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Abstract

In this work, ve are studying about a special oscillator system, whatsists of one spring and
magnet-mass. The system is placed in nonlinear magfielil; produced by two other permanent
magnets, which are oriented for attraction, where can agiféarent types of oscillations. The magnet-
body is simultaneously the subject of the linear fieldming and also of the nonlinear magnetic field of
permanent magnets which has inverse quadratic dependencgateli We are studying the ideal cgse,
without friction, where the oscillations are producedhweénergy conservation, the oscillator system is
started by applying the initial impulse and we considehtipothesis that magnetic field produced by the
permanent magnets is conservative and there is no loseigfyeim the magnetic interactions. We are
going to find the law of motion for the general casstatly and a typically numerical application will be
done.

Keywords: Nonlinear field of forces; nonlinear differengajuation; elliptic sine functions; special function
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1 Introduction

The studied mechanical system, was inspired by an expataiactivity conducted by the authors, and this
article aims to find, the mathematical laws of physioation.

1.1 Describing the M echanical System

We start from the figure below, which describe the progasechanical system, where is shown a sub
system of magnet-body placed in nonlinear field of magrietces. The permanent magnet which is inside
of the m body, is oriented as shown and can move fredhit, in X axis direction.
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Fig. 1. Mechanical system with nonlinear field interactions

In this theoretical model the ideal expressions of foreas considered, so that for magnetic force, we used
a simple monopole-monopole expression, for a long bar rne\ghescribed in [1]. Expression of magnetic
field of forces (1), is well known formula, wherpr:n- is the magnetic force)lm- is a constant depending on

type and strength of the magnets, add- are the distance between magnets. It was considerethénatis

no friction or loss energy in magnetic interactions and gheblem was approached using the law of
conservation of energy. We observe that the force hagrgtic inverse variation with distance, which gives
a nonlinear variations.

A
F =M 1)
m X2

Considering that centrums of coordinates system isXirrQ, the zero point for maximum value of
magnetic forces is near surfaces of magnets 1 and-Z &md & points, like in the next figure.

The forces which acting on magnet no. 3, was express@),iand has inverse variation beside deviation
from the equilibrium position of the mechanical systentee $ame formula was described also in the work

of the other authors [2], as follows:
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Fig. 2. Schematic displacement, of per manent magnetson X axis

The above figure shows the point of equilibrium of forfsX=0, maximum or minimum reached of forces
as function of X. The magnets 1 and 2 are fixed, and wilcoaosider the interact force between them, but
only strength of the forces acting on the magnet 3, héteirzalled: Fim and Fom

The third magnet is subjected simultaneously to¢tamplementary strengths, as following discussion:
«  WhenX=— &, we have next situation:
A
F :Aim: m
2 2
(E+5)° 4 A3)
"m

(92

l:Zm

Where we observe theElm has a minimum value

+  WhenX =0, we have next situation:

Am Am g @)

F,..+F,. =
Im " 2m
52 52

«  WhenX = ¢, we have next situation:

Fi. = Am
m = g2
E-&) 5)
A A
Fom == " ==
E+H% a8

Where we observe th@tmhas a minimum value.

In Fig. 2, group of:&, -& points are the maximum positive or negative dispiaent of the system, from

the equilibrium point, and here it was considereat the distance between magnets: 1-3, 2-3, wilenev
become zero, where the magnetic force, tends toitinfiihe magnetic force model was described also in
the almost same mode in [3].
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1.2 The Constant of the Mechanical System are

ke — are the elastic constant of the spring.

/‘m — are magnetic constant depending on strengtregbéhmanent magnet.

M — are the mass of the magnet-mass body.
& —is a distance depending on construction of mechbsystem.

1.3 TheImplied Static and Dynamic For ces ar e Follows
Fe— Elastic force of the spring
Fo=—kg X(®) 1 ©6)

Fr‘r’EL — Magnetic force of permanent magnet 1

A -
— m
Fip=— " i @)
[§=X(1)]
Fm2 — Magnetic force of permanent magnet 2
Fo=— m ®)
[£+X()]2
FI’ — The resultant of static forces:
-~ A - A -~
F=—k X ()i + m 2i - m 2i (9)
[{=XM]7  [§+X(1)]
Fi — Dynamic forces of acceleration
25 ()~
Fo=m amx@® X2 ® i (10)
dt
Equation of equilibrium of forces is
F=F (11)

Taking into account the configuration of dynamicatl sstatically forces in the above system, the sécon
order nonlinear differential equation that describesntiechanical system will be following:
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2 A A
m m:_kex(t)+ m m

dt2 [E-X®)]% [E+X(1)]2

1.4 Point with L ow Potential Energy of the System

(12)

The static forces fields are functions of time, by dgitapoint of view, but also function of positions a
well. By integrating once (12), formally calculatedcarding toX (t), we get a low-order differential

equation, in which the left side has physical digien of kinetic energy of system, and right side esqirey
the potential energy.

2
m{dX(t)} _XAM , Amo, Am (13

2| dt 2 E-X() E+X()

If we plot the right side of (12) and right side of \1®ill obtain the figure below, where graph of theistat
forces -function and potential energy - function amsh

1 Force
Potential energy

s |
| |
| |
! |
g |
a' , |
E! | |
a-.l _* . . |
S i Minimum energy point |
I |
5 : % |
> | p | X=
: -& . Point of equilibrium 0 . & :E
I [ of forces | lg
| : : | E
=
! K
| Iw
[ 'E
| i : | D
Static forces e Potential energy =

Fig. 3. Force and potential energy variation ver sus position. Equilibrium points

We observe that in continuity of the function domaire force expression are passing tree time from zero
instead potential ennergy has two minimum pointseng the system has stability points. In this stuly,
will show that our nonlinear differential equation 1&dmits in these domains, two particular constant
solutions, where it will be possible to observeaét bf the body, from oscillatory motion, dependiny start
position.
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2 Applied Methods

We start to find the solution for this nonlinear diffetial equation, by analyzing a few special functiand
we study the derivative of second order for these fonst

2.1 Jacobi Elliptic Functions like Natural Oscillation Solution of Some Nonlinear
Second Order Differential Equation

Looking at a material point, being in circular motiaith constant angular velocity, we can remark the
following: From the point of view of X axis, we caaesthe variation of trigonometric cosine function, and
from the point of view of Y axis, we could see the &tioin of trigonometric sine function. In the same way,
if we are looking at the elliptical movement of aterial point with constant angular velocity from the
axis point of view, the material point looks likaving regular stops, by decrease of the speed of mutio
time, in concordance with Jacobi SN (x, k) functéord it seems to have sudden changes of speed mimot
in time viewed from Y, in concordance with Jaco (X, k) function.

Starting from this point, and considering a speaiahlinear characteristics of the system studied ig thi
paper, the authors will use a natural applicatiorelbptic functions, of special metrics developedtte
works of Niels Henry Abel and Carl Gustav Jacobi.

Starting for ellipse equation, of and s semi axes:

2 2
12 +L2 =R? (14)
S22
Were we defining the k - term, hereinafter called gatacity of ellipse, with expression:
2
k= 1—% (15)
S
The length of ellipse sector, which is widely desedpas is shown in [4], is:
di2 :[olx2 +dY2Jd 24 (16)
By tacking:
X =s, cos@)
17)

Y:s_l sin(@)
We obtain the expression of perimeter of an ellipse:

dI2=s7[(sin®(¢)—k? sin®(§))+co (P)dp? =F[(1-k > sin®(P)ldp® )
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For a normalized ellipse, i, = 1, we find an integral formula to reach the length mfedlipse sector, as
follow:

b @
jdi = [y[(1-k2sin(¢))]dg )

a 0

Starting to this integral form, based on Euler’s sitittons, Carl Jacobi wrote the following remarkable
result, as first incomplete elliptic integral:

t=

j“’ d¢ _ x=sin(g) dX
> J1-k2sin?(¢) 3 V1-x2N1-k2X2

(20)

Where we can observe, some special function, destelso in work [5,6], as follow:

The amplitude of t:

am(t)=¢ (21)

Sine amplitude of t:

sn(t,k)=sin[am(t)]=sin(®) (22)

Cosine amplitude of t:
cn(t,k)=cosfam(t)]=cos@) (23)

Delta amplitude of t, which has no correspondentlassical trigonometric functions but it has utility
derivative of elliptic functions:

dnt, k) :\/1—k2 sin?(¢) :\/1—k25n2(t,k) 24)

Similar form of fundamental trigonometry formula:

sn? (t,k)+cn? (t,k)=1 (25)

The Jacobi elliptic functions are inverse solutiofgléptic integrals, and are well known their usaage
functions that check some nonlinear differential equatias shown below. We start from a dedicated form
of nonlinear equation of second order of this pattern

dX2(t) _

2 —(+k2) X (1) +2k2X 3 (1) (26)



Nistor et al.; BIMCS, 12(4): 1-15, 2016; Article.BGMCS.20083

By substituting:
X (t)=snl(t,k) (27)

And calculating the derivative of second order, oftaeobi Sine function, we obtain:

2
d [Sngvk)]zd{d[sn(t'k)]}zd[cn(t,k)dn(t,k)]=—dn2(t,k)sn(t,k)—kzcnz(t,k)sn(t,k) 28)
it dt|  dt dt

Taking into account of (24) and (25), we get:

2
d[snét,k)]:_{l_kZSnZ (t,k)]sn(t,k)—kzll—srl2 (t,k)]sn(t,k) (29)
dt

Thus, after simplifying:

2
d[Snét’k)]:—sn(t,k)+kzsn3(t,k)‘k25”(t’k)”(zsng(t’k) G0
dt
And finally:
2
d snét,k) = —(L+k2)sn(t, k) + 2k 2sn3(t, k) (3D
dt

Where observe that solution is the exactly form @) (8ubstituted in (26).
2.2 Analytical Solution of Given Problem:

The solution of given differential equation will bdaamily of function depending on initial displacemerft

starting impulse, denoted a?><0. A very interesting fact is this: for the classic hame oscillator, mass and

spring, in ideal case, which has a sine solutiomnfothe initial displacement are influencing onhet
maximum amplitude of motion, and phase, but lockmgacobi Sine function, the initial displacemare
influencing the time-argument also, as in the denmmatish below. So first, we consider a starting posit
displacement from the equilibrium position, from whtre motion law will have each time, different form.
The time argument, it will be the subject of influsrgcof starting position displacement.

The new argumentr t, will depend on degree of nonlinear field, and ariuémcing the rapidity of
repetition of function. The proposed form, describtsb in [7], was here proposed in the form of:

X(t)=xgsn(at.k) (32)

We start to search the solution of the nonlinear difféaé equation (12), by calculating the second order
derivative of proposed form (32), in this way:
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d 2[xosn(crt,k)]

2,2
k<c
dt?

=—xqar2dn? (at,k)sn(at k) xga 2k 2en? (at K)sn(at k) (33)

After substitution (23), (24) and (25) we obtain onlypéc sine dependent form, described also in [8], a
follow:

d2[xpsn(at,k)

2,2
k<s
dt2

=—xo@ 2sn(at k) +2xqa kZsn>(at, k) - xga 2k Zsn(at,k) (a4)

And by applying the (32) form substitution, we get:

dX 2(t
2():—x0a2X (t)+2x0a 2k 2 X 3 (1) -xga 2k 2 X (1) (35)

dt
Derivative of second order, of proposed elliptic dioen, are generating a third order algebraic polyngmia
which contains both information: the argument, aodentricity.

In this point of calculus, we have to look at tight member of (26), and observe that:
« By taking: K =0, will obtain:

dX2(t)
=-=-X(t 36
e (t) (36)

Where the solution is, the well-known form of trigoretnic sine.

« Bytaking: k=1, we get:

2
d);tz(t) = 2X (1) + 2X3(1) 37)

Which it has a couple of twice-constant soluti®n(t) = +1 which seems to be a halt in time of the
oscillator.

We conclude that the algebraic member of differenti@liations (12), will determine the amount of
eccentricity of the ellipse that describes our systBecause trough the right member of (26), the wffgal

form are reaching his particular constant solutioXs(t) = +1, for maximum of eccentricityk =1, we
choose new form of right member of (26), containingeey parameter p, to reach the same situation:

p:Roo{—(1+p2k2)xp+2p2k2xg:0 (38)
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Which are solved forxp andK , calculated as following:

/]m — /]m =0

(b-X)2 (0+X)2

=Roo(F,)=Roo 1 —Kg | X+

*p m (39)

and:

k = kmax =1 (40)

Where Xp is @ maximum position constant of mechanical systetrere equilibrium of static forces is

reaching and graph of algebraic member is passinghirpeip. After finding the p - parameter, we define a
new eccentricity function k, depending on initissplacement, by solving fét , the equation:
2k2 2k2

2p2k?x3 - 1+ p?k?)xp=0 (41)

We find the eccentricity-argument of elliptic functias following:

1

k(p.Xg)=—F—= (42)
p112x(2)—1

In order to find the new time-argument of elliptic sfoaction, we will find a special function prototypd a
noted as -Fp, starting from our dedicated form of right member of)(26 following:

F,(a,b,p,k x)=a {_ 1+ p2k2 +b

)Xo 2p2k2Xo] (43)

Where, in finding of: a and b correction constanéshave to introduce the next system of integrahgquos,
implied in solving of our problem:

koix A A
Fo=F «=»—a(1+p2k2)xp+23p2k2x%=— el"p, m 5" m 5
M mé-xp) mé+xp)
(44)
Xp *p
JFpdX= [ FpdX
0 0

With specification that first equation are solved fé(p , P, K, being constants, and second equation are

integrated for variable X, and for constan{s; K . After the above system is solved to find a, lbrstants,
we have to identify the coefficients of the expresspmovided from right member of (35):

10
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—anZX +2x0a2k2X 3—xoa2k2X =—a(l+ p2k3) X +2bp2k2X 3 (45)
Starting to the system:

{— X, % = X,a°k? = —a(l+ p°k?)
(46)

2x%,a°k? = 2bp2k?2

Where after solving forr , for undeterminedK (the above system is a linear dependent one), webwill
able to find the final form of the function.

Together (44) with (47), are compound the final sohutia the form:
X (©)=Xg81 @04, Pk, Xp ). K(Xg, P) @)

3 A Specific Numerical Application

Finally, we give an example to illustrate the resbitained in this paper.

Considering the following physics constants of thetesp, we will get the particular solution of the
mechanical system:

kej=2 mMN/mm A,,=20 mN/mm m=1 gram ¢=5 mm (48)
The (9) form is becoming:

Fo=|-2X+ 20 _ 20 (49)

' 6-X)2 B+Xx)2

We start to find the derived system constants, ko

P 6-X)2 (B+X)2

X :Roo{—zx+ 20 20 :0}:{—\/2&10\5, —25-10V2, 0, y25-10/2, +25+102 | (50)

We choose only couple of twice solution betweerhatrtical asymptotes, as shown in Fig. 4:
X, = +125-10v2 = + 3.295mm (51)

We find the p - parameter, which define the depth of nonlinearity, wfmarticular case, applying the (38),

for: ‘Xp‘ = 3.295, and maximum of eccentricitkmax =1, in the follow:

11
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2p2(3.2953-3.295 (1+ p2)=-3.295+68.252p2=0 (52)
And getting:
p=+0.219731 |p|=o.219731 (53)

So that in this particular case, the eccentricifyesteling on initial position function is:

1 4551

(54)

k(xg)=

0.219731\/2xc2) -1 \/2x§ -1

Finding of a, b constants, implies the system (4#) ‘mp‘:3.295, | p| =0.219731k =1, as follow:

{— 3.45407077 a+3.45407077 b=-0.00078220

-5.69058160a+2.84529080 b= - 4.71572870 (%5)
Where after solving, we get the solutions:
a=1.65715376
(56)
b=1.65692730

So that the algebraic function, according with éllisine prototype, describing our particular mechdnica
system, which contains information about the timguarent and eccentricity-argument of solutions family,
is:

Fp(k,X)=-1.6571538 (1+0.04827641k %)X +0.15998108 k2X3 (57)

And we could see that for:

k=k =1 (58)

We get above function:

Fp=-1.7371552X+0.15998108 x3 (59)

In the graph following we have plotted, with contius line, the initial algebraic functiol:rr (9), and with
dashed line theFp function, which is our funded function (59), in pest with prototype of elliptic function

after the second order derivative, to show the @engll difference (between the roots domain, where the
function was defined).

12
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Systems (44) are becoming:

-Xo@®-xqa °k? = -1.657153760.08000143k?

(60)
29 °k? =0.159981008k?

—
£y

3 I
0 FX) !
[
0 (M) !
')
5 ;o
6 ;o
!
4 ;f |§
2 ’ | =
. 0 Xp g’ X (mm), E*
3.295 T my
2 £
4 |%
-]
- |&
3 =
- . : oy
’ —Initial function (Fr) s
12 : . |
» -==Muaodified function(Fp) |
6 0 2 4 5

Fig. 4. Graph initial function (F, ), and prototype of eliptic function ( Fp)

From where we find the argument form, for undetermikethe above system is a linear dependent one):

1.287
a= (61)
VX0
Together (54) and (61), are compounding the form ofolution follow:
1.2873, 4.551
t (62)

X (t) = x4Sn ,
0 \/g ‘IZXCZ) -1

In the end, we have plotted funded solution fornfatasome representative value of initial displacement

13
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3

Fig. 5. Different type of oscillations, are produced in spring-magnet-mass system, depending on
starting position displacement X, accor ding with founded for mula (62)

4 Conclusions

The founded formula (62) shows the dependence of-#rgument and eccentricity-argument variation
through the changes of initial starting positiontHé maximum of eccentricity is reached, then the main
oscillations stop for a while, and this halt of distion can be possible by the sudden decrease @fdspe
motion, not by friction or loss of energy, but onlyd@aching maximum of nonlinearity.

We have proposed a particular form of elliptic sinecfion, then a second formal order derivative.
Considering that the derivation of this function tygaerates a third order polynomial, we are lookiorgaf
polynomial prototype of this form, for the given fition, firstly the algebraic way, finding an expression

a and b, and secondly equalizing inter graphics avk#sese functions, obtaining another expressiorafor
and b.

The founded elliptical polynomial function prototype in concordance with the initial given form anas

the exact same algebraic solutions. Then by ideatiio of coefficients, we have founded the time-
argument and eccentricity-argument expression. Alitessame systems were analyzed also in the work of
other authors [8,9] where the same movement equdgpending on initial positions was described. The
graphs show that initial impulse applied to theiltztor determines the shape of the law of motiohijol is

also experimentally proven by the authors.

14
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Analytical solutions to this problem had been egiegly studied by other authors, and some constmictiv
ideas were taken from the specialty literature of DufBnillator subject, described in works [10,11].
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