
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: fbnr.reactor@gmail.com, farhang.sefidvash@bihe.org; 
 
 

 Physical Science International Journal 
10(4): 1-9, 2016, Article no.PSIJ.25287 

ISSN: 2348-0130 
 

SCIENCEDOMAIN international 
             www.sciencedomain.org 

 

 

Reduction of Environmental Impact of Fixed Bed 
Nuclear Reactor (FBNR) Waste 

 
Farhang Sefidvash1*, Ehsan Amozegar1, Sumer Sahin2, Do Thi Nguyet Minh3 

and Ha Van Thong3 
 

1Baha’i Institute for Higher Education (BIHE), Tehran, Iran. 
2ATILIM University, Ankara, Turkey. 

3Electric Power University (EPU), Hanoi, Vietnam. 
 

Authors’ contributions 
 

This work was carried out in collaboration between all authors. All authors read and approved the final 
manuscript. 

 
Article Information 

 
DOI: 10.9734/PSIJ/2016/25287 

Editor(s): 
(1) David G. Yurth, Director: Science & Technology, The Nova Institute of Technology Holladay, Utah, USA. 

(2) Felix A. Buot, Center of Computational Materials Science, George Mason University University Drive, Fairfax,  
Virginia, USA. 

(3) Stefano Moretti, School of Physics & Astronomy, University of Southampton, UK. 
Reviewers: 

(1) Juan Manuel Navarrete, National University of Mexico, Mexico. 
(2) Yong Gan, California State Polytechnic University, Pomona, USA. 

Complete Peer review History: http://sciencedomain.org/review-history/14634 
 
 
 

Received 26 th  February 2016 
Accepted 30 th April 2016 
 Published 14 th  May 2016 

 
 
ABSTRACT 
 

The Fix Bed Nuclear Reactor (FBNR) is a pressurized water reactor but its fuel elements are made 
of Tristructural-Isotropic (TRISO) type particles. Its spent fuel elements may be used as a source of 
radiation for irradiation purposes in medicine, industry and agriculture. Thereafter, the waste 
treatment problem is the same as for the fourth generation high-temperature nuclear reactors using 
TRISO particles. It is found that using the proposed simplified TRISO particles increases the 
reactivity of the reactor, resulting in higher fuel burnup; while in recycling of its spent fuel, the 
amount of radioactive carbon is reduced by 57%. 
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1. INTRODUCTION 
 
The global warming is no longer a philosophical 
discussion, but is a fact adversely affecting the 
future of humanity. Generation of nuclear energy 
does not produce CO2 that is the cause of global 
warming. The 40 scenarios studied about the 
mixture of different forms of energy generation 
resulted that none of them can satisfy the world’s 
demand for energy without considering the 
nuclear energy [1,2]. But the present nuclear 
reactors are not acceptable to public opinion for 
energy generation [3-5]. 
 
The International Atomic Energy Agency (IAEA) 
has established the INPRO project [6-8]. INPRO 
defines a new philosophy and criteria on how to 
generate nuclear energy without having the 
adverse effects that are of concern to the public. 
It is expected that a new era of nuclear energy 
will soon emerge, in which the world will benefit 
from the environmental friendly and clean 
nuclear energy. 
 
One proposal is the development of a new 
nuclear reactor concept called the Fixed Bed 
Nuclear Reactor (FBNR) [9-12]. At present the 
development of FBNR is used as an instrument 
in training scientists and researchers to be 
innovative in the light of INPRO vision and 
criteria. 
 

2. MATERIALS AND METHODS 
 
2.1 Characteristics of the FBNR  
 
The FBNR is essentially the Pressure Light 
Water Reactor (PWR) but its fuel elements are 
spheres of 15 mm diameter containing TRISO 
type fuel particles embedded in SiC matrix 
cladded by stainless steel [13-15]. 
 
The FBNR is a small reactor without the need for 
on-site refueling. It utilizes the PWR technology. 
It has the characteristics of being simple in 
design, inherently safe, passive cooling, 
proliferation resistant and reduced environmental 
impact [16-20]. 
 
The FBNR fuel chamber is fuelled in the factory. 
The sealed fuel chamber is then transported to 
and from the site. The FBNR has a long fuel 
cycle time and there is no need for onsite 
refueling [21]. It is an integrated primary system 
design. 
 

The FBNR is an innovative and small nuclear 
reactor that meets all the INPRO criteria and 

philosophy. Small reactors have the advantages 
of serving the needs of local communities, need 
low capital investment and do not require 
expensive power transmission system [22]. The 
FBNR can serve as multipurpose plant producing 
electricity, desalinated water, industrial steam 
and supply district heating simultaneously [23, 
24]. The FBNR is inherently safe that implies 
total safety and environmentally friendly. The 
spent fuel of FBNR may not be considered 
nuclear waste since it can serve as a source of 
radiation for irradiation purposes which has 
useful applications in agriculture, medicine and 
industry. 
 
It is economic with low capital investment. It can 
contribute to the solution of ever increasing 
demand for energy [25,26]. The countries that 
adopt FBNR will participate in the research and 
development of the advanced technology and 
become the owners of nuclear technology and 
not merely be the users. 
 
2.2 Description of the Reactor 
 
As shown in the schematic Fig. 1, the reactor 
has in its upper part the reactor core and a steam 
generator and in its lower part the fuel chamber. 
The core consists of a 150 cm diameter cylinder 
connected to a 100 Cm long cone below it where 
in turn it is connected to a 40 Cm diameter 
helical tube constituting the fuel chamber [27,28]. 
During the reactor operation, the 15 mm 
diameter spherical fuel elements are held 
together by the coolant flow in a fixed bed 
configuration, forming a suspended core. The 
coolant flows vertically upward into the core and 
thereafter to the steam generator [29-31]. The 
connecting helical tube is made of high neutron 
absorbing alloy, which is directly connected 
underneath the core tube. The fuel chamber 
consists of a helical 40 cm diameter tube flanged 
to the reserve fuel chamber that is sealed by the 
national and international authorities. A grid is 
provided at the lower part of the tube to hold the 
fuel elements within it [32-38]. A steam generator 
of the shell-and-tube type is integrated in the 
upper part of the module. The reactor is provided 
with a pressurizer system to keep the coolant at 
a constant pressure [38-45]. The pump circulates 
the coolant inside the reactor moving it upward 
through the fuel chamber, the core and the 
steam generator. Thereafter, the coolant flows 
back down to the pump [45-47]. At a flow velocity 
called terminal velocity, the water coolant carries 
the spherical fuel elements from the fuel 
chamber up into the core [47-49]. A fixed 
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suspended core is formed in the reactor. In the 
shutdown condition, the suspended core breaks 
down and the fuel elements leave the core and 
fall back into the fuel chamber by the force of 
gravity. The 15 mm diameter spherical fuel 
elements are made of simplified TRISO micro 
spheres embedded in Sic and cladded by 
stainless steel. The simplified TRISO particle has 
only one layer of graphite to contain fission 
products. This will decrease the content of 
graphite in the fuel thus reduce the problem of 
fuel recycling. 
 

Any signal from any of the detectors, due to any 
initiating event, will not allow the pump to 
operate, causing the fuel elements to leave the 
core and fall back into the fuel chamber under 
the force of gravity, where they remain in a highly 
subcritical and passively cooled condition. The 
fuel chamber is cooled by natural convection, 
transferring heat to the water in the tank housing 
the fuel chamber [49-59]. 
 

The long-term reactivity is supplied by fresh fuel 
addition. A piston type core limiter adjusts the 
core height and controls the amount of fuel 
elements that are permitted to enter the core 
from the reserve chamber [60-67]. The control 
system is conceived to have the pump in the “not 
operating” condition and only operates when all 
the signals coming from the control detectors 
simultaneously indicate safe operation. Under 
any possible inadequate functioning of the 
reactor, the power does not reach the pump and 
the coolant flow stops causing the fuel elements 

to fall out of the core. The water flowing from an 
accumulator, which is controlled by a multi 
redundancy valve system, cools the fuel 
chamber functioning as the emergency core 
cooling system. The other components of the 
reactor are essentially the same as in a 
conventional pressurized water reactor [68-77]. 
 

2.3 FBNR Fuel Element 
 
The 15 mm diameter spherical fuel element is 
made of TRISO type particles embedded in SiC 
matrix covered by 0.5 mm thick stainless steel 
cladding. Consider 60% TRISO particles 
embedded in 40% SiC matrix. 

 
The conventional TRISO particle as shown in 
Fig. 2, consists of a fuel kernel composed of UO2 
in the center, coated with four layers of three 
isotropic materials. The four layers are a porous 
buffer layer made of carbon, followed by a dense 
inner layer of pyrolytic carbon (PyC), followed by 
a ceramic layer of SiC to retain fission products 
at elevated temperatures and to give the TRISO 
particle more structural integrity, followed by a 
dense outer layer of PyC. TRISO fuel particles 
are designed not to crack due to the stresses 
from processes (such as differential thermal 
expansion or fission gas pressure) at 
temperatures up to and beyond 1600°C. 
Therefore they can contain the fuel in the worst 
accident scenarios in a properly designed 
reactor. 

 

 
 

Fig. 1. Schematic design of the Fixed Bed Nuclear Reactor (FBNR) 



 
 
 
 

Sefidvash et al.; PSIJ, 10(4): 1-9, 2016; Article no.PSIJ.25287 
 
 

 
4 
 

Since the principle difficulty associated with the 
recycling of TRISO fuel particles is the presence 
of graphite, the simplified TRISO particle is used 
for FBNR where only the first layer of porous 
carbon is maintained. As it is embedded in Sic 
matrix, the fuel bed retains the fission products. 
This will immensely reduce the carbon content of 
the fuel elements which alleviate the problem of 
fuel recycling. The future detailed study may 
allow the total elimination of graphite. 
 

 
 

Fig. 2. FBNR fuel element 
 

Originally, the fuel elements were composed of 
ordinary TRISO particles where the UO2 
particles were covered by 3 graphite layers. This 
was chosen to simplify the implementation of 
design by using the “commercially available” fuel. 
Another reason was to create an exaggerated 
safety to increase acceptability of the FBNR 
concept adequate for an open end fuel cycle. In 
order to have closed end fuel cycle, one will have 
additionally extra carbon that is a source of 
radioactive C-14 problem in fuel reprocessing 
process. Therefore, we are proposing the use of 
simplified TRISO particle where the UO2 particle 
is covered only by one layer of graphite to 
contain fission products and will be supported by 
robust Sic matrix. This reduces the graphite 
content in the fuel by 57%. In the future, we may 
find that this one layer of the graphite will not be 
necessary and we can avoid the problem of C-14 
totally. As shown in Fig. 3 for equal FBNR core 
height, simplified TRISO has higher amount of K-
effective than original TRISO. Also at core height 
200 cm and an enrichment range from 10% to 
19%, simplified TRISO has higher amount of K-
effective than original TRISO (Fig. 4). 

 
 

Fig. 3. K-effective with FBNR core height for 
original and simplified TRISO for 19% 
enrichment and coolant critical water 

 

 
 

Fig. 4. K-effective with FBNR at core height of 
200 cm for original and simplified TRISO in an 

enrichment range from 10% to 19% and 
coolant critical water 

 
The reactor physics calculations show that such 
a choice will have additional advantage of 
increasing the reactivity of the reactor leading to 
a longer fuel cycle as seen.  
 
3. RESULTS AND DISCUSSION 
 
3.1 Useful Applications of Spent Fuel 
 
The spent fuel elements of the FBNR before 
being reprocessed can serve as the source of 
radiation for irradiation purposes for many years. 
As shown in Fig. 5, all types of point, line, and 
plane sources can be manufactured and utilized 
in the irradiators. Figs. 6-8 show some various 
areas of application for the spent fuel. 
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Fig. 5. FBNR spent fuel for radiation 
applications 

 

 
 

Fig. 6. Radiation applications in medicine 
 

 
 

Fig. 7. Radiation applications in Food 
 

3.2 Waste Treatment Problem 
 
The FBNR is a pressurized water reactor but its 
fuel elements are made of TRISO particles. 

Therefore, the waste treatment problem is the 
same as the fourth generation high-temperature 
nuclear reactors. Because only a relatively small 
amount of fuel in a great amount of carbon will 
contain 14C after burn up, processing these fuels 
to recover the fissile materials presents special 
problems. 
 
Historical approaches to processing TRISO-
coated fuel involved crushing and burning 
operations, which would reduce the fuel 
elements size (thereby increasing the surface 
area), breach the SiC layer, oxidize the metal 
carbide and remove the carbon components from 
the fuel as gaseous carbon dioxide. The fuel is 
then easily separated from the remaining SiC 
fragments by dissolution in nitric acid. The 
primary disadvantage of this method is the need 
to capture and sequester the 14C-containing 
CO2. 
 

 
 

Fig. 8. Radiation applications in industry 
 

The crush-leach process may be used as a 
method to treat GEN IV TRISO-coated reactor 
fuels. The method retains the bulk of the carbon 
components in elemental form, which is 
favorable for achieving waste reduction goals. 
 
4. CONCLUSION 
 
The used fuel elements made of simplified 
TRISO particle will produce 57% less radioactive 
carbon compared to advanced high-temperature 
reactors which is a source of problem in fuel 
reprocessing. 
 
The FBNR spend fuel elements may not be 
considered as nuclear waste since they serve 
useful purpose as the source of radiation for 
irradiation purposes. 
 
The FBNR spent fuel after serving as a source of 
radiation and after some years of decaying, can 
be reused in the reactor since the neutron 
absorbing isotopes may have decayed out. 
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At the end of the cycle, the reprocessing is done 
using the same procedure as that of the fourth 
generation high-temperature reactors using 
TRISO particles; while it has the advantage that 
the problem of radioactive carbon is much 
reduced or may not exist. The cost of fabrication 
and recycling of such fuel are greatly reduced. 
 
Supplementary Video Links 
 
http://www.youtube.com/watch?v=P8dnbEdqvoQ
&authuser=0 
 
http://www.youtube.com/watch?v=2w4JZ5tT5vY
&authuser=0 
 
http://www.youtube.com/watch?v=-
g0vh5m25y8&authuser=0 
 
http://www.youtube.com/watch?v=XnXcjpGc7N4
&authuser=0 
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