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Abstract

In this paper, we investigate the effect of the mean curvature of the boundary ∂Ω on the behavior
of the blow-up solutions to the p-Laplacian type quasilinear elliptic equation

div(|∇u|p−2∇u) = um|∇u|, p > 1,

where the Ω ∈ RN be a bounded smooth domain. Under appropriate conditions on p and m, we
find the estimates of the solution u interms of the distance from x to the boundary ∂Ω. To the
equation

div(|∇u|p−2∇u) = um|∇u|q, p > 1, 0 < q < 1,

the results of the semilinear problem are extended to the quasilinear ones.
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1 Introduction

In this paper, we study the boundary blow-up problems

div(|∇u|p−2∇u) = um|∇u| in Ω, u → ∞ as x → ∂Ω, (1.1)

and
div(|∇u|p−2∇u) = um|∇u|q in Ω, u → ∞ as x → ∂Ω, (1.2)

where Ω is a bounded smooth domain in RN , N ≥ 2, p > 1, m+ 1 > p− 1, and 0 < q < 1.

First we consider to prove the existence of a positive large solution. We first consider, for 0 < ε < 1,
the problem

∆pu = um(ε+ |∇u|2)
1
2 in Ω, u → ∞ as x → ∞,

where ∆pu = div(|∇u|p−2∇u). The existence of a positive solution u = uε for this new problem is
proved in [1], [2], [3], [4]. Then, by theorem 4.2 of [4] a sequence uεi , with εi → 0, tends to a solution
u of problem (1.1).

We are interesting in the behavior of the solution u near the boundary ∂Ω. Problems of this kind
are discussed in many papers, see, for instance, [5], [6], [7], [8], [9] and the survey paper [10]. Some
papers found some estimates, such as [11], [12]. For the problem

∆u = um in Ω, u → ∞ as x → ∞. (1.3)

C.Bandle in [8] has found the estimate

u(x) =

(
p− 1√
2(p+ 1)

δ(x)

) 2
1−p

=

[
1 +

(N − 1)H(x)

p+ 3
+ o(δ(x))

]
, (1.4)

where δ(x) denotes the distance from x to the boundary ∂Ω, and H(x) denotes the mean curvature
of ∂Ω at the point x nearest to x.

In [11], the authors investigate the problem

∆u = up|∇u|q in Ω, u → ∞ as x → ∞. (1.5)

where Ω is a bounded smooth domain in RN , N ≥ 2, p > 0, 0 ≤ q ≤ (p+3)/(p+2) and p+ q > 1.
They find an estimate similar to (1.4).

More precisely, let A(ρ,R) ⊂ RN , N ≥ 2, be the annulus with radius ρ and R centered at the
origin, u(x) be a radial solution to problem (1.5) in Ω = A(ρ,R), and let v(r) = u(x) for r = |x|. If
p > 0, 0 ≤ q < (p+ 3)/(p+ 2) and p+ q > 1 they have

v(r) < ϕ(R− r)[1 + C(R− r)], r ∈ (r1, R), (1.6)

v(r) > ϕ(r − ρ)[1− C(r − ρ)], r ∈ (ρ, r2). (1.7)

where ϕ be the function defined by

ϕ(t) =

(
2− q

p+ q − 1

) 2−q
p+q−1

(
p+ 1

2− q

) 1
p+q−1

t
q−2

p+q−1 . (1.8)

and r1 is a constant between r0 and R, r2 is a constant between ρ and r0.

If p > 0, q = (p+ 3)/(p+ 2) they have

v(r) < ϕ(R− r)[1 + C(R− r) ln
1

R− r
], r ∈ (r1, R), (1.9)
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v(r) > ϕ(r − ρ)[1− C(r − ρ) ln
1

r − ρ
], r ∈ (ρ, r2). (1.10)

Let Ω be a bounded domain with a smooth boundary ∂Ω, let p > 0, 0 ≤ q < (p + 3)/(p + 2) and
p+ q > 1, they have

v(x) ≤ u(x) ≤ w(x),

where ϕ be the function defined in (1.8), and

w(x) = ϕ(δ)

(
1 +

(2− q)(N − 1)H(x)

2(p+ 3− q(p+ 2))
δ + αδσ

)
, (1.11)

v(x) = ϕ(δ)

(
1 +

(2− q)(N − 1)H(x)

2(p+ 3− q(p+ 2))
δ − αδσ

)
. (1.12)

Motivated by the results of the above cited papers, we further study the estimates for boundary
blow-up solutions of problem (1.1)-(1.2), the partial results of the semilinear problem are extended
to the quasilinear ones. We can find the related part results for p = 2 in [1].

2 Estimates for Radial Solution

In this section, firstly, we study the problem (1.1), we present some lemmas that will be used in the
section.

Lemma 2.1. Let p > 0,m + 1 > p − 1. Consider the equation in (1.1) in dimension N = 1 and
Ω = (0,∞). If u = ϕ(t) > 0 and ϕ′(t) < 0 we have

ϕ′′(−ϕ′)p−2 = ϕm(−ϕ′). (2.1)

where ϕ(t) be defined by

ϕ(t) = (m+ 1)
1

(m+1)−(p−1)

[
p− 1

(m+ 1)− (p− 1)

] p−1
(m+1)−()p−1

t
1−p

(m+1)−(p−1) . (2.2)

A solution of (2.1) such that ϕ(t) → ∞ as t → 0 is precisely the function defined in (2.2).

In what follows we denote by C > 1 a constant which may change from term to term.

Lemma 2.2[14]. Let g(r) be a C1−function defined for R1 < r < R. If g(r) → ∞ as r → R+
1

and g′(r) ≤ 0, then: lim
r→R+

1

∫R
r g(s)ds

g(r)
= 0.

Theorem 2.1. Let A(ρ,R) ⊂ RN , N ≥ 2, be the annulus with radii ρ and R centered at the
origin. Let ϕ be the function defined in (2.2), let u(x) be a radial solution to problem (1.1) in
A(ρ,R) ⊂ RN , and let v(r) = u(x) for r = |x|. If p > 0, m+ 1 > p− 1 we have

v(r) < ϕ(R− r)[1 + C(R− r)], r ∈ (r1, R), (2.3)

v(r) > ϕ(r − ρ)[1− C(r − ρ)], r ∈ (ρ, r2). (2.4)

Proof. If Ω = A(ρ,R), problem 1.1 reads as(
|v′|p−2v′

)′
+

N − 1

r
|v′|p−2v′ = vm|v′|, v(ρ) = v(R) = ∞. (2.5)

There is a point r0 ∈ (ρ,R) such that v′(r0) = 0, v′(r) < 0 for r ∈ (ρ, r0) and v′(r) > 0 for
r ∈ (r0, R). For r ∈ (r0, R) we have(

(v′)p−1)′ + N − 1

r
(v′)p−1 = vmv′, v′(r0) = 0, v(R) = ∞. (2.6)
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Integration over (r0, r) yields

(v′)p−1
∣∣r
r0

+

∫ r

r0

N − 1

s
(v′)p−1ds =

∫ r

r0

vmv′ds,

(v′)p−1
∣∣r
r0

+ (N − 1)

∫ r

r0

(v′)p−1

s
ds =

vm+1 − vm+1
0

m+ 1
, v0 = v(r0),

(v′)p−1 + (N − 1)

∫ r

r0

(v′)p−1

s
ds =

vm+1 − vm+1
0

m+ 1
. (2.7)

From (2.7) we find

(v′)p−1 <
vm+1

m+ 1
,

v′ <
vm+1

p−1

m+ 1
.

On the other hand, by lemma 2.2 we have

lim
r→R

(v′)p−1∫ r

r0

(v′)p−1

s

= ∞.

and combining this with (2.7) implies for r ∈ (r1, R)

2(v′)p−1 >
vm+1

m+ 1
.

Hence by Eq.(2.7) we find
1

C
v

m+1
p−1 < v′ < Cv

m+1
p−1 , r ∈ (r1, R), (2.8)

From (2.8) we find
1

C
v

m+1
1−p <

1

v′
< Cv

m+1
1−p ,

1

C

∫ R

r

v
m+1
1−p v′ds < R− r < C

∫ R

r

v
m+1
1−p v′ds,

1

C

(
0− v

m+1−(p−1)
1−p

)
< R− r < C

(
0− v

m+1−(p−1)
1−p

)
,

1

C
v

m+1−(p−1)
1−p < R− r < Cv

m+1−(p−1)
1−p ,

Finally we get
1

C
(R− r)

1−p
(m+1)−(p−1) < v < C(R− r)

1−p
(m+1)−(p−1) , (2.9)

and
1

C
(R− r)

m+1
(p−1)−(m+1) < v′ < C(R− r)

m+1
(p−1)−(m+1) . (2.10)

By using (2.10), we find

∫ r

r0

(v′)p−1

s
ds <

∫ r

r0

Cp−1(R−s)

(m+1)(p−1)
(p−1)−(m+1)

s
ds

< Cp−1

r0

∫ r

r0
(R− s)

(m+1)(p−1)
(p−1)−(m+1) ds

< C(R− r)
(m+2)(p−1)−(m+1)

(p−1)−(m+1)

(2.11)

Inserting estimate (2.11) into (2.7) we get

(v′)p−1 >
vm+1 − vm+1

0

m+ 1
− C(R− r)

(m+2)(p−1)−(m+1)
(p−1)−(m+1) ,

4



Lin & Yang; BJMCS, 12(4), 1-17, 2016; Article no.BJMCS.20768

(m+ 1)
(v′)p−1

vm+1
> 1− C(m+ 1)(R− r)

(m+2)(p−1)−(m+1)
(p−1)−(m+1) + vp+1

0

vm+1
.

From (2.9) we get

(m+ 1)
(v′)p−1

vm+1
> 1− C(R− r),

(m+ 1)
1
p

v′

v
m+1
p−1

> 1− C(R− r).

Integration over (r,R) yields

(m+ 1)
1

p−1
p− 1

(p− 1)− (m+ 1)
v

(p−1)−(m+1)
p−1 > R− r − C(R− r)2,

v
(p−1)−(m+1)

p−1 < (m+ 1)
1

p−1
(p− 1)− (m+ 1)

p− 1
(R− r)[1− C(R− r)],

v(r) < (m+1)
1

(m+1)−(p−1)

[
p− 1

(m+ 1)− (p− 1)

] p−1
(m+1)−(p−1)

(R−r)
1−p

(m+1)−(p−1) [1−C(R−r)]
1−p

(m+1)−(p−1) .

Since

(1− C(R− r))
1−p

(m+1)−(p−1) < 1 + C(R− r),

with a new constant C, we get
v(r) < ϕ(r)[1 + C(R− r)],

where ϕ be the function defined by (2.2).

Let us prove inequality (2.4). For r ∈ (ρ, r0) we have v′(r) < 0, and(
(−v′)p−2v′

)′ − N − 1

r
(−v′)p−1 = −vmv′, v(ρ) = ∞, v′(r0) = 0. (2.12)

Integration over (r, r0) yields

(−v′)p−2v′
∣∣r
r0

− (N − 1)

∫ r

r0

(−v′)p−1

s
ds = − vm+1

m+ 1

∣∣∣∣r0
r

, v0 = v(r0),

0− (−v′)p−2v′ − (N − 1)

∫ r0

r

(−v′)p−1

s
ds =

vm+1 − vm+1
0

m+ 1
,

(−v′)p−1 − (N − 1)

∫ r0

r

(−v′)p−1

s
ds =

vm+1 − vm+1
0

m+ 1
. (2.13)

Arguing as in the precious case, now we find

1

C
v

m+1
p−1 < −v′ < Cv

m+1
p−1 , r ∈ (ρ, r2),

so
1

C
(r − ρ)

1−p
(m+1)−(p−1) < v < C(r − ρ)

1−p
(m+1)−(p−1) , (2.14)

and
1

C
(r − ρ)

m+1
(p−1)−(m+1) < v′ < C(r − ρ)

m+1
(p−1)−(m+1) . (2.15)

By using (2.15), we find

∫ r0
r

(−v′)p−1

s
<
∫ r0
r

Cp−1(s−ρ)

(m+1)(p−1)
(p−1)−(m+1)

s
ds

< C(r − ρ)
(m+2)(p−1)−(m+1)

(p−1)−(m+1) .

(2.16)

5
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Inserting estimate (2.16) into (2.13) we get

(−v′)p−1 <
vm+1 − vm+1

0

m+ 1
+ C(r − ρ)

(m+2)(p−1)−(m+1)
(p−1)−(m+1) ,

(m+ 1)
(−v′)p−1

vm+1
< 1 +

C(m+ 1)(r − ρ)
(m+2)(p−1)−(m+1)

(p−1)−(m+1) − vp+1
0

vm+1
.

From (2.14) we get

(m+ 1)
(−v′)p−1

vm+1
< 1 + C(r − ρ),

(m+ 1)
1

p−1
−v′

vm+1
p−1

< 1 + C(r − ρ).

Integration over (ρ, r) yields

(m+ 1)
1

p−1
p− 1

(m+ 1)− (p− 1)
v

(p−1)−(m+1)
p−1 < (r − ρ) + C(r − ρ)2,

(m+ 1)
1

p−1
p− 1

(m+ 1)− (p− 1)
[(r − ρ) (1 + C(r − ρ))]−1 < v

(m+ 1)− (p− 1)

p− 1
,

v(r) > (m+ 1)
1

(m+1)−(p−1)

[
p− 1

(m+ 1)− (p− 1)

] p−1
(m+1)−(p−1)

(r − ρ)
1−p

(m+1)−(p−1)

[1 + C(r − ρ)]
1−p

(m+1)−(p−1) .

Since

(1 + C(r − ρ))
1−p

(m+1)−(p−1) > 1− C(r − ρ),

we get

v(r) > ϕ(r)[1− C(r − ρ)].

where ϕ(r) be the function defined by (2.2).

The theorem is proved.

Now let us investigate the problem (1.2). If p > 1, 0 < q < 1, and m+q > p−1, we can get sectional
similar arguments as follow.

Let p > 1, 0 < q < 1, and m + q > p − 1. Consider the equation in (1.2) in dimension N = 1 and
Ω = (0,∞). If u = ϕ1(t) > 0 and ϕ′

1(t) < 0 we have

ϕ′′
1 (−ϕ′

1)
p−2 = ϕm

1 (−ϕ′
1)

q. (2.17)

Where ϕ1 be defined by

ϕ1(t) = (m+ 1)
1

(m+q)−(p−1)

[
p− q

(m+ q)− (p− 1)

] p−q
(m+q)−()p−1

t
q−p

(m+q)−(p−1) . (2.18)

Theorem 2.2. Let A(ρ,R) ⊂ RN , N ≥ 2, be the annulus with radii ρ and R centered at the
origin. Let ϕ1 be the function defined in (2.17), let u(x) be a radial solution to problem (1.2) in
A(ρ,R) ⊂ RN , and let v(r) = u(x) for r = |x|. If p > 1, 0 < q < 1, and m+ q > p− 1 we have

v(r) < ϕ1(R− r)[1 + C(R− r)], r ∈ (r1, R). (2.19)

6
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Proof. If Ω = A(ρ,R),problem (1.1a) reads as(
rN−1ϕp(v

′)
)′

= rN−1vm|v′|q, v(ρ) = v(R) = ∞, (2.20)

where ϕp(v
′) = |v′|p−2v′. There is a point r0 ∈ (ρ,R) such that v′(r0) = 0, v′(r) > 0 for r ∈ (r0, R).

For r ∈ (r0, R) we have (
rN−1|v′|p−2v′

)′
= rN−1vm(v′)q. (2.21)

Integration over (r0, r) yields

sN−1ϕp(v
′)
∣∣∣r
r0

=

∫ r

r0

sN−1vm(v′)qds, r ∈ (r0, R),

rN−1ϕp(v
′) =

∫ r

r0

sN−1vm(v′)qds,

ϕp(v
′) =

1

rN−1

∫ r

r0

sN−1vm(v′)qds,

v′ = ϕ−1
p

(
1

rN−1

∫ r

r0

sN−1vm(v′)qds

)
,

where

ϕ−1
p (s) =

{
s

1
p−1 , s ≥ 0

−(−s)
1

p−1 , s < 0.

We get

v′ =

(
1

rN−1

∫ r

r0

sN−1vm(v′)qds

) 1
p−1

.

Since r ∈ (r0, R), we find ∫ r

r0

sN−1vm(v′)qds ≤ RN−1

∫ r

r0

vm(v′)qds.

From Hölder inequality we get∫ r

r0
vm(v′)qds <

(∫ r

r0
((vm(v′)q))

1
q ds
)q

|r − r0|1−q

=
(∫ r

r0
v

m
q v′ds

)q
|R− r0|1−q.

(2.22)

From (2.22) we get

v′ <

[
RN−1

rN−1

(∫ r

r0

v
m
q v′ds

)q

(R− r0)
1−q

] 1
p−1

,

v′ <

[
RN−1(R− r0)

1−q

rN−1

] 1
p−1

[(∫ r

r0

v
m
q v′ds

)q] 1
p−1

,

v′ <
[
RN−1(R−r0)

1−q

rN−1

] 1
p−1

( q
m+q

)
q

p−1

[
v

m+q
q − v

m+q
q

0

] q
p−1

< C

[
v

m+q
q − v

m+q
q

0

] q
p−1

,

we get

v′ < Cv
m+q
p−1 < Cv

m+ 1

p− q
. (2.23)

7
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By using (2.23) we get

v < C(R− r)
q−p

(p−1)−(m+q) , (2.24)

and

v′ < C(R− r)
m+1

(p−1)−(m+q) . (2.25)

While, the problem (1.2) reads as(
ϕp(v

′)
)′
+

N − 1

r
(v′)p−1 = vm(v′)q. (2.26)

From (2.26) we find

(v′)1−q (ϕp(v
′)
)′
+

N − 1

r
(v′)p−q = vmv′, (2.27)

integration for r we get∫ r

ro

(v′)1−q (ϕp(v
′)
)′
ds+

∫ r

r0

N − 1

s
(v′)p−q =

∫ r

r0

vmv′ds,

(v′)p−q +

∫ r

r0

N − 1

s
(v′)p−qds =

vm+1 − vm+1
0

m+ 1
+

∫ r

r0

ϕp(v
′)
(
(v′)1−q)′ ds,

(v′)p−q + (N − 1)

∫ r

r0

(v′)p−q

s
ds >

vm+1 − vm+1
0

m+ 1
. (2.28)

Since 0 < q < 1, by (2.27) ∫ r

r0

(v′)p−q

s
ds < C(R− r)

(m+2)(p−q)−(m+1)
(p−1)−(m+q) .

From (2.28) we get

(v′)p−q >
vm+1 − vm+1

0

m+ 1
− C(N − 1)(R− r)

(m+2)(p−q)−(m+1)
(p−1)−(m+q) ,

(m+ 1)
(v′)p−q

vm+1
> 1− C(R− r),

(m+ 1)
1

p−1
v′

v
m+1
p−q

> 1− C(R− r).

Integration for r we get

(m+ 1)
1

p−1
q − p

(m+ q)− (p− 1)
v

(m+q)−(p−1)
q−p

∣∣∣∣r
r0

> (R− r)− C(R− r)2,

v < (m+1)
1

(m+q)−(p−1)

[
p− q

(m+ q)− (p− 1)

] p−q
(m+q)−(p−1)

(R−r)
q−p

(m+q)−(p−1) [1− C(R− r)]
q−p

(m+q)−(p−1) .

Since

[1− C(R− r)]
q−p

(m+q)−(p−1) < 1 + C(R− r),

we get

v(r) < ϕ1(r)[1 + C(r − r)],

where ϕ1(r) be the function defined by (2.18).

The theorem is proved.

8
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3 Estimates for Boundary Blowup Solution

In this section we study the estimate for boundary blowup solution of problem (1.1) and (1.2).

Lemma 3.1. Let Ω ∈ RN , N ≥ 2, be a bounded domain satisfying an interior and an exterior
sphere condition at each point of its boundary ∂Ω. Let ϕbe the function introduced in (2.2), let
u(x) be a solution to problem (1.1) in Ω, and let δ = δ(x) be the distance from x to ∂Ω. If p > 1,
and m+ 1 > p− 1 we have

ϕ(δ)(1− Cδ) < u(x) < ϕ(δ)(1 + Cδ). (3.1)

Proof. The proof uses theorem 2.1 and the comparison principle for elliptic equation(see for
example [15, Theorem10.1]).

Theorem 3.1. Let Ω be a bounded domain with a smooth boundary ∂Ω, let ϕ be the function
introduced in (2.2), and let δ = δ(x) be the distance from x to ∂Ω. Let p > 1, and m+ 1 > p− 1.
Define

w(x) = ϕ(δ)

(
1 +

(p− 1)(N − 1)H(x)

2((m+ 2)(p− 1)− (m+ 1))
δ + αδσ

)
, (3.2)

where H(x) denotes the mean curvature of the surface (δ(x) = constant) at the point x. If u is a
solution to problem (1.1), σ > 1 is a suitable number and α is large enough then

u(x) ≤ w(x).

Furthermore, if

v(x) = ϕ(δ)

(
1 +

(p− 1)(N − 1)H(x)

2((m+ 2)(p− 1)− (m+ 1))
δ − αδσ

)
, (3.3)

then
v(x) ≤ u(x).

Proof. From (2.2) we find
ϕ(t)

−ϕ′(t)
=

(m+ 1)− (p− 1)

p− 1
t,

−ϕ′(t)

ϕ′′(t)
=

(m+ 1)− (p− 1)

m+ 1
t,

ϕ(t)

ϕ′′(t)
=

[(m+ 1)− (p− 1)]2

(p− 1)(m+ 1)
t2. (3.4)

Let K = (N − 1)H and

A =
(p− 1)K

2 ((m+ 2)(p− 4)− (m+ 1))
. (3.5)

Then
w = ϕ(δ)(1 +Aδ + αδσ). (3.6)

We have
∇w = ϕ′∇w(1 +Aδ + αδσ) + ϕ(∇Aδ +A∇δ + ασδσ−1∇δ). (3.7)

Since (see for example [10])

|∇δ| = 1, ∆δ = −(N − 1)H = −K,

we find

∆w = (ϕ′′∇δ∇δ + ϕ′∆δ)(1 +Aδ + αδσ) + ϕ′∇δ(∇Aδ +A∇δ + ασδσ−1∇δ)
+ϕ′∇δ(∇Aδ +A∇δ + ασδσ−1∇δ)
+ϕ
(
∆Aδ +∇A∇δ +∇A∇δ + a∆δ + ασ(σ − 1)δσ−2∇δ + ασδσ−1∆δ

)
= (ϕ′′ − ϕ′K)(1 +Aδ + αδσ) + 2ϕ′(∇A∇δδ +A+ ασδσ−1)
+ϕ
(
∆Aδ + 2∇A∇δ −AK + ασ(σ − 1)δσ−2 − ασδσ−1K

)
.
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By using (3.4) we find

∆w = ϕ′′
[(

1 + (m+1)−(p−1)
m+1

δK
)
(1 +Aδ + αδσ)− 2 (m+1)−(p−1)

m+1
δ(∇A∇δδ +A+ ασδσ−1)

+ [(m+1)−(p−1)]2

(p−1)(m+1)
δ2
(
∆Aδ + 2∇A∇δ −AK + ασ(σ − 1)δσ−2 − ασδσK

)]
,

we get

∆w = ϕ′′
[
1 +Aδ + (m+1)−(p−1)

m+1
δ(K − 2A) +O(1)δ2

+αδσ
(
1− 2σ (m+1)−(p−1)

m+1
+ σ(σ − 1) [(m+1)−(p−1)]2

(p−1)(m+1)
+O(1)δ

)]
,

(3.8)

where O(1) denotes a bounded quantity as δ → 0.

Now we estimate |∇w|.

∇w = ϕ′∇w(1 +Aδ + αδσ) + ϕ(∇Aδ +A∇δ + ασδσ−1∇δ)

= ϕ′
[
∇δ(1 +Aδ + αδσ)− (m+1)−(p−1)

p−1
δ(∇Aδ +A∇δ + ασδσ−1∇δ)

]
= ϕ′

[
∇δ
(
1 +A 2(p−1)−(m+1)

p−1
δ + αδσ(1− (m+1)−(p−1)

p−1
σ)
)
− (m+1)−(p−1)

p−1
∇Aδ2

]
.

Fix α and σ, we take δ so small that

1 +A
2(p− 1)− (m+ 1)

p− 1
δ + αδσ(1− (m+ 1)− (p− 1)

p− 1
σ) > 0.

Then, we have

|∇w| = (−ϕ′)

[
1 +A

2(p− 1)− (m+ 1)

p− 1
δ + αδσ(1− (m+ 1)− (p− 1)

p− 1
σ) +O(1)δ2

]
. (3.9)

and

|∇w|p−2 = (−ϕ′)p−2
[
1 +A 2(p−1)−(m+1)

p−1
δ + αδσ(1− (m+1)−(p−1)

p−1
σ) +O(1)δ2

]p−2

= (−ϕ′)p−2[1 +A 2(p−1)−(m+1)
p−1

δ + αδσ(1− (m+1)−(p−1)
p−1

σ)

+O(1)δ2 +O(1)(αδσ)2],

By using (3.8) we get

|∇w|p−2∆w = (−ϕ′)p−2ϕ′′
[
1 +Aδ + (m+1)−(p−1)

m+1
δ(K − 2A)

+A(p− 2) 2(p−1)−(m+1)
p−1

δ +O(1)δ2
]

+(−ϕ′)p−2ϕ′′(αδσ)
[
1− 2σ (m+1)−(p−1)

m+1
+ σ(σ − 1) [(m+1)−(p−1)]2

(p−1)(m+1)

+(p− 2)(1− (m+1)−(p−1)
p−1

σ) +O(1)δ2 +O(1)(αδσ)2
]
.

(3.10)

Let us estimate wm. We have

wm = ϕm(1 +Aδ + αδσ)m

= ϕm
(
1 +mAδ +mαδσ +m(m+ 1)(1 + ω)m+2 (Aδ+αδσ)2

2

)
.

(3.11)

Where ω is a quantity in between 0 and Aδ + αδσ. From now on, we choose α, σ and ρ such that

−1

2
≤ Aδ + αδσ ≤ 1.

Then 1
2
< 1 + ω < 2, and

wm = ϕm (1 +mAδ +mαδσ +O(1)δ2 +O(1)(αδσ)2
)
.

10
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Since ϕ′′(−ϕ′)p−2 = ϕm(−ϕ′), by (3.9) and (3.11) we find

wm|∇w| = ϕ′′(−ϕ′)p−2
[
1 +A

(
m+ 2(p−1)−(m+1)

p−1

)
δ + αδσ

(
m+ 1− (m+1)−(p−1)

p−1
σ
)

+O(1)δ2 +O(1)(αδσ)2
] (3.12)

Using (3.10) and (3.12), the inequality

div
(
|∇w|p−2∇w

)
< wm|∇w|

reads as

(−ϕ′)p−2ϕ′′
[
1 +Aδ + (m+1)−(p−1)

m+1
δ(K − 2A) +A(p− 2) 2(p−1)−(m+1)

p−1
δ +O(1)δ2

]
+(−ϕ′)p−2ϕ′′(αδσ)

(
1− 2σ (m+1)−(p−1)

m+1
+ σ(σ − 1) [(m+1)−(p−1)]2

(p−1)(m+1)

+(p− 2)(1− (m+1)−(p−1)
p−1

σ) +O(1)δ2 +O(1)(αδσ)2
)

< ϕ′′(−ϕ′)p−2
[
1 +A

(
m+ 2(p−1)−(m+1)

p−1

)
δ + αδσ

(
m+ 1− (m+1)−(p−1)

p−1
σ
)

+O(1)δ2 +O(1)(αδσ)2
]
.

(3.13)

We claim that

A+
(m+ 1)− (p− 1)

m+ 1
(K − 2A) +A(p− 2)

2(p− 1)− (m+ 1)

p− 1

= A

(
m+

2(p− 1)− (m+ 1)

p− 1

)
.

Indeed, we have

(m+1)−(p−1)
m+1

(K − 2A) = A (m+1)(p−2)
p−1

−A (p−2)[2(p−1)−(m+1)]
p−1

= 2A p−2
p−1

((m+ 1)− (p− 1)) ,

then we get

K − 2A = 2A
(m+ 1)(p− 2)

p− 1
,

and

K = 2A
(m+ 2)(p− 1)− (m+ 1)

p− 1
.

The latter equation follows easily from (3.5). Hence, inequality (3.13) holds provided

C1δ
2 + αδσ

(
1− 2σ (m+1)−(p−1)

m+1
+ σ(σ − 1) [(m+1)−(p−1)]2

(p−1)(m+1)
+ (p− 2)

(
1− (m+1)−(p−1)

p−1
σ
))

< αδσ
(
m+ 1− (m+1)−(p−1)

p−1
σ + C2δ + C3αδ

σ
)
,

where C1, C2 and C3 are suitable constant. After simplification we find

C1δ
2 ≤ αδσ ((m+ 1)− (p− 1))

(
1− p−3

p−1
σ + 2

m+1
σ

−σ(σ − 1) (m+1)−(p−1)
(p−1)(m+1)

− C2δ + C3αδ
σ
)
.

(3.14)

The quantity

1− p− 3

p− 1
σ +

2

m+ 1
σ − σ(σ − 1)

(m+ 1)− (p− 1)

(p− 1)(m+ 1)
,

computed at σ = 1 becomes

2
(m+ 1) + (p− 1)

(m+ 1)(p− 1)
.

11
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Which is positive. By continuity, we have

1− p− 3

p− 1
σ +

2

m+ 1
σ − σ(σ − 1)

(m+ 1)− (p− 1)

(p− 1)(m+ 1)
> 0,

with a suitable σ > 1. Fixed such a value of σ, choose α and δ so that

1− p− 3

p− 1
σ +

2

m+ 1
σ − σ(σ − 1)

(m+ 1)− (p− 1)

(p− 1)(m+ 1)
− C2δ + C3αδ

σ > 0.

The inequality (3.13) (and the inequality div
(
|∇w|p−2∇w

)
< wm|∇w|) holds for α large enough

and x such that δ(x) ≤ δ0, with a suitable δ0.

Consider the domain Ωδ1 = {x ∈ Ω, δ(x) < δ0}. Let us show that, for δ1 small enough, u(x) ≤ w(x)
on Ωδ1 . Indeed, by lemma 3.1, we know that

w(x) < ϕ(δ)(1 + Cδ).

Hence,
w(x)− u(x) > ϕ(δ)(1 +Aδ + αδσ)− ϕ(δ)(1 + Cδ)

= ϕ(δ) ((A− C)δ + αδσ) .

Let α0 and δ0 such the inequality (3.13) holds for δ ≤ δ0. Decrease δ(increasing α so that α1δ
σ
1 =

α0δ
σ
0 ) until

(A− C)δ1 + α1δ
σ
1 > 0.

Then w(x) ≥ u(x) for δ(x) = δ1.

Now we introduce a number 0 < θ < 1, of course, we have w(x) > θu(x) for x such that δ(x) = δ1.
On the other hand, using lemma 3.1 again we have

w(x)− θu(x) > ϕ(δ) (1− θ + (A− Cθ)δ + αδσ) .

As δ → 0 (with α fixed) we have

1− θ + (A− Cθ)δ + αδσ > 0.

Hence, w(x)− θu(x) > 0 near ∂Ω.

Since 0 < θ < 1 and m+ 1− (p− 1) > 0, by (1.1) we find

div
(
|∇(θu)|p−2∇(θu)

)
> (θu)m|∇(θu)| (3.15)

Indeed, since

∆p(u) = um|∇u|,

we find

∆p(θu) = θp−1∆pu,

and

(θu)m|∇(θu)| = θm+1um|∇u|,

then we get

∆p(θu)/(θu)
m|∇(θu)| = θp−1−(m+1) > 1.

The (3.15), together with the inequality div
(
|∇w|p−2∇w

)
< wm|∇w|, and the condition θu(x) ≤

w(x) on ∂Ωδ1 , imply that θu(x) ≤ w(x) on Ωδ1 . As θ → 1, we find u(x) ≤ w(x) on Ωδ1 . Increasing
α we get u(x) ≤ w(x) on Ω. The first assertion of the theorem follows.
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To get the inequality v(x) ≤ u(x). We adopt a similar argument. to place of (3.10) we find, with
v = ϕ(δ)(1 +Aδ − αδσ), where A is as in (3.5),

|∇v|p−2∆v = (−ϕ′)p−2ϕ′′[1 +Aδ + (m+1)−(p−1)
m+1

δ(K − 2A) +A(p− 2) 2(p−1)−(m+1)
p−1

δ

+O(1)δ2]− (−ϕ′)p−2ϕ′′(αδσ)(1− 2σ (m+1)−(p−1)
m+1

+ σ(σ − 1) [(m+1)−(p−1)]2

(p−1)(m+1)

+(p− 2)(1− (m+1)−(p−1)
p−1

σ) +O(1)δ2 +O(1)(αδσ)2).

(3.16)

In place of (3.12), we have

vm|∇v| = ϕ′′(−ϕ′)p−2
[
1 +A

(
m+ 2(p−1)−(m+1)

p−1

)
δ − αδσ

(
m+ 1− (m+1)−(p−1)

p−1
σ
)

+O(1)δ2 +O(1)(αδσ)2
]
.

(3.17)

Using (3.16) and (3.17), the inequality

div
(
|∇v|p−2∇v

)
> vm|∇v| (3.18)

reads as

(−ϕ′)p−2ϕ′′
[
1 +Aδ + (m+1)−(p−1)

m+1
δ(K − 2A) +A(p− 2) 2(p−1)−(m+1)

p−1
δ +O(1)δ2

]
−(−ϕ′)p−2ϕ′′(αδσ)

(
1− 2σ (m+1)−(p−1)

m+1
+ σ(σ − 1) [(m+1)−(p−1)]2

(p−1)(m+1)

+(p− 2)(1− (m+1)−(p−1)
p−1

σ) +O(1)δ2 +O(1)(αδσ)2
)

> ϕ′′(−ϕ′)p−2
[
1 +A

(
m+ 2(p−1)−(m+1)

p−1

)
δ − αδσ

(
m+ 1− (m+1)−(p−1)

p−1
σ
)

+O(1)δ2 +O(1)(αδσ)2
]
.

(3.19)

After simplification we find

−C1δ
2 − αδσ(1− 2σ (m+1)−(p−1)

m+1
+ σ(σ − 1) [(m+1)−(p−1)]2

(p−1)(m+1)
+ (p− 2)(1− (m+1)−(p−1)

p−1
σ))

> −αδσ
(
m+ 1− (m+1)−(p−1)

p−1
σ + C2δ − C3αδ

σ
)
,

(3.20)

which is equivalent to (3.14). Hence, we have div
(
|∇v|p−2∇v

)
> vm|∇v| for large enough and x

such that δ(x) ≤ δ0, u(x) ≥ v(x) on Ωδ1 . Indeed, by lemma 3.1 we know that

u(x) > ϕ(δ)(1− Cδ).

Hence,
v(x)− u(x) < ϕ(δ)((A+ C)δ − αδσ).

Let α0 and δ0 such that inequality (3.20) holds for δ ≤ δ0. Decrease δ (increasing α so that
α1δ

σ
1 = α0δ

σ
0 ) until

(A+ C)δ1 − α1δ
σ
1 < 0.

Then u(x) ≥ v(x) for δ(x) = δ1.

Now, for Θ > 1 we have v(x) < Θu(x) for x such that δ(x) > δ1. On the other hand, by lemma
2.2 it follows that v(x) ≤ Θu(x) for x near ∂Ω. We have proved that proved that v(x) ≤ Θu(x) on
∂Ωδ1 . Since Θ > 1 and m+ 1− (p− 1) > 0, by (1.1a) we find

∆p(Θu) < (Θu)m|∇(Θu)|.

The latter inequality, together with the inequality (3.18) and the condition v(x) ≤ Θu(x) on ∂Ωδ1 ,
imply that v(x) ≤ Θu(x) on Ωδ1 . As Θ → 1 we find v(x) ≤ u(x) on Ωδ1 . Increasing α we get
v(x) ≤ u(x) on Ω.

The theorem is proved.
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Now, when p > 0 < q < 1, and m+ q > p− 1, we get partial argument similar to Theorem 3.1.

Lemma 3.2. Similar to lemma 3.1, ϕ1 be the function introduced in (2.18), let u(x) be a solution
to problem (1.1a) in Ω. If p > 0 < q < 1, and m+ q > p− 1, we have

u(x) < ϕ(δ)(1 + Cδ).

Theorem 3.2. Let Ω be a bounded domain with a smooth boundary ∂Ω, let ϕ be the function
introduced in (2.18), and let δ = δ(x) be the distance from x to ∂Ω. Let p > 1, 0 < q < 1, and
m+ 1 > p− 1. Define

w(x) = ϕ(δ)

(
1 +

(p− q)(N − 1)H(x)

2((m+ 2)(p− q)− (m+ 1))
δ + αδσ

)
,

where H(x) denotes the mean curvature of the surface (δ(x) = constant) at the point x. If u is a
solution to problem (1.2), σ > 1 is a suitable number and α is large enough then

u(x) ≤ w(x).

Proof. From (2.18) we find
ϕ(t)

−ϕ′(t)
=

(m+ q)− (p− 1)

p− q
t,

−ϕ′(t)

ϕ′′(t)
=

(m+ q)− (p− 1)

m+ 1
t,

ϕ(t)

ϕ′′(t)
=

[(m+ q)− (p− 1)]2

(p− q)(m+ 1)
t2. (3.21)

Let K = (N − 1)H and

A =
(p− q)K

2 ((m+ 2)(p− q)− (m+ 1))
, (3.22)

then
w = ϕ(δ)(1 +Aδ + αδσ).

In place of (3.8) we have

∆w = ϕ′′
[
1 +Aδ + (m+q)−(p−1)

m+1
δ(K − 2A) +O(1)δ2

+αδσ
(
1− 2σ (m+q)−(p−1)

m+1
+ σ(σ − 1) [(m+q)−(p−1)]2

(p−q)(m+1)
+O(1)δ

)]
.

(3.23)

Then we get the estimate for |∇w|,

|∇w| = (−ϕ′)[1 +A (p−q)+(p−1)−(m+q)
p−q

δ + αδσ
(
1− (m+q)−(p−1)

p−q
σ
)
+O(1)δ2]. (3.24)

In place of (3.10) we get

|∇w|p−2∆w = (−ϕ′)p−2ϕ′′
[
1 +Aδ + (m+q)−(p−1)

m+1
δ(K − 2A)

+A(p− 2) (p−q)+(p−1)−(m+q)
p−1

δ +O(1)δ2
]

+(−ϕ′)p−2ϕ′′(αδσ)
[
1− 2σ (m+q)−(p−1)

m+1
+ σ(σ − 1) [(m+q)−(p−1)]2

(p−q)(m+1)

+(p− 2)(1− (m+q)−(p−1)
p−1

σ) +O(1)δ2 +O(1)(αδσ)2
]
.

(3.25)

Let us estimate |∇w|q. By using (3.9) we get

|∇w|q = (−ϕ′)q
[
1 +A (p−q)+(p−1)−(m+q)

p−q
δ + αδσ

(
1− (m+q)−(p−1)

p−q
σ
)
+O(1)δ2

]q
= (−ϕ′)q[qA (p−q)+(p−1)−(m+q)

p−q
δ + qαδσ

(
1− (m+q)−(p−1)

p−q
σ
)
+O(1)δ2+

O(1)(αδσ)2].

(3.26)
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By using (3.11) and (3.26) we have

wm|∇w|q = ϕm(−ϕ′)q
[
1 +A

(
m+ q (p−q)+(p−1)−(m+q)

p−q

)
+αδσ

(
m+ q − q (m+q)−(p−1)

p−q
σ
)
+O(1)δ2 +O(1)(αδσ)2

]
.

(3.27)

By (3.25) and (3.27), the inequality

div(|∇w|p−2∇w) < wp|∇w|q

reads as

(−ϕ′)p−2ϕ′′
[
1 +Aδ + (m+q)−(p−1)

m+1
δ(K − 2A) +A(p− 2) (p−q)+(p−1)−(m+q)

p−q
δ +O(1)δ2

]
+(−ϕ′)p−2ϕ′′(αδσ)

(
1− 2σ (m+q)−(p−1)

m+1
+ σ(σ − 1) [(m+q)−(p−1)]2

(p−q)(m+1)

+(p− 2)(1− (m+q)−(p−1)
p−1

σ) +O(1)δ2 +O(1)(αδσ)2
)

< ϕ′′(−ϕ′)p−2
[
1 +A

(
m+ q (p−q)+(p−1)−(m+q)

p−1

)
δ

+αδσ
(
m+ q − q (m+q)−(p−1)

p−q
σ
)
+O(1)δ2 +O(1)(αδσ)2

]
.

(3.28)

We claim that

A+ (m+q)−(p−1)
m+1

(K − 2A) +A(p− 2) (p−q)+(p−1)−(m+q)
p−q

= A
(
m+ q (p−q)+(p−1)−(m+q)

p−1

)
.

Indeed, we have

(m+ q)− (p− 1)

m+ 1
(K − 2A) =

2(p− q − 1)(m+ q)− (p− 1)

p− q
,

K = 2A+ 2
(m+ 1)(p− q − 1)

p− q
,

K = 2
(m+ 2)(p− q)− (m+ 1)

p− q
.

The latter equation follows easily from (3.22). Hence, (3.28) holds provided

C1δ
2 + αδσ

(
1− 2σ (m+q)−(p−1)

m+1
+ σ(σ − 1) [(m+q)−(p−1)]2

(p−1)(m+q)
+ (p− 2)

(
1− (m+q)−(p−1)

p−1
σ
))

< αδσ
(
m+ q − q (m+q)−(p−1)

p−q
σ − C2δ + C3αδ

σ
)
,

where C1, C2, and C3 are suitable constants. After simplification we find

C1δ
2 ≤ αδσ ((m+ q)− (p− 1))

(
1− 2(p−1)

p−q
σ

+ 2
m+1

σ − σ(σ − 1) (m+q)−(p−1)
(p−1)(m+q)

− C2δ + C3αδ
σ
)
.

(3.29)

Which is equivalent to (3.14). Hence, we have

div(|∇w|p−2∇w) < wp|∇w|q

for a large enough and x such that δ(x) ≤ δ0, with a suitable δ0. Arguing as in the proof of the
previous theorem one prove that w(x) ≥ u(x) in Ω.
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4 Conclusion

We introduce the concept of the boundary blowup solutions of p-Laplacian type quasilinear elliptic
equations. We obtain that the estimate of the radial solution in the annulus, and that the estimate
of the boundary blowup solution on a bounded domain.
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