

British Journal of Mathematics & Computer Science

12(4): 1-21, 2016, Article no.BJMCS.21918

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

*Corresponding author: E-mail: fcchang007@yahoo.com;

Matrix Inverse as by-Product of Determinant

Feng Cheng Chang1*

1Allwave Corporation, Torrance, California, USA.

Article Information

DOI: 10.9734/BJMCS/2016/21918
Editor(s):

(1) Feyzi Basar, Department of Mathematics, Fatih University, Turkey.
Reviewers:

(1) Jianchao Bai, Xi'an Jiaotong University, China.
(2) G. Y. Sheu, Chang-Jung Christian University, Tainan, Taiwan.

(3) Grienggrai Rajchakit, Mae jo University, Thailand.
Complete Peer review History: http://sciencedomain.org/review-history/11983

Received: 09 September 2015
Accepted: 06 October 2015

Published: 26 October 2015

Abstract

The determinant of a given square matrix is obtained as the product of pivot elements evaluated via the
iterative matrix order condensation. It follows as the by-product that the inverse of this matrix is then
evaluated via the iterative matrix order expansion. The fast and straightforward basic iterative procedure
involves only simple elementary arithmetical operations without any high mathematical process.
Remarkably, the revised optimal iterative process will compute without failing the inverse of any square
matrix within minutes, be it real or complex, singular or nonsingular, and amazingly enough even for size
as huge as 999x999. The manually extended iteration process is also developed to shorten the iteration
process steps.

Keywords: Determinant; matrix inversion; matrix multiplication; recursive algorithm; matrix order
expansion; matrix order condensation.

1 Introduction

For any given square matrix, a set of pivot elements (known as Schur complements) is computed via the
basic iterative algorithm of matrix order condensation. It follows that the determinant is obtained as the
product of all pivot elements, and as the by-product of the procedure, the inverse of the matrix is evaluated
via the iterative algorithm of matrix order expansion. The optimal iterative algorithm is then derived to give
the smooth computational process. Finally, the extended iterative algorithm is developed to further reduce
the iteration steps.

Original Research Article

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918

2

2 Formulation for Algorithms

2.1 Algorithm for Basic Iteration

For a given square matrix []M of order N, its inverse

1[]M −
 and determinant det[]M can be evaluated as

follows by an iterative algorithm relying upon matrix order condensation and order expansion. Details of the
basic iteration process from the (k -1)-th step to the k-th step, k = 1, 2, …. , N, are illustrated in Fig. 1.

Fig. 1. Iteration process from the (k -1)-th step to the k-th step

1
1kM −

−

1kM −

kv1
1kM −

−

kv

ku kp
ku

kw

1
kM −

kM

=

1

1

1
1

1 1 1 1 1 1
1 1 1 1 1

1 1 1
1

k k
k

k k

k k k k k

k k
k

k k k k kk k

k k k k k k k k k
k

k k k k

p u
M

v w

M w v p u

M v
M

d p u M vu d

M M v p u M M v p
M

p u M p

−

−

−
−

− − − − − −
− − − − −

− − −
−

= +

 
  =   

 

   = −   

 
  =   

 

 + −
  =    − 

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918

3

(1). Matrix order condensation:

Assign 0[]M = []M at the beginning of iterative process. At the k-th step of the iterative process, the

condensed matrix []kM of order (N – k), located at the lower right corner, is evaluated from its precursor

1[]kM − of order (N – k – 1) as,

1 k k
k

k k

p u
M

v W−
 

  =   
 

 .

1

k k k k kM W v p u−   = −    .

where pk is the desired pivot element. The determinant of 1[]kM − is likewise produced recursively on

noting that

1 det[] det det[]k k
k k k

k k

p u
M p M

v W−
 

= = ⋅ 
 

.

(2). Matrix order expansion:

At the k-th step of the iterative process, the expanded matrix []kM of order k, located at the upper left

corner, is evaluated from its precursor 1[]kM − of order (k – 1) by annexing the two sub-matrices vk and uk,
and the single entry dk,

1 1
1

1

 [] = k k k k
k

k k k k k k k

M v M v
M

u d u p u M v
− −

−
−

   
=    +   

The inverse of the matrix[]kM of order k is then determined as

1 1 11 1 1 1

1 1 1 1 11
1 1 11

1 1

1 1
1 11 1

1

 [] =

 1
0 1

k k k k k k k k k k k
k

k k k k k k k k k

k k k
k k k

M v M M v p u M M v p
M

u p u M v p u M p

M M v
p u M

− − −− − − −
− − − − −−

− − −−
− −

− −
− −− −

−

 + − 
=   + −    

   −
   = + −      

   

wherein the pivot element kp is related to entry kd by
1

1k k k k kp d u M v−
−= − , and can be readily

obtained directly in the earlier condensation process.

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918

4

Proof :

(1). Condensation Process:

1

1 1 1

1

1 1

 Since

1 1

 and

 we have

1
 det det

kk k k k
k

k k k k k k k k k k

k k k k k

k

k

k k k k k

pp u p u
M

v w v p I w v p u I

M w v p u

p
M

v p I w v p

−

− − −

−

− −

      
  = =         −            

   = −   

 
  =    −  

1

1

1
=det

 det

kk k

kk k k

k k

pp u

Mu I

p M

−

−

      
                

 = ⋅  

(2). Expansion Process:

[]

[]

1
1 1 1 1

1 1
1 1

1
1

1 1 1
1
1

 Since

1 1

 we have

1 1

k k k k k k k k k
k

k k k k k k k k k k

k k k k k k k
k

k k k

M v M v I M I M v
M

u d u p u M v u M p

I M I M v I M
M

u M p

−
− − − −

− −
− −

−−
− − −

−
−

       
= = =        +       

     −
= =         

[]

11
11

11
1

1 11 1 1 1
1 1 0 1

1 11
1

1
1 1

1
1

11

 and

 det det
1 1

k kk

k kk

k k k k k k k k

k k k k

k k k k k
k

k k k

M Iv

u Mp

M M v p u M M v p

p u M p

I M I M v
M

u M p

−−
−−

−−
−

− −− − − −
− − −

− −−
−

−
− −

−
−

    
    −    

 + −
=  

−  

  
=   

  
[]1=det k kM p−

 
⋅   

 

 (end of proof)

The determinant and the inverse of the original matrix 0[] [] []NM M M= = are therefore, respectively,

found after performingN steps of the matrix order condensation process and the matrix order expansion

process:

1 2det[] NM p p p= ⋅ ⋅ ⋅⋅ ⋅ ⋅ ,

and

1 1[] []NM M− −=

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918

5

2.2 Optimal and Extended Iterations

It is noted that the basic iteration algorithm is quite straightforward, with pivot elements selected along the
diagonal regardless of their magnitudes. However, this basic process could fail should the magnitudes of
some among such pivots shrink to zero or else jump toward huge numbers, with the result that the
determinant, obtained as their product, would eventually emerge with an erroneous value.

A modified optimal iteration algorithm can then be developed so as to resolve this potential problem. At
every iteration step a pivot is picked as the element of maximum magnitude among all possible locations,
this pivot element is then subsequently brought into diagonal position by having the rows and columns
permuted accordingly. Past this row/column rearrangement step the modified algorithm is in all respects
identical to its basic precursor. The desired inverse of the original matrix is therefore obtained once rows and
columns are restored to their original locations.

In summary: (1) if the given matrix is non-singular then its determinant is found as the product of all its
pivot elements; and (2) the matrix is said to be singular in the event that pivot elements shrink steeply toward
zero.

Finally, it is interesting to note that in the basic iteration process the number of steps can be somewhat
reduced by replacing each individual pivot element manually by a square pivot block (not necessary solid) of
any size, provided only that this block has an inverse which can be easily computed. Picture illustration of
extension process with related blocks is shown in Fig. 2. In keeping with what was previously suggested,
this extended iteration process may fail should any pivot block get out to be singular.

(r + c)

| | |

| | |

 det

| | |

| | |

| | |

| | |

 (1) det det

[2 4 5], [1 3 8]r c

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 + − + − − − − + − 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 + − + − − − − + − 
 + − + − − − − + −
 

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

+ + + 
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = − ⋅ + + + ⋅  ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 + + +  ⋅ ⋅ ⋅ ⋅ ⋅

= =

1

| | |

| | |

| | |

| | |

| | |

| | |

−

    
    
     + + + − − − − − −   
        − + + + − − − − − −        
        + + + − − − − − −       ⋅
     ⋅ ⋅ ⋅ ⋅ ⋅ ⋅       

or

[] [] [] [] []()1

. here , , , and may not be all solid blocks

 det det det

P V U W

P V
s P W V P U

U W

− 
= ⋅ ⋅ − 

 

↑

Fig. 2. Picture illustration of extended iteration

3 Computer Routines

The MATLAB routines, derived from the basic iteration process and its optimal modification, as well as
manually extended pivot process are presented below.

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918

6

(1) Basic scheme

 function [detM,invM,p] = det_inv_o(M)
 % The determinant the inverse of a given matrix are
 % found by matrix order condensation and expansion.
 % ---- Basic Scheme.
 % F.C. Chang 09/11/2015.

 N = size(M,1); nM = M; iM = []; p = [];
 for k = 1:N, n = N-k+1;
 P = nM(1,1); iP = 1/P; p = [p,P];
 nM = nM(2:n,2:n)-nM(2:n,1)*iP*nM(1,2:n);
 iM = blkdiag(iM,0)+[-iM*M(1:k-1,k);1] ...
 [iP][-M(k,1:k-1)*iM,1]; % k,P,nM,iM,
 end;
 detM = prod(p); invM = iM; % p,detM,invM,

(2) Optimal scheme

 function [detM,invM,p,s,rc] = det_inv_p(M)
 % The determinant of a given matrix and an array of
 % pivots are found by matrix order condensation.
 % Then as by-product the inverse matrix is obtained
 % by matrix order condensation. ---- Optimal Scheme.
 % F.C. Chang 09/11/2015.

 k = 0; N = size(M,1); mA = max(abs(M(:))); % N,M,
 nM = M; mM = []; iM = []; % k,nM,mM,iM,
 s = 1; r = []; c = []; p = [];
 for k = 1:N, n = N-k+1;
 [mp,rcm] = max(abs(nM(:)));
 [ri,ci] = ind2sub([n,n],rcm); rci = [ri;ci];
 rx = setdiff([1:n],ri); cx = setdiff([1:n],ci);
 ro = setdiff([1:N],r); co = setdiff([1:N],c);
 r = [r,ro(ri)]; c = [c,co(ci)]; rc = [r;c];
 P = nM(rcm); iP = 1/P; p = [p,P];
 if mp/mA < 1.e-10, disp('Given matrix is singular !');
 detM = 0; invM = NaN; p; s; rc; return, end;
 s = s*(-1)^(ri+ci); % k,rci,rc;P,iP,
 nM = nM(rx,cx)-nM(rx,ci)*iP*nM(ri,cx);
 mM = M(r,c);
 iM = blkdiag(iM,0)+[-iM*mM(1:k-1,k);1] ...
 iP[-mM(k,1:k-1)*iM,1]; % nM,mM,iM,
 end;
 detM = prod(p)*s; invM(c,r) = iM; % rc,s,p,detM,invM,

(3) Extended scheme

 function [detM,invM,p,s,rc] = det_inv_LL(M)
 % Find the determinant via order condensation and then
 % as by-product the inverse via order expansion.
 % Manually select rows/columns for pivot blocks.
 % ----- Expanded Scheme.
 % F C Chang 09/11/15

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918

7

 k = 0; N = size(M,1); nM = M; mM = []; iM = [];
 r = []; c = []; p = []; s = 1; t(1) = 0; k,nM,mM,
 for k = 1:N,
 n = size(nM,1); m = size(mM,1); if n == 0, break,end;
 disp('Select rows and columns from nM ');
 rci = input('[ri;ci] = ');
 ri = sort(rci(1,:)); ci = sort(rci(2,:));
 rx = setdiff([1:n],ri); cx = setdiff([1:n],ci);
 ro = setdiff([1:N],r); co = setdiff([1:N],c);
 r = [r,ro(ri)]; c = [c,co(ci)];
 rci = [ri;ci]; rcx =[rx;cx]; rc = [r;c];
 s = s*(-1)^sum(ri+ci);
 P = nM(ri,ci); L = size(P,1);
 iP = inv(P); d = det(P); p = [p,d];
 t(k+1) = t(k)+L; rt = [1:t(k)]; ct = [t(k)+1:t(k+1)];
 nM = nM(rx,cx)-nM(rx,ci)*iP*nM(ri,cx);
 mM = M(r,c);
 iM = blkdiag(iM,zeros(L,L))+[-iM*mM(rt,ct);eye(L)] ...
 iP[-mM(ct,rt)*iM,eye(L)]; k,P,d,iP,nM,mM,iM,
 end;
 detM = prod(p)*s; invM(c,r) = iM; rc,s,p,detM,invM,

Remark:

Given a matrix M of order N. At the k-th step of iteration process, the condensed matrix Mk, the expanded
matrix Mk, and its inverse Mk

-1 are, respectively, denoted as nM, mM, and iM in the given MATLAB
routines. The pivot element Pk and its inverse Pk

-1 at the k-th step are, likewise, denoted as P and iP,
respectively. Also, the overall rows/columns rearrangement is expressed as [r c].

Outputs of the routines give only the desired final results and skip all intermediate related data in order to
save space in case that the given matrix order N is very huge. By removing any %’s at appropriate locations
in these routine, the expected related intermediate data will appear in the processing output.

The validation of output results may be performed by checking if the multiplication of the computed inverse
matrix and the given original matrix is equal to an identity matrix of the same size within permitted error.

Please refer to Numerical Illustrations Section and Appendix for more detail.

4 Numerical Illustrations

 >> N=5, M=magic(5),
 N =
 5
 M =
 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

 >> [detM,invM,p]=det_inv_o(M),
 detM =
 5070000

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918

8

 invM =
 -0.0049 0.0512 -0.0354 0.0012 0.0034
 0.0431 -0.0373 -0.0046 0.0127 0.0015
 -0.0303 0.0031 0.0031 0.0031 0.0364
 0.0047 -0.0065 0.0108 0.0435 -0.0370
 0.0028 0.0050 0.0415 -0.0450 0.0111
 p =
 17.0000 -27.4706 12.8373 -9.3786 90.1734

 >> [detM,invM,p,s,rc]=det_inv_p(M)
 detM =
 5070000
 invM =
 -0.0049 0.0512 -0.0354 0.0012 0.0034
 0.0431 -0.0373 -0.0046 0.0127 0.0015
 -0.0303 0.0031 0.0031 0.0031 0.0364
 0.0047 -0.0065 0.0108 0.0435 -0.0370
 0.0028 0.0050 0.0415 -0.0450 0.0111
 p =
 25.0000 23.2800 20.1031 -22.1667 19.5489
 s =
 -1
 rs =
 5 1 3 4 2
 3 2 4 5 1

 >> [detM,invM,p,s,rs]=det_inv_LL(M)
 N =
 5
 M =
 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9
 k =
 0
 nM =
 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9
 mM =
 []
 k =
 1
 Select rows and columns from nM
 [ri;ci] =
 [1 2 3; 2 4 5]
 P =
 24 8 15
 5 14 16
 6 20 22

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918

9

 d =
 -160
 iP =
 0.0750 -0.7750 0.5125
 0.0875 -2.7375 1.9313
 -0.1000 2.7000 -1.8500
 nM =
 1153.8 -107.66
 -97.5 36.562
 mM =
 24 8 15
 5 14 16
 6 20 22
 iM =
 0.0750 -0.7750 0.5125
 0.0875 -2.7375 1.9313
 -0.1000 2.7000 -1.8500
 k =
 2
 Select rows and columns from nM
 [ri;ci] =
 [1 2; 1 2]
 P =
 1153.8 -107.66
 -97.5 36.562
 d =
 31687
 iP =
 0.0011538 0.0033974
 0.0030769 0.03641
 nM =
 []
 mM =
 24 8 15 17 1
 5 14 16 23 7
 6 20 22 4 13
 12 21 3 10 19
 18 2 9 11 25
 iM =
 0.0431 -0.0373 -0.0046 0.0127 0.0015
 0.0047 -0.0065 0.0108 0.0435 -0.0370
 0.0028 0.0050 0.0415 -0.0450 0.0111
 -0.0049 0.0512 -0.0354 0.0012 0.0034
 -0.0303 0.0031 0.0031 0.0031 0.0364

 detM =
 5070000
 invM =
 -0.0049 0.0512 -0.0354 0.0012 0.0034
 0.0431 -0.0373 -0.0046 0.0127 0.0015
 -0.0303 0.0031 0.0031 0.0031 0.0364
 0.0047 -0.0065 0.0108 0.0435 -0.0370
 0.0028 0.0050 0.0415 -0.0450 0.0111

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918

10

 p =
 -160.0 31687.5
 s =
 -1
 rc =
 1 2 3 4 5
 2 4 5 1 3

 >> [detM,invM,p,s,rc]=det_inv_LL(M),
 k =
 0
 nM =
 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9
 mM =
 []
 Select rows and columns from nM
 [ri;ci] = [1 5; 1 5]
 k =
 1
 P =
 17 15
 11 9
 d =
 -12
 iP =
 -0.75 1.25
 0.91667 -1.4167
 nM =
 -42.5 -142.5 22.5
 65 650 -65
 -22.5 -182.5 42.5
 mM =
 17 15
 11 9
 iM =
 -0.75 1.25
 0.91667 -1.4167
 Select rows and columns from nM
 [ri;ci] = [1 3; 1 3]
 k =
 2
 P =
 -42.5 22.5
 -22.5 42.5
 d =
 -1300
 iP =
 -0.032692 0.017308
 -0.017308 0.032692
 nM =
 325

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918

11

 mM =
 17 15 24 8
 11 9 18 2
 23 16 5 14
 10 3 12 21
 iM =
 -0.35288 0.42212 0.086538 0.036538
 0.41122 -0.48045 -0.036538 -0.086538
 -0.0022436 0.05609 -0.032692 0.017308
 0.11058 -0.16442 -0.017308 0.032692
 Select rows and columns from nM
 [ri;ci] = [1; 1]
 k =
 3
 P =
 325
 d =
 325
 iP =
 0.0030769
 nM =
 []
 mM =
 17 15 24 8 1
 11 9 18 2 25
 23 16 5 14 7
 10 3 12 21 19
 4 22 6 20 13
 iM =
 -0.0049359 0.0033974 0.051154 0.0011538 -0.035385
 0.0027564 0.01109 0.005 -0.045 0.041538
 0.043141 0.0014744 -0.037308 0.012692 -0.0046154
 0.0046795 -0.036987 -0.0065385 0.043462 0.010769
 -0.030256 0.03641 0.0030769 0.0030769 0.0030769

 detM =
 5070000
 invM =
 -0.0049359 0.051154 -0.035385 0.0011538 0.0033974
 0.043141 -0.037308 -0.0046154 0.012692 0.0014744
 -0.030256 0.0030769 0.0030769 0.0030769 0.03641
 0.0046795 -0.0065385 0.010769 0.043462 -0.036987
 0.0027564 0.005 0.041538 -0.045 0.01109
 p =
 -12 -1300 325
 s =
 1
 rc =
 1 5 2 4 3
 1 5 2 4 3

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918

12

 >> N=5, M=magic(N)/10e+9; [detM,invM,p,s,rc]=det_inv_p(M);
 detM,p, erM=norm(M*invM-eye(N)),

 N =
 5
 detM =
 5.07e-044
 p =
 2.5e-009 2.328e-009 2.0103e-009 -2.2167e-009 1.9549e-009
 erM =
 4.5777e-016

 >> N=8, M=magic(N), [detM,invM,p,s,rs]=det_inv_p(M),
 N =
 8
 M =
 64 2 3 61 60 6 7 57
 9 55 54 12 13 51 50 16
 17 47 46 20 21 43 42 24
 40 26 27 37 36 30 31 33
 32 34 35 29 28 38 39 25
 41 23 22 44 45 19 18 48
 49 15 14 52 53 11 10 56
 8 58 59 5 4 62 63 1

 Given matrix is singular!
 detM =
 0
 invM =
 NaN
 p =
 64 62.125 12.817 -7.4226e-015 ---
 s =
 1
 rs =
 1 8 2 5 ---
 1 7 8 2 ---

 >> N=11, M=magic(N); [detM,invM,p]=det_inv_o(M); detM,p,
 N =
 11
 detM =
 NaN
 p =
 68.000 -2.2941 0 -Inf NaN NaN
 NaN NaN NaN NaN NaN
 ---� No good!

 >> N=11, M=magic(N); [detM,invM,p,s,rs]=det_inv_p(M); detM,p,
 N =
 11
 detM =
 -4.1038e+022

p =
 121.0000 119.1074 109.3497 110.7177 111.5512 112.5070
 114.6380 109.3049 107.1374 117.2489 119.0564
 ---� Good!

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918

13

 >> N=3, M=rand(N)+i*randn(N); [detM,invM,p,s,rs]=det_inv_p(M),
 N =
 3
 detM =
 1.2424 + 2.6826i
 invM =
 0.031601 + 0.11641i 0.0758 - 0.42246i 0.099138 -0.13227i
 -0.0066331 - 0.62526i -0.25293 - 0.075866i 0.6305 - 0.20649i
 0.029416 + 0.16779i -0.040886 + 0.82601i -0.11191 - 0.73749i
 p =
 0.4617 + 1.4524i 0.12257 + 1.5995i -0.059778 - 1.2077i
 s =
 1
 rs =
 3 1 2
 1 2 3

 >> N=9; tic, M=rand(N)+i*randn(N); [detM,invM,p,s,rs]=det_inv_p(M);
 >> toc, N,detM;invM;p;s;rs; erM=norm(invM*M-eye(N)),
 N =
 9
 elapsed_time =
 0.04
 erM =
 2.8833e-015

 >> N=99; tic, M=rand(N)+i*randn(N); [detM,invM,p,s,rs]=det_inv_p(M);
 >> toc, N,detM;invM;p;s;rs; erM=norm(invM*M-eye(N)),
 N =
 99
 elapsed_time =
 0.671
 erM =
 1.786e-012

 >> N=555; tic, M=rand(N)+i*randn(N); [detM,invM,p,s,rs]=det_inv_p(M);
 >> toc, N,detM;invM;p;s;rs; erM=norm(invM*M-eye(N)),
 N =
 555
 elapsed_time =
 109.61
 erM =
 1.629e-011

 >> N=999; tic, M=rand(N)+i*randn(N); [detM,invM,p,s,rs]=det_inv_p(M);
 >> toc, N,detM;invM;p;s;rs; erM=norm(invM*M-eye(N)),
 N =
 999

elapsed_time =
 734.84
 erM =
 1.933e-010

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918

14

5 Conclusion

A simple approach has been developed for finding the inverse and determinant of any square matrix, real or
complex at will. The process involves successive applications of an algorithm for matrix order condensation
as well as order expansion. It is then optimized so as to accommodate the situation wherein the intermediate
computations have begun to suggest that the given matrix may in fact be nearly singular. The manually
extended iteration process is also developed to shorten the iteration steps, if the calculation of small size
inverse matrices is feasible.

When compared to various other methods available in the literature [1-8], the iteration process schemes
presented are very compact, efficient, straightforward, and involves only the simple elementary arithmetical
operations, such as addition, subtraction, multiplication, and division. It dose not involve any high
mathematics at all.

It is shown that for a given N x N matrix, the number of multiplication/division operations needed to create a
set of N pivot elements and their reciprocals are 31 2)3 3(N N+ , which includes overall N division operations.

It follows applying these computed results the number of multiplications required to compute the
determinant and inversion of this given N x N matrix are (1)N − and 3 2 31

2 2()N N N− − , respectively.

The overall operations for determinant and matrix inversion are thus 3 24 1 1
3 2 6(1)N N N− + − . Noted that N3

is the total number of multiplications needed to compute the product of any two N x N matrices!

Numerical illustrations confirm that the optimized iteration process, embodied in few lines of code utilizing
only elementary arithmetical operations, computes the inverse of any square matrices, real or complex,
singular or nonsingular, without fail within minutes, and, amazingly enough, even for a size as huge as
999x999.

Acknowledgements

The author would also like to acknowledge the comments and useful discussions with Dr. George Cheng,
Dr. Jan Grzesik, Dr. Yong Zhu, Ms. Lala Zhu, Mr. Felix Wong and Mr. Jene Wu of Allwave Corporation.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Sherman J, Morrison WJ. Adjustment of inverse matrix corresponding to changes in a given column

or a given row of the original matrix. Ann. Math. Stat. 1949;75:124.

[2] Wilf HS. Matrix inversion by the annihilation of rank. J. Soc. Indust. Appl. Math. 1959;7(2): 149-151.

[3] Asif A, Moura JMF. Block matrices with L-block-banded inverse: Inversion Algorithm. IEEE Trans.

on Signal Processing. 2005;53(2):630-642.

[4] Chang FC. Inverse and determinant of a square matrix by order expansion and condensation. IEEE

Antenna and Propagation Magazine. 2015;57(1):28-32.

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918

15

[5] Jianshu C, Wang X. New recursive algorithm for matrix inversion. J. Systems Engineering and
Electronics. 2008;19(2):381-384.

[6] Aydin K, Celik Kizilkan G. Iterative inverse algorithm for perturbed matrix. SDU Science Journal.
2008;3(1):107-112.

[7] Su CT, Chang FC. Quick evaluation of determinant. Appl. Math. & Comput. 1996;75:117-118.

[8] Chang FC. Determinant of matrix by order condensation. British J. of Math. & Comput. Science.

2014;4(13):1843-1848.

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918

16

APPENDIX

Notes: Present the detail printout of intermediate steps in running the basic and optimal iteration process
after removing ‘%’s in the appropriate locations of the MATLAB routines.

 >> diary on

 >> format short

 >> M=magic(5),

 M =
 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

 >> [detM,invM,p]=det_inv_o(M);

 k =
 1
 P =
 17
 nM =
 -27.4706 5.6471 3.1765 -4.2941
 0.3529 12.7647 18.1176 18.4706
 -2.1176 18.4118 16.2941 -5.8235
 2.4706 24.3529 -3.1765 -0.7059
 iM =
 0.0588

 k =
 2
 P =
 -27.4706
 nM =
 12.8373 18.1585 18.4154
 17.9764 16.0493 -5.4925
 24.8608 -2.8908 -1.0921
 iM =
 -0.0107 0.0514
 0.0493 -0.0364

 k =
 3
 P =
 12.8373
 nM =
 -9.3786 -31.2802
 -38.0567 -36.7556

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918

17

 iM =
 -0.0038 0.0510 -0.0272
 0.0452 -0.0362 0.0160
 -0.0197 0.0010 0.0779

 k =
 4
 P =
 -9.3786
 nM =
 90.1734
 iM =
 -0.0058 0.0496 -0.0481 0.0149
 0.0428 -0.0380 -0.0101 0.0187
 -0.0393 -0.0133 -0.1333 0.1508
 0.0139 0.0101 0.1493 -0.1066

 k =
 5
 P =
 90.1734
 nM =
 []
 iM =
 -0.0049 0.0512 -0.0354 0.0012 0.0034
 0.0431 -0.0373 -0.0046 0.0127 0.0015
 -0.0303 0.0031 0.0031 0.0031 0.0364
 0.0047 -0.0065 0.0108 0.0435 -0.0370
 0.0028 0.0050 0.0415 -0.0450 0.0111

 detM =
 5.0700e+006
 invM =
 -0.0049 0.0512 -0.0354 0.0012 0.0034
 0.0431 -0.0373 -0.0046 0.0127 0.0015
 -0.0303 0.0031 0.0031 0.0031 0.0364
 0.0047 -0.0065 0.0108 0.0435 -0.0370
 0.0028 0.0050 0.0415 -0.0450 0.0111
 p =
 17.0000 -27.4706 12.8373 -9.3786 90.1734

 >> [detM,invM,p,s,rc]=det_inv_p(M),

 N =
 5
 M =
 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918

18

 11 18 25 2 9

 k =
 0
 nM =
 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9
 mM =
 []
 iM =
 []

 k =
 1
 rci =
 5 3
 P =
 25
 iP =
 0.0400
 nM =
 16.5600 23.2800 7.9200 14.6400
 19.9200 -0.0400 13.4400 13.4800
 -1.7200 -3.3600 18.9600 17.3200
 1.6400 -1.6800 19.4800 -3.8400
 mM =
 25
 iM =
 0.0400

 k =
 2
 rci =
 1 2
 P =
 23.2800
 iP =
 0.0430
 nM =
 19.9485 13.4536 13.5052
 0.6701 20.1031 19.4330
 2.8351 20.0515 -2.7835
 mM =
 25 18
 1 24
 iM =
 0.0412 -0.0309

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918

19

 -0.0017 0.0430

 k =
 3
 rci =
 2 2
 P =
 20.1031
 iP =
 0.0497
 nM =
 19.5000 0.5000
 2.1667 -22.1667
 mM =
 25 18 2
 1 24 8
 13 6 20
 iM =
 0.0369 -0.0297 0.0082
 0.0072 0.0405 -0.0169
 -0.0262 0.0072 0.0497

 k =
 4
 rci =
 2 2
 P =
 -22.1667
 iP =
 -0.0451
 nM =
 19.5489
 mM =
 25 18 2 9
 1 24 8 15
 13 6 20 22
 19 12 21 3
 iM =
 0.0362 -0.0300 0.0052 0.0030
 0.0040 0.0395 -0.0304 0.0135
 -0.0366 0.0040 0.0062 0.0436
 0.0108 0.0032 0.0450 -0.0451

 k =
 5
 rci =
 1 1
 P =
 19.5489

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918

20

 iP =
 0.0512
 nM =
 []
 mM =
 25 18 2 9 11
 1 24 8 15 17
 13 6 20 22 4
 19 12 21 3 10
 7 5 14 16 23
 iM =
 0.0364 -0.0303 0.0031 0.0031 0.0031
 0.0015 0.0431 -0.0046 0.0127 -0.0373
 -0.0370 0.0047 0.0108 0.0435 -0.0065
 0.0111 0.0028 0.0415 -0.0450 0.0050
 0.0034 -0.0049 -0.0354 0.0012 0.0512

 detM =
 5.0700e+006
 invM =
 -0.0049 0.0512 -0.0354 0.0012 0.0034
 0.0431 -0.0373 -0.0046 0.0127 0.0015
 -0.0303 0.0031 0.0031 0.0031 0.0364
 0.0047 -0.0065 0.0108 0.0435 -0.0370
 0.0028 0.0050 0.0415 -0.0450 0.0111
 p =
 25.0000 23.2800 20.1031 -22.1667 19.5489
 s =
 -1
 rc =
 5 1 3 4 2
 3 2 4 5 1

 >> N=3, M=rand(N)+i*randn(N), [dM,iM]=det_inv_p(M),
 >> W=iM, [dW,iW]=det_inv_p(W), erD=dM-1/dW, erM=M-iW,
 N =
 3
 M =
 0.4447 + 0.1746i 0.9218 - 0.5883i 0.4057 + 0.1139i
 0.6154 - 0.1867i 0.7382 + 2.1832i 0.9355 + 1.0668i
 0.7919 + 0.7258i 0.1763 - 0.1364i 0.9169 + 0.0593i
 dM =
 0.8840 + 1.9683i
 iM =
 0.8843 + 0.2767i 0.0395 + 0.4206i 0.0463 - 0.7104i
 0.5856 + 0.5723i -0.0536 - 0.1048i -0.2642 - 0.1396i
 -0.8013 - 0.9100i 0.2988 - 0.4017i 0.5939 + 0.5261i

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918

21

 W =
 0.8843 + 0.2767i 0.0395 + 0.4206i 0.0463 - 0.7104i
 0.5856 + 0.5723i -0.0536 - 0.1048i -0.2642 - 0.1396i
 -0.8013 - 0.9100i 0.2988 - 0.4017i 0.5939 + 0.5261i
 dW =
 0.1899 - 0.4228i
 iW =
 0.4447 + 0.1746i 0.9218 - 0.5883i 0.4057 + 0.1139i
 0.6154 - 0.1867i 0.7382 + 2.1832i 0.9355 + 1.0668i
 0.7919 + 0.7258i 0.1763 - 0.1364i 0.9169 + 0.0593i

 erD =
 3.3307e-016 -2.2204e-016i
 erM =
 1.0e-015 *
 -0.0555 + 0.0000i 0.0000 - 0.1110i -0.0555 - 0.1388i
 -0.1110 - 0.4441i 0.1110 + 0.0000i -0.2220 + 0.0000i
 0.0000 - 0.1110i 0.0555 - 0.0833i -0.1110 + 0.0139i

 >> diary off

© 2016 Chang; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
http://sciencedomain.org/review-history/11983

