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Abstract 
 

The determinant of a given square matrix is obtained as the product of pivot elements evaluated via the 
iterative matrix order condensation. It follows as the by-product that the inverse of this matrix is then 
evaluated via the iterative matrix order expansion. The fast and straightforward basic iterative procedure 
involves only simple elementary arithmetical operations without any high mathematical process. 
Remarkably, the revised optimal iterative process will compute without failing the inverse of any square 
matrix within minutes, be it real or complex, singular or nonsingular, and amazingly enough even for size 
as huge as 999x999.  The manually extended iteration process is also developed to shorten the iteration 
process steps. 

 

Keywords: Determinant; matrix inversion; matrix multiplication; recursive algorithm; matrix order 
expansion; matrix order condensation. 

 

1 Introduction  
 
For any given square matrix, a set of pivot elements (known as Schur complements) is computed via the 
basic iterative algorithm of matrix order condensation. It follows that the determinant is obtained as the 
product of all pivot elements, and as the by-product of the procedure, the inverse of the matrix is evaluated 
via the iterative algorithm of matrix order expansion. The optimal iterative algorithm is then derived to give 
the smooth computational process.  Finally, the extended iterative algorithm is developed to further reduce 
the iteration steps. 
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2 Formulation for Algorithms 
 
2.1 Algorithm for Basic Iteration  
 
For a given square matrix [ ]M of order N, its inverse 

1[ ]M −
 and determinant det[ ]M  can be evaluated as 

follows by an iterative algorithm relying upon matrix order condensation and order expansion.  Details of the 
basic iteration process from the (k -1)-th step to the k-th step, k = 1, 2, …. , N,  are illustrated in Fig. 1. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Iteration process from the (k -1)-th step to the k-th step 
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(1). Matrix order condensation: 
 

Assign 0[ ]M = [ ]M  at the beginning of iterative process. At the k-th step of the iterative process, the 

condensed matrix [ ]kM  of order (N – k), located at the lower right corner, is evaluated from its precursor 

1[ ]kM −  of order (N – k – 1) as, 

 

1  k k
k

k k

p u
M

v W−
 

  =   
 

 . 

 
1

k k k k kM W v p u−   = −    . 

 

where pk  is the desired pivot element. The determinant of 1[ ]kM −  is likewise produced recursively on 

noting that 
 

1  det[ ] det det[ ]k k
k k k

k k

p u
M p M

v W−
 

= = ⋅ 
 

. 

 
(2). Matrix order expansion: 
 

At the k-th step of the iterative process, the expanded matrix [ ]kM  of order k, located at the upper left 

corner, is evaluated from its precursor 1[ ]kM −  of order (k – 1) by annexing the two sub-matrices vk and uk, 
and the single entry dk, 
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The inverse of the matrix[ ]kM of order k is then determined as 
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wherein the pivot element kp  is related to entry kd by 
1

1k k k k kp d u M v−
−= − , and can be readily 

obtained directly in the earlier condensation process. 
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Proof : 
 
(1). Condensation Process: 
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(2). Expansion Process: 
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             (end of proof ) 
 

The determinant and the inverse of the original matrix 0[ ] [ ] [ ]NM M M= =  are therefore, respectively, 

found after performingN steps of the matrix order condensation process and the matrix order expansion 

process: 
 

1 2det[ ] NM p p p= ⋅ ⋅ ⋅⋅ ⋅ ⋅ , 

 
and 
 

1 1[ ] [ ]NM M− −=  
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2.2 Optimal and Extended Iterations 
 
It is noted that the basic iteration algorithm is quite straightforward, with pivot elements selected along the 
diagonal regardless of their magnitudes. However, this basic process could fail should the magnitudes of 
some among such pivots shrink to zero or else jump toward huge numbers, with the result that the 
determinant, obtained as their product, would eventually emerge with an erroneous value. 
 
A modified optimal iteration algorithm can then be developed so as to resolve this potential problem. At 
every iteration step a pivot is picked as the element of maximum magnitude among all possible locations, 
this pivot element is then subsequently brought into diagonal position by having the rows and columns 
permuted accordingly. Past this row/column rearrangement step the modified algorithm is in all respects 
identical to its basic precursor. The desired inverse of the original matrix is therefore obtained once rows and 
columns are restored to their original locations. 
 
In summary: (1) if the given matrix is non-singular then its determinant is found as the product of all its 
pivot elements; and (2) the matrix is said to be singular in the event that pivot elements shrink steeply toward 
zero. 
 
Finally, it is interesting to note that in the basic iteration process the number of steps can be somewhat 
reduced by replacing each individual pivot element manually by a square pivot block (not necessary solid) of 
any size, provided only that this block has an inverse which can be easily computed. Picture illustration of 
extension process with related blocks is shown in Fig. 2. In keeping with what was previously suggested, 
this extended iteration process may fail should any pivot block get out to be singular. 
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Fig. 2. Picture illustration of extended iteration 
 

3 Computer Routines 
 
The MATLAB routines, derived from the basic iteration process and its optimal modification, as well as 
manually extended pivot process are presented below.   
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(1) Basic scheme  
 
    function [detM,invM,p] = det_inv_o(M) 
    %   The determinant the inverse of a given matrix are 
    %     found by matrix order condensation and expansion. 
    %      ---- Basic Scheme. 
    %   F.C. Chang   09/11/2015. 
     
              N = size(M,1);  nM = M; iM = [ ]; p = [ ]; 
        for  k = 1:N,   n = N-k+1; 
              P = nM(1,1);  iP = 1/P;   p = [p,P]; 
             nM = nM(2:n,2:n)-nM(2:n,1)*iP*nM(1,2:n); 
             iM = blkdiag(iM,0)+[-iM*M(1:k-1,k);1] ... 
                 *[iP]*[-M(k,1:k-1)*iM,1];    % k,P,nM,iM, 
        end;  
             detM = prod(p);  invM = iM;    % p,detM,invM, 
 
(2) Optimal scheme 
 
    function [detM,invM,p,s,rc] = det_inv_p(M) 
    %   The determinant of a given matrix and an array of 
    %      pivots are found by matrix order condensation. 
    %      Then as by-product the inverse matrix is obtained 
    %      by matrix order condensation. ---- Optimal Scheme. 
    %   F.C. Chang   09/11/2015. 
     
             k = 0;  N = size(M,1); mA = max(abs(M(:)));   % N,M, 
             nM = M;  mM = [ ];  iM = [ ];          % k,nM,mM,iM, 
             s = 1;   r = [ ];  c = [ ];  p = [ ]; 
        for  k = 1:N,   n = N-k+1;  
             [mp,rcm] = max(abs(nM(:))); 
             [ri,ci] = ind2sub([n,n],rcm);   rci = [ri;ci]; 
             rx = setdiff([1:n],ri); cx = setdiff([1:n],ci); 
             ro = setdiff([1:N],r);  co = setdiff([1:N],c); 
             r = [r,ro(ri)];  c = [c,co(ci)];   rc = [r;c]; 
             P = nM(rcm);   iP = 1/P;   p = [p,P]; 
          if mp/mA < 1.e-10, disp('Given matrix is singular !'); 
             detM = 0; invM = NaN;  p; s; rc;  return, end; 
             s = s*(-1)^(ri+ci);                  % k,rci,rc;P,iP, 
             nM = nM(rx,cx)-nM(rx,ci)*iP*nM(ri,cx); 
             mM = M(r,c); 
             iM = blkdiag(iM,0)+[-iM*mM(1:k-1,k);1] ... 
                 *iP*[-mM(k,1:k-1)*iM,1];              % nM,mM,iM, 
        end;  
             detM = prod(p)*s; invM(c,r) = iM; % rc,s,p,detM,invM, 
 
(3) Extended scheme 
 
    function [detM,invM,p,s,rc] = det_inv_LL(M) 
    %    Find the determinant via order condensation and then 
    %      as by-product the inverse via order expansion. 
    %      Manually select rows/columns for pivot blocks. 
    %      ----- Expanded Scheme. 
    %    F C Chang     09/11/15 
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             k = 0; N = size(M,1); nM = M; mM = [ ]; iM = [ ]; 
             r = [ ]; c = [ ]; p = [ ]; s = 1; t(1) = 0;   k,nM,mM, 
        for  k = 1:N, 
             n = size(nM,1); m = size(mM,1); if n == 0, break,end; 
             disp('Select rows and columns from nM '); 
             rci = input('[ri;ci]  =  '); 
             ri = sort(rci(1,:));     ci = sort(rci(2,:)); 
             rx = setdiff([1:n],ri);  cx = setdiff([1:n],ci); 
             ro = setdiff([1:N],r);   co = setdiff([1:N],c); 
             r = [r,ro(ri)];          c = [c,co(ci)]; 
             rci = [ri;ci];    rcx =[rx;cx];     rc = [r;c]; 
             s = s*(-1)^sum(ri+ci); 
             P = nM(ri,ci);    L = size(P,1); 
             iP = inv(P);   d = det(P);    p = [p,d]; 
             t(k+1) = t(k)+L; rt = [1:t(k)]; ct = [t(k)+1:t(k+1)]; 
             nM = nM(rx,cx)-nM(rx,ci)*iP*nM(ri,cx); 
             mM = M(r,c); 
             iM = blkdiag(iM,zeros(L,L))+[-iM*mM(rt,ct);eye(L)] ... 
                 *iP*[-mM(ct,rt)*iM,eye(L)];      k,P,d,iP,nM,mM,iM, 
        end; 
             detM = prod(p)*s; invM(c,r) = iM;     rc,s,p,detM,invM, 
 
Remark: 
 
Given a matrix M of order N.  At the k-th step of iteration process, the condensed matrix Mk, the expanded 
matrix Mk, and its inverse Mk

-1 are, respectively, denoted as nM, mM, and iM in the given MATLAB 
routines. The pivot element Pk and its inverse Pk

-1 at the k-th step are, likewise, denoted as P and iP, 
respectively. Also, the overall rows/columns rearrangement is expressed as [r c]. 
 
Outputs of the routines give only the desired final results and skip all intermediate related data in order to 
save space in case that the given matrix order N is very huge.  By removing any %’s at appropriate locations 
in these routine, the expected related intermediate data will appear in the processing output.  
 
The validation of output results may be performed by checking if the multiplication of the computed inverse 
matrix and the given original matrix is equal to an identity matrix of the same size within permitted error.  
 
Please refer to Numerical Illustrations Section and Appendix for more detail. 
 

4 Numerical Illustrations 
 
    >> N=5, M=magic(5),  
 N = 
      5 
 M = 
     17         24          1          8         15 
     23          5          7         14         16 
      4          6         13         20         22 
     10         12         19         21          3 
     11         18         25          2          9 
 
   >> [detM,invM,p]=det_inv_o(M),  
 detM = 
     5070000 
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 invM = 
    -0.0049    0.0512   -0.0354    0.0012    0.0034 
     0.0431   -0.0373   -0.0046    0.0127    0.0015 
    -0.0303    0.0031    0.0031    0.0031    0.0364 
     0.0047   -0.0065    0.0108    0.0435   -0.0370 
     0.0028    0.0050    0.0415   -0.0450    0.0111 
 p = 
    17.0000  -27.4706   12.8373   -9.3786   90.1734 
 
   >> [detM,invM,p,s,rc]=det_inv_p(M)  
 detM = 
     5070000 
 invM = 
    -0.0049    0.0512   -0.0354    0.0012    0.0034 
     0.0431   -0.0373   -0.0046    0.0127    0.0015 
    -0.0303    0.0031    0.0031    0.0031    0.0364 
     0.0047   -0.0065    0.0108    0.0435   -0.0370 
     0.0028    0.0050    0.0415   -0.0450    0.0111 
 p = 
    25.0000   23.2800   20.1031  -22.1667   19.5489 
 s = 
     -1 
 rs = 
      5     1     3     4     2 
      3     2     4     5     1 
 
   >> [detM,invM,p,s,rs]=det_inv_LL(M)  
 N = 
      5 
 M = 
     17         24          1          8         15 
     23          5          7         14         16 
      4          6         13         20         22 
     10         12         19         21          3 
     11         18         25          2          9 
 k = 
      0 
 nM = 
     17         24          1          8         15 
     23          5          7         14         16 
      4          6         13         20         22 
     10         12         19         21          3 
     11         18         25          2          9 
 mM = 
        [ ] 
 k = 
      1 
 Select rows and columns from nM  
 [ri;ci]  =   
         [1 2 3; 2 4 5] 
 P = 
           24            8            15 
            5           14            16 
            6           20            22 
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 d = 
         -160 
 iP = 
       0.0750       -0.7750       0.5125 
       0.0875       -2.7375       1.9313 
      -0.1000        2.7000      -1.8500 
 nM = 
        1153.8      -107.66 
         -97.5       36.562 
 mM = 
           24            8            15 
            5           14            16 
            6           20            22 
 iM = 
       0.0750       -0.7750       0.5125 
       0.0875       -2.7375       1.9313 
      -0.1000        2.7000      -1.8500 
 k = 
      2 
 Select rows and columns from nM  
 [ri;ci]  =   
         [1 2; 1 2] 
 P = 
        1153.8      -107.66 
         -97.5       36.562 
 d = 
         31687 
 iP = 
     0.0011538    0.0033974 
     0.0030769      0.03641 
 nM = 
          [ ] 
 mM = 
            24           8          15          17           1 
             5          14          16          23           7 
             6          20          22           4          13 
            12          21           3          10          19 
            18           2           9          11          25 
 iM = 
        0.0431     -0.0373     -0.0046      0.0127      0.0015 
        0.0047     -0.0065      0.0108      0.0435     -0.0370 
        0.0028      0.0050      0.0415     -0.0450      0.0111 
       -0.0049      0.0512     -0.0354      0.0012      0.0034 
       -0.0303      0.0031      0.0031      0.0031      0.0364 
 
    -------------- 
 detM = 
       5070000 
 invM = 
       -0.0049      0.0512     -0.0354      0.0012      0.0034 
        0.0431     -0.0373     -0.0046      0.0127      0.0015 
       -0.0303      0.0031      0.0031      0.0031      0.0364 
        0.0047     -0.0065      0.0108      0.0435     -0.0370 
        0.0028      0.0050      0.0415     -0.0450      0.0111 
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 p = 
        -160.0      31687.5 
 s = 
           -1 
 rc = 
            1           2           3           4           5 
            2           4           5           1           3 
 

   >> [detM,invM,p,s,rc]=det_inv_LL(M), 
 k = 
      0 
 nM = 
     17    24     1     8    15 
     23     5     7    14    16 
      4     6    13    20    22 
     10    12    19    21     3 
     11    18    25     2     9 
 mM = 
      [] 
 Select rows and columns from nM  
  [ri;ci]  =  [1 5; 1 5] 
 k = 
      1 
 P = 
     17    15 
     11     9 
 d = 
    -12 
 iP = 
  -0.75         1.25 
       0.91667      -1.4167 
 nM = 
  -42.5       -142.5         22.5 
     65          650          -65 
  -22.5       -182.5         42.5 
 mM = 
     17    15 
     11     9 
 iM = 
  -0.75         1.25 
       0.91667      -1.4167 
 Select rows and columns from nM  
  [ri;ci]  =  [1 3; 1 3] 
 k = 
      2 
 P = 
  -42.5         22.5 
  -22.5         42.5 
 d = 
  -1300 
 iP = 
     -0.032692     0.017308 
     -0.017308     0.032692 
 nM = 
    325 
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 mM = 
     17    15    24     8 
     11     9    18     2 
     23    16     5    14 
     10     3    12    21 
 iM = 
      -0.35288      0.42212     0.086538     0.036538 
      0.41122     -0.48045    -0.036538    -0.086538 
      -0.0022436      0.05609    -0.032692     0.017308 
      0.11058     -0.16442    -0.017308     0.032692 
 Select rows and columns from nM  
  [ri;ci]  =  [1; 1] 
 k = 
      3 
 P = 
    325 
 d = 
    325 
 iP = 
     0.0030769 
 nM = 
      [] 
 mM = 
     17    15    24     8     1 
     11     9    18     2    25 
     23    16     5    14     7 
     10     3    12    21    19 
      4    22     6    20    13 
 iM = 
    -0.0049359    0.0033974     0.051154    0.0011538    -0.035385 
     0.0027564      0.01109        0.005       -0.045     0.041538 
      0.043141    0.0014744    -0.037308     0.012692   -0.0046154 
     0.0046795    -0.036987   -0.0065385     0.043462     0.010769 
     -0.030256      0.03641    0.0030769    0.0030769    0.0030769 
           ------------------------------------ 
 detM = 
     5070000 
 invM = 
    -0.0049359     0.051154    -0.035385    0.0011538    0.0033974 
      0.043141    -0.037308   -0.0046154     0.012692    0.0014744 
     -0.030256    0.0030769    0.0030769    0.0030769      0.03641 
     0.0046795   -0.0065385     0.010769     0.043462    -0.036987 
     0.0027564        0.005     0.041538       -0.045      0.01109 
 p = 
    -12    -1300      325 
 s = 
      1 
 rc = 
      1     5     2     4     3 
      1     5     2     4     3 
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   >> N=5, M=magic(N)/10e+9; [detM,invM,p,s,rc]=det_inv_p(M); 
    detM,p, erM=norm(M*invM-eye(N)), 

 N = 
      5 
 detM = 
     5.07e-044 
 p = 
      2.5e-009   2.328e-009  2.0103e-009 -2.2167e-009  1.9549e-009 
 erM = 
   4.5777e-016 
 

   >> N=8, M=magic(N), [detM,invM,p,s,rs]=det_inv_p(M), 
 N = 
        8  
 M = 
          64     2      3      61     60      6      7     57 
           9     55     54     12     13     51     50     16 
          17     47     46     20     21     43     42     24 
          40     26     27     37     36     30     31     33 
          32     34     35     29     28     38     39     25 
          41     23     22     44     45     19     18     48 
          49     15     14     52     53     11     10     56 
           8     58     59      5      4     62     63      1 
 

 Given matrix is singular! 
 detM = 
         0 
 invM = 
        NaN 
 p = 
         64   62.125 12.817 -7.4226e-015      ---     
 s = 
         1 
 rs = 
         1       8       2       5          ---       
         1       7       8       2          ---       
 

   >> N=11, M=magic(N); [detM,invM,p]=det_inv_o(M); detM,p, 
 N = 
        11 
 detM = 
       NaN 
 p = 
     68.000   -2.2941       0        -Inf       NaN        NaN 
       NaN        NaN        NaN       NaN       NaN    
     ---�  No good! 
 

   >> N=11, M=magic(N); [detM,invM,p,s,rs]=det_inv_p(M); detM,p, 
 N = 
       11 
 detM = 
     -4.1038e+022 
 

p = 
   121.0000  119.1074  109.3497  110.7177  111.5512  112.5070 
   114.6380  109.3049  107.1374  117.2489  119.0564           
       ---�  Good! 
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   >> N=3, M=rand(N)+i*randn(N); [detM,invM,p,s,rs]=det_inv_p(M), 
 N = 
        3 
 detM = 
        1.2424  + 2.6826i 
 invM = 
    0.031601  + 0.11641i    0.0758   - 0.42246i    0.099138 -0.13227i 
   -0.0066331 - 0.62526i   -0.25293  - 0.075866i   0.6305  - 0.20649i 
    0.029416  + 0.16779i   -0.040886 + 0.82601i   -0.11191 - 0.73749i 
 p =  
     0.4617   + 1.4524i     0.12257  + 1.5995i    -0.059778 - 1.2077i 
 s = 
        1 
 rs = 
        3         1         2 
        1         2         3 
 
   >> N=9; tic, M=rand(N)+i*randn(N); [detM,invM,p,s,rs]=det_inv_p(M); 
   >>      toc, N,detM;invM;p;s;rs; erM=norm(invM*M-eye(N)), 
 N = 
        9 
 elapsed_time = 
   0.04 
 erM = 
      2.8833e-015 
 
   >> N=99; tic, M=rand(N)+i*randn(N); [detM,invM,p,s,rs]=det_inv_p(M); 
   >>       toc, N,detM;invM;p;s;rs; erM=norm(invM*M-eye(N)), 
 N = 
       99 
 elapsed_time = 
    0.671 
 erM = 
      1.786e-012 
 
   >> N=555; tic, M=rand(N)+i*randn(N); [detM,invM,p,s,rs]=det_inv_p(M); 
   >>        toc, N,detM;invM;p;s;rs; erM=norm(invM*M-eye(N)), 
 N = 
      555 
 elapsed_time = 
           109.61 
 erM = 
      1.629e-011 
 
   >> N=999; tic, M=rand(N)+i*randn(N); [detM,invM,p,s,rs]=det_inv_p(M); 
   >>         toc, N,detM;invM;p;s;rs; erM=norm(invM*M-eye(N)), 
 N = 
      999 
  
elapsed_time = 
        734.84 
 erM = 
      1.933e-010 
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5 Conclusion 
 
A simple approach has been developed for finding the inverse and determinant of any square matrix, real or 
complex at will. The process involves successive applications of an algorithm for matrix order condensation 
as well as order expansion. It is then optimized so as to accommodate the situation wherein the intermediate 
computations have begun to suggest that the given matrix may in fact be nearly singular. The manually 
extended iteration process is also developed to shorten the iteration steps, if the calculation of small size 
inverse matrices is feasible. 
 
When compared to various other methods available in the literature [1-8], the iteration process schemes 
presented are very compact, efficient, straightforward, and involves only the simple elementary arithmetical 
operations, such as addition, subtraction, multiplication, and division. It dose not involve any high 
mathematics at all.  
 
It is shown that for a given N x N matrix, the number of multiplication/division operations needed to create a 
set of N pivot elements and their reciprocals are 31 2 )3 3( N N+ , which includes overall N division operations. 

It follows applying these computed results the number of multiplications required to compute the 
determinant and inversion of this given N x N matrix are ( 1)N − and 3 2 31

2 2( )N N N− − , respectively. 

The overall operations for determinant and matrix inversion are thus 3 24 1 1
3 2 6( 1)N N N− + − . Noted that N3 

is the total number of multiplications needed to compute the product of any two N x N matrices!   
 
Numerical illustrations confirm that the optimized iteration process, embodied in few lines of code utilizing 
only elementary arithmetical operations, computes the inverse of any square matrices, real or complex, 
singular or nonsingular, without fail within minutes, and, amazingly enough, even for a size as huge as 
999x999. 
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APPENDIX 
 
Notes: Present the detail printout of intermediate steps in running the basic and optimal iteration process 
after removing ‘%’s in the appropriate locations of the MATLAB routines.  
 

     >> diary on 
 

   >> format short 
 

   >> M=magic(5), 
 
 M = 
     17    24     1     8    15 
     23     5     7    14    16 
      4     6    13    20    22 
     10    12    19    21     3 
     11    18    25     2     9 
 

  >> [detM,invM,p]=det_inv_o(M); 
 

 k = 
      1 
 P = 
     17 
 nM = 
   -27.4706    5.6471    3.1765   -4.2941 
     0.3529   12.7647   18.1176   18.4706 
    -2.1176   18.4118   16.2941   -5.8235 
     2.4706   24.3529   -3.1765   -0.7059 
 iM = 
     0.0588 
 ---------- 
 k = 
      2 
 P = 
   -27.4706 
 nM = 
    12.8373   18.1585   18.4154 
    17.9764   16.0493   -5.4925 
    24.8608   -2.8908   -1.0921 
 iM = 
    -0.0107    0.0514 
     0.0493   -0.0364 
 ---------- 
 k = 
      3 
 P = 
    12.8373 
 nM = 
    -9.3786  -31.2802 
   -38.0567  -36.7556 
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 iM = 
    -0.0038    0.0510   -0.0272 
     0.0452   -0.0362    0.0160 
    -0.0197    0.0010    0.0779 
 ---------- 
 k = 
      4 
 P = 
    -9.3786 
 nM = 
    90.1734 
 iM = 
    -0.0058    0.0496   -0.0481    0.0149 
     0.0428   -0.0380   -0.0101    0.0187 
    -0.0393   -0.0133   -0.1333    0.1508 
     0.0139    0.0101    0.1493   -0.1066 
 ---------- 
 k = 
      5 
 P = 
    90.1734 
 nM = 
      [] 
 iM = 
    -0.0049    0.0512   -0.0354    0.0012    0.0034 
     0.0431   -0.0373   -0.0046    0.0127    0.0015 
    -0.0303    0.0031    0.0031    0.0031    0.0364 
     0.0047   -0.0065    0.0108    0.0435   -0.0370 
     0.0028    0.0050    0.0415   -0.0450    0.0111 
 -------------------- 
 detM = 
   5.0700e+006 
 invM = 
    -0.0049    0.0512   -0.0354    0.0012    0.0034 
     0.0431   -0.0373   -0.0046    0.0127    0.0015 
    -0.0303    0.0031    0.0031    0.0031    0.0364 
     0.0047   -0.0065    0.0108    0.0435   -0.0370 
     0.0028    0.0050    0.0415   -0.0450    0.0111 
 p = 
    17.0000  -27.4706   12.8373   -9.3786   90.1734 
 
   >> [detM,invM,p,s,rc]=det_inv_p(M), 
 
 N = 
      5 
 M = 
     17    24     1     8    15 
     23     5     7    14    16 
      4     6    13    20    22 
     10    12    19    21     3 
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     11    18    25     2     9 
 ------- 
 k = 
      0 
 nM = 
     17    24     1     8    15 
     23     5     7    14    16 
      4     6    13    20    22 
     10    12    19    21     3 
     11    18    25     2     9 
 mM = 
      [ ] 
 iM = 
      [ ] 
 ------- 
 k = 
      1 
 rci = 
      5    3 
 P = 
     25 
 iP = 
     0.0400 
 nM = 
    16.5600   23.2800    7.9200   14.6400 
    19.9200   -0.0400   13.4400   13.4800 
    -1.7200   -3.3600   18.9600   17.3200 
     1.6400   -1.6800   19.4800   -3.8400 
 mM = 
     25 
 iM = 
     0.0400 
 ------- 
 k = 
      2 
 rci = 
      1    2 
 P = 
    23.2800 
 iP = 
     0.0430 
 nM = 
    19.9485   13.4536   13.5052 
     0.6701   20.1031   19.4330 
     2.8351   20.0515   -2.7835 
 mM = 
     25    18 
      1    24 
 iM = 
     0.0412   -0.0309 
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    -0.0017    0.0430 
 ------- 
 k = 
      3 
 rci = 
      2    2 
 P = 
    20.1031 
 iP = 
     0.0497 
 nM = 
    19.5000    0.5000 
     2.1667  -22.1667 
 mM = 
     25    18     2 
      1    24     8 
     13     6    20 
 iM = 
     0.0369   -0.0297    0.0082 
     0.0072    0.0405   -0.0169 
    -0.0262    0.0072    0.0497 
 ------- 
 k = 
      4 
 rci = 
      2    2 
 P = 
   -22.1667 
 iP = 
    -0.0451 
 nM = 
    19.5489 
 mM = 
     25    18     2     9 
      1    24     8    15 
     13     6    20    22 
     19    12    21     3 
 iM = 
     0.0362   -0.0300    0.0052    0.0030 
     0.0040    0.0395   -0.0304    0.0135 
    -0.0366    0.0040    0.0062    0.0436 
     0.0108    0.0032    0.0450   -0.0451 
 ------- 
 k = 
      5 
 rci = 
      1    1 
 P = 
    19.5489 
 



 
 
 

Chang; BJMCS, 12(4): 1-21, 2016; Article no.BJMCS.21918 
 
 
 

20 
 

 

 iP = 
     0.0512 
 nM = 
      [ ] 
 mM = 
     25    18     2     9    11 
      1    24     8    15    17 
     13     6    20    22     4 
     19    12    21     3    10 
      7     5    14    16    23 
 iM = 
     0.0364   -0.0303    0.0031    0.0031    0.0031 
     0.0015    0.0431   -0.0046    0.0127   -0.0373 
    -0.0370    0.0047    0.0108    0.0435   -0.0065 
     0.0111    0.0028    0.0415   -0.0450    0.0050 
     0.0034   -0.0049   -0.0354    0.0012    0.0512 
 ------------------------------ 
 detM = 
   5.0700e+006 
 invM = 
    -0.0049    0.0512   -0.0354    0.0012    0.0034 
     0.0431   -0.0373   -0.0046    0.0127    0.0015 
    -0.0303    0.0031    0.0031    0.0031    0.0364 
     0.0047   -0.0065    0.0108    0.0435   -0.0370 
     0.0028    0.0050    0.0415   -0.0450    0.0111 
 p = 
    25.0000   23.2800   20.1031  -22.1667   19.5489 
 s = 
     -1 
 rc = 
      5     1     3     4     2 
      3     2     4     5     1 
 
   >> N=3, M=rand(N)+i*randn(N), [dM,iM]=det_inv_p(M), 
   >>      W=iM, [dW,iW]=det_inv_p(W), erD=dM-1/dW, erM=M-iW, 
 N = 
      3 
 M = 
    0.4447 + 0.1746i   0.9218 - 0.5883i   0.4057 + 0.1139i 
    0.6154 - 0.1867i   0.7382 + 2.1832i   0.9355 + 1.0668i 
    0.7919 + 0.7258i   0.1763 - 0.1364i   0.9169 + 0.0593i 
 dM = 
    0.8840 + 1.9683i 
 iM = 
    0.8843 + 0.2767i   0.0395 + 0.4206i   0.0463 - 0.7104i 
    0.5856 + 0.5723i  -0.0536 - 0.1048i  -0.2642 - 0.1396i 
   -0.8013 - 0.9100i   0.2988 - 0.4017i   0.5939 + 0.5261i 
 -------------------- 
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 W = 
    0.8843 + 0.2767i   0.0395 + 0.4206i   0.0463 - 0.7104i 
    0.5856 + 0.5723i  -0.0536 - 0.1048i  -0.2642 - 0.1396i 
   -0.8013 - 0.9100i   0.2988 - 0.4017i   0.5939 + 0.5261i 
 dW = 
    0.1899 - 0.4228i 
 iW = 
    0.4447 + 0.1746i   0.9218 - 0.5883i   0.4057 + 0.1139i 
    0.6154 - 0.1867i   0.7382 + 2.1832i   0.9355 + 1.0668i 
    0.7919 + 0.7258i   0.1763 - 0.1364i   0.9169 + 0.0593i 
 -------------------- 
 erD = 
   3.3307e-016 -2.2204e-016i 
 erM = 
  1.0e-015 * 
   -0.0555 + 0.0000i   0.0000 - 0.1110i  -0.0555 - 0.1388i 
   -0.1110 - 0.4441i   0.1110 + 0.0000i  -0.2220 + 0.0000i 
    0.0000 - 0.1110i   0.0555 - 0.0833i  -0.1110 + 0.0139i 
 
   >> diary off 
_______________________________________________________________________________________ 
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