corollary 4.1 yields (4.15a)-(4.15c).

One can notice that the Bhattacharyya distance between X1 and X2 as in (4.14), similar to
their corresponding KL divergence as in (2.2), is always proportional to the dimension of X1
and X2, i.e. DB(X1, X2)∝ p ∈N∗. Especially for the univariate and uniformly distributed r.v.-
s X i ∼ U (ai,bi), i = 1,2, where a1 + b1 := a2 + b2 is assumed (common mean), relation (4.11)
gives

DB(X1, X2)= sgn(b2 +a1 −b1 −a2) log

√
b2 −a2

b1 −a1
. (4.17)

For applications of distance measures in Statistics, see [4] and [6] among others. Now we
state and proof the following lemma which will be helpful to apply the line of thought we
expressed in introduction concerning the “informational Relative Risk” idea.

Lemma 4.3. The “exponentiated” metric de := ed −1 of a bounded distance metric 0≤ d ≤ 1 is
also a bounded distance metric.

12
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Proof. The new defined metric de := ed − 1 of a metric 0 ≤ d ≤ 1 which is defined on a set
A, is a positive-definite and symmetric metric since d is a distance metric. Moreover, de is
also a distance metric, as the triangle inequality is also satisfied. Indeed, for three arbitrary
elements x, y, z ∈A, the exponential identity ex ≥ (1+ x/n)n, x ∈R, for n := 3, gives

de(x, y)+de(y, z)= ed(x,y) + ed(y,z) −2≥
[
1+ 1

3 d(x, y)
]3 +

[
1+ 1

3 d(y, z)
]3 −2,

and using the simplified notations a := d(x, y), b := d(y, z) and c := d(x, z),

de(x, y)+de(y, z) ≥ 1
27

(
a3 +b3)+ 1

3
(
a2 +b2)+a+b

= 1
27 (a+b)3 − 1

9 ab(a+b)+ 1
3 (a+b)2 − 2

3 ab+a+b

≥ 1
27 (a+b)3 − 1

36 (a+b)3 + 1
3 (a+b)2 − 1

6 (a+b)2 +a+b

≥ 1
3 c3 + 1

6 c2 + c, (4.18)

where the triangle inequality of metric d was used as well as the inequality
p

ab ≤ 1
2 (a+ b),

a,b ∈R+. From the definition of de, expressing d in terms of de, relation (4.18) yields

de(x, y)+de(y, z)≥ 1
3 log3 (

1+de(x, z)
)+ 1

6 log2 (
1+de(x, z)

)+ log
(
1+de(x, z)

)
. (4.19)

Consider now the function φ(x) := 1
3 log3(1+ x)+ 1

6 log2(1+ x)+ log(1+ x)− x, x ∈ R+. Assuming
that φ′ ≤ 0, we obtain log2(1+ x)+ 1

3 log(1+ x)− x ≤ 0, where through the logarithm identity
log x ≥ (x−1)/x, x ∈ R∗+, gives 4x2 −2x−3 ≤ 0, which holds for x ≥ x0 := 1

4
(
2+p

28
) ≈ 1.822.

Therefore, φ has a global maxima at x0, and as x1 = 0=φ(0) is one of the two roots x1, x2 ∈R+
of φ, the fact that 0= x1 ≤ x0 means that φ(x)≥ 0 for x ∈ [0, x2], where x2 ≈ 3.5197 (numerically
computed). Therefore from (4.19) the requested triangle inequality de(x, y)+de(y, z)≥ de(x, z)
is obtained since 0≤ de ≤ e−1≈ 1.718< x2.

Corollary 4.4. As an immediate result of Lemma 4.3, the “exponentiated” Hellinger distance,
i.e. DeH := eDH −1 is indeed a distance metric, since 0≤ DH ≤ 1.

Slightly more general, in the proof of the lemma above, note that if 0 ≤ d < k := log(1+
x2) ≈ 1.03775 is assumed, then de continuous to be a distance metric of d since the triangle
inequality, derived from (4.19) and the non-negativeness of function φ(x), x ∈ [0, x2], is satisfied
since 0≤ de ≤ ek −1< x2.

Note also that 0 ≤ DeH ≤ e− 1 since 0 ≤ DH ≤ 1. Therefore, a “standardized” form of the
exponentiated Hellinger distance can be defined as

DeH := eDH −1
e−1

. (4.20)

It is known that the Least Square Method is a minimum distance method. So is the Relative
Risk method, see [6]. Recall that the odds ratio, [5], is the exponential of a Least Square
estimate (i.e. a distance oriented estimator) of the slope for a dichotomous exposure-outcome
scenario, modeled by a typical simple logistic regression; see [7] among others. From the
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affine-geometric point of view, the Relative Risk method remains invariant under linear
transformations; see [8]. For a dichotomous outcome, say x = 0 or x = 1, the odds ratio values
are crucial because they are the only measure which depicts “how much more likely” is for
the outcome to be present among “those results with x = 1” than among “those with x = 0”.
For example, an odds ratio equals to 2 declares that an outcome occurs twice as often among
exposed to a possible Risk than among the non-exposed ones to Risk.

Having the above in mind, the normalized and standardized exponentiated Hellinger distance
can considered acting as as a Statistical Relative Risk, although it does not related to “odds
ratio”, [5]. Therefore, we suggest to refer to it with the term “Information Relative Risk”
(IRR). This IRR index, having such a strong information background, offers to researcher a
relative ”distance associated measure” between two distributions. That is, a distance metric
is provided, which has the information-geometric property of distance that the KL divergence
does not have, which is also a relative measure of informational comparison between two
distributions with different information context. In particular, for IRR values within, say
[0, 0.3), we shall conclude that no difference, in terms of the provided information exist
between the two distributions (due to the standardized exponentiated Hellinger distance)
and, therefore, the “offered information” from both distributions is very close. For IRR values
within [0.3, 0.7) our knowledge concerning how far (i.e. how different) one distribution is from
the other is inconclusive, and for values within [0.7, 1] we can say the two distributions differ,
as they offer different information content for the experiment under investigation.

5 Conclusions
Distance methods have an essential improvement concerning Statistical Estimation Methods
in Data Analysis, since the pioneering work of Blyth in [22], where she pointed out that
the known estimations methods are trying to minimize the distance of the estimated value
from the unknown parameter. Through the concept of distance between two sets [3] defined
the normalized distance of two objects as a criterion of “how” different the objects under
investigation are. It was also proved that this distance was adopting values within [0, 1].
Therefore, a measure of informational “proximity” between two continuous distributions was
given.

A probabilistic background, comparing two different outcomes, is not provided with the theory
we tried to develop here. We simply tried to investigate if the information provided from two
variables following different distributions are ”significantly” different. This ”significantly”
needs an explanation which were addressed by asking what was the “additional information
is offered”, when a r.v. is coming from the one or the other distribution. The Kullback-Leibler
information divergence is a rather popular but also weak method for the quantification of
the “gained” information between two r.v.-s, as far as its distance metric formalization is
concerned. Therefore, by adopting the Hellinger distance, we can conclude that the normalized
exponentiated Hellinger distance (which is also proved to be a distance metric) follows the
odds ratio (as well as the log-odds ratio) line of though in Logit methods. That is why the name
Information Relative Risk (IRR) was adopted. The proposed IRR measure is recommenced
to the experimenter in order to provide him with additional “informational insight” when
he has to choose between two comparative distributions both describing the problem under
investigation; for example when there is an inconclusive graph between their c.d.f. curves.
Based on the above, part of our future work is to give certain numerical results through
simulation studies.
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