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ABSTRACT 
 

The present paper proposes a partitioning type approach for the parametric minimum flow problem 
which is based on the classical decreasing directed paths method. On each of its iterations, the 
algorithm finds a decreasing directed path from source node to sink node in a range of parametric 
residual networks which are consecutively defined for subintervals of the parameter values and, by 
decreasing the flow along the corresponding paths in the original parametric network, splits the 
interval of the parameter values in subintervals generated by the breakpoints of the piecewise 
linear parametric residual capacity function of the decreasing directed path. Further on, the 
algorithm reiterates for every generated subinterval in increasing order of the parameter values.  
 

 
Keywords: Minimum flow; parametric network; decreasing paths. 
 
1. INTRODUCTION 
 
The problem of the parametric maximum flow 
with zero lower bounds and linear capacity 
functions has constantly been investigated and 

several algorithms exist (e.g. Hamacher and 
Foulds [1], Ruhe [2,3], Gallo et al. [4] or Zhang et 
al. [5,6]) to solve different instances the problem. 
Although it has its own applications, the 
parametric minimum flow problem was 
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addressed in literature considerably less often 
than the parametric maximum flow problem. 
Actually, the parametric minimum flow problem 
(or, in general any parametric flow problem) 
represents a kind of generalisation of the 
classical nonparametric problem to the case 
where the lower bounds (or correspondingly the 
upper bounds) of some arcs depend of a certain 
parameter. Consequently, the problem consists 
in solving the nonparametric minimum flow 
problem for all the parameter values within a 
certain interval. If all the lower bound functions 
linearly depend of the parameter, the minimum 
parametric flow value function will result in a 
continuous piecewise linear function of the same 
parameter. The partitioning type approach, which 
is presented in this paper, proposes an original 
algorithm for computing the minimum flow                    
in networks with linear upper bound functions.   
As  Bichot and Siarry [7] showed, the parametric 
flow problem “is of genuine practical and 
theoretical interest since graph partitioning 
applications are described on a wide variety of 
subjects as: data distribution in parallel-
computing, VLSI circuit design, image 
processing, computer vision, route planning, air 
traffic control, mobile networks, social networks, 
etc” [7]. 
 
The structure of this article is the following: 
Section 2 gathers some basic terminology 
elements regarding the network flow problem. 
The terminology and definitions in this section 
are taken from [8]. Section 3 reminds some 
necessary definitions regarding the parametric 
minimum flow problem. Section 4 suggests a 
possible application of the parametric minimum 
flow problem. Section 5 describes the proposed 
algorithm which finds a parametric minimum flow. 
Section 6 gives an example of a parametric 
network with linear lower bounds functions in 
order to show the evolution of the proposed 
algorithm. Finally, Section 7 presents some 
conclusions and a generalization of the problem.  
 

2. TERMINOLOGY AND PRELIMINARIES 
 

Let ),,,,,( tsuANG l= be a capacitated network 

with Nn =  nodes },,{ KK iN =  and Am =  

arcs },,{ KK aA = . The set of nodes N  
contains two special nodes: the source node s and 
the sink node t. If an arc Aa ∈  connects nodes 

Nji ∈,  then ),( jia = . For every arc 

Ajia ∈= ),(  two nonnegative real functions are 

defined: the upper bound )(au  and lower bound

)(al . A flow is a function +ℜ→Af :  
satisfying the conditions: 
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In the previous equation (1), 0≥v  is referred to as 
the value of the flow f . 
 

A feasible flow if a function +ℜ→Af :  satisfying 

the flow bound constraints: 
),(),(),( jiujifji ≤≤l , for every arc 

Aji ∈),( . A cut, denoted [S, T], is a partition of 
the set of nodes into two subsets S and T=N−S. An 
arc ),( ji  is called a forward arc of the cut if Si ∈  

and Tj ∈ . If Ti ∈  and Sj ∈  then the arc 

),( ji  is called a backward arc of the cut. The set 
of forward arcs of the cut is denoted (S, T) and               
(T, S) denotes the set of backward arcs. A cut                 
[S, T] is called an s−t cut if Ss ∈  and Tt ∈ . The 
minimum flow problem consists in finding a flow 
which minimises its value. For a network with 
nonzero lower bounds, the problem is usually 
solved in two stages: (1) building a feasible flow in 
the network; (2) starting from a given feasible flow, 
establishing the minimum flow.  
 
3. PARAMETRIC MINIMUM FLOW 
 
The parametric minimum flow problem can be 
regarded as a generalisation of the nonparametric 
problem where the lower bounds of some arcs 
depend of a nonnegative, real parameter λ : 
 

),(),();,( 0 jijiji £⋅−= λλ ll                 (2) 

 
In expression (2), by ),( ji£  is denoted a real 
valued function called the parametric part of the 
lower bound of the arc ),( ji . The significance of 

),(0 jil  is the value of );,( λjil  for 0=λ , 

observing the condition that ),(),(0 0 jiuji ≤≤ l

. The same restriction also holds for the lower 
bound of every arc Aji ∈),( , i.e. 
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),();,( jiuji ≤≤ λ0 l , ],[ Λ∈∀ 0λ . This results 

in: Λ≤≤Λ− /),(),(/)),(),( 00 jijijiuji ll £( , 

Aji ∈∀ ),( .  
 
Definitions 1 to 7, which follow in this section, are 
adapted from reference [8] while theorem 1 is 
taken from reference [9].  
 
Definition 1.  A PARAMETRIC NETWORK denoted

),,,,,( tsuANG l= , is a directed network with 
some arcs having lower bounds which depend of 
a real parameter.  
 
Definition 2.  The PARAMETRIC MINIMUM FLOW 
problem consists in solving the nonparametric 
minimum flow problem for all the parameter 
values within a certain interval: 
 

],0[( Λ∈λλ allforminimize )v  

             (3.a) 
 

with  
 









=
≠
=

−
=− ∑∑

∈∈ ti

tsi

si

ijfjif
AijjAjij

,

),(

,

),(

);,();,(
),(|),(| λ

λ

λλ

v

0

v

            (3.b) 
 

and 
 

),(;,);,( jiujifji ≤)(≤ λλl Aji ∈∀ ),( 
.             (3.c) 

 

Definition 3.  For the parametric minimum flow 
problem, the PARAMETRIC RESIDUAL CAPACITY 

);,( λjir ′  of any of the arcs Aji ∈),( , with 

respect to a given parametric flow f , represents 
the maximum amount by which the flow from 
node i  to node j  can be diminished over the 

arcs ),( ji  and ),( ij . It is given by: 
 

);,();,();,(),();,( λλλλ jijifijfijujir l−+−=′ .
               (4) 

 
Definition 4.  The PARAMETRIC RESIDUAL NETWORK 

of a parametric network G , with respect to a 

feasible flow f , is the network denoted 

)(,()( )fANfG ′=′ .  

In the previous definition (4), )fA (′  represents 

the set of only those arcs having 0);,( >′ λjir  
for a subinterval of the parameter values. 
 
Definition 5.  The subinterval in which the flow 
can be diminished over an arc  is denoted 

],0[),( Λ⊆jiI :  

 
)λλ fAjiforjirjiI (),(}0);,(|{),( ′∈>′=

.                (5) 
 

Definition 6. A directed path P  from source to 

sink in network )( fG ′ , is called CONDITIONAL 

DECREASING DIRECTED PATH P  if it meets the 

restriction φ≠=
∈

),((
),(

jiIPI
Pji

I) . 

 
Definition 7.  The PARAMETRIC RESIDUAL CAPACITY 
OF A CONDITIONAL DECREASING DIRECTED PATH is 

denoted )(Pr ′  and is defined as: 

 

}),(|);,({)(
)(

PjijirminPr
PI

∈′=′
∈

λ
λ

.    (6) 

 
In general, both );,( λjir ′  and )(Pr′  are 

piecewise linear functions. Denoting by ),( jiK  

the number of linear segments of );,( λjir ′  and 

by )(PK  the equivalent number for )(Pr ′ , 

results that ∑ ∈≥ Pji jiKPK ),( ),()( . Since any P  is 

elementary, follows that: 2)( −≤nPK .  

 
Theorem 1.  [9] (CONDITIONAL DECREASING PATH 

THEOREM) A flow minf  is a parametric minimum 
flow if and only if the parametric residual network 

)( minfG ′  contains no conditional decreasing 
directed path from the source node to the sink 
node. 
 
Based on the optimal parametric residual 

network )( minfG ′ , the parametric minimum 
flow is computed as: 

 
}0),;,(),();,({);,();,( minmin λλλλ ijijujirmaxjijif ll +−′+= .                            (7) 

  

),( ji
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4. APPLICATIONS 
 
Considering that the problem of the parametric 
minimum flow represents an extension of the 
classical problem of the minimum flow, the 
applications of the parametric minimum flows 
cover all those instances of the classical flow 
problem where network characteristics are 
depending linearly of a parameter. This 
subsection briefly presents the problem of 
scheduling some works on different machines. 
The problem has many practical applications if 
the machines are considered to be workers, oil 
ship, freight trucks, wagons, airplanes or even 
processors etc.  
 
Let X  be the set of works that must be made by 
a set Y  of machines. Each work Xxi ∈  is 

performed by a machine Yyk ∈ . There is a 

strict order in scheduling the works, meaning that 
the work ix  must start at time moment )( ixτ  

and be finished at time moment )(' ixτ . 

Moreover, there exists a time interval ),('' ki xxτ  

between the moment of finishing the work ix  

and the moment of starting the work kx . The 

aim of the problem is to find an optimal 
scheduling for a variable amount of work which 
uses as few machines as possible and to 
determine the load of the machines for such an 
optimal scheduling. 
 
This problem can be formulated as a problem of 
parametric minimum flow in a network 

),,,,,( tsuANG l=  which is built in the following 

way: for each of the works ix , ni ,,1K= , the 

network contains a pair of nodes 'ix  and ''ix  

together with the arc )'','( ii xx  having the lower 

bound function given by iii uxx ⋅= λλ);'','(l  

with nonnegative value iu  representing the 

maximum value of the amount of work ix , i.e. 

iii uxxu =)'','( , and the real parameter 

[0,1]λ∈ . A source node s  and a sink node t  
are also added to the network. The source node 
is connected through an arc having 0)',( =ixsl  

and ii uxsu =)',( , ni ,,1K= , by each of the 

nodes 'ix . Similarly, from each of the nodes 

''ix , an arc is built toward the sink node, having 

0),''( =txil  and ii utxu =),''( , ni ,,1K= . If 

)'()',''('')''(' jjii xxxx τττ ≤+  then the arc 

)',''( ki xx  with 0)',''( =ki xxl  and 

iki uxxu =)',''(  is also added to the network. 

The optimal scheduling of the work can be found 
by solving a minimum flow problem in the 
parametric network described above. 
 

5. PARTITIONING ALGORITHM FOR 
FINDING THE PARAMETRIC MINIMUM 
FLOW 

 
Every iteration of the proposed algorithm 
achieves an improvement of the flow within a 
subinterval of the parameter values. This 
subinterval is constantly updated so that in its 
inside the residual capacities of all network arcs 
show no breakpoints. A range of parametric 
residual networks that take into account the 
previously stated requirement are successively 
defined by the algorithm. By doing so, the 
difficulty to compare or to subtract two piecewise 
linear functions can be avoided. The parametric 
residual network defined for a subinterval of the 

type ],[ 1+= kkkJ λλ  is denoted by )( fGk′ , 

having all the parametric residual capacities 
explicitly written as linear functions, 

),()(),();,( jijijir kkk βα ⋅+=′ λ-λλ . The value 

),( jikα  is computed as 

  
while the slope of the parametric residual capacity 
is ),(),( jijik £=β . On each of its iterations, 

the algorithm finds a shortest directed path P  
from source to sink in parametric residual 

network )( fGk′ . When a directed paths P  is 

found, the algorithm builds its parametric residual 
capacity )(Pr ′  by computing 

},(,({( PjijiminP kk ∈= ) |):) αα  and.

. 
 

Then the upper limit 1+kλ  of the subinterval 

],[ 1+= kkkJ λλ  is updated to value of the 

parameter which corresponds to the first crossing 
point (if one exists within kJ ) between the 

parametric residual capacity of the directed path 
and the residual capacities of all arcs composing 
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the directed path P , so that the function )(Pr ′  

to remain linear, without breakpoints within kJ . 

This will do that for all arcs Pji ∈) ,(  with 

))) Pji kk (,(( ββ <  the following value of the upper 

limit 1+kλ  to be computed: 

 
))}-)))-)λλλ jiPPjimin kkkkkkk ,((/((,((,{ 11 ββαα+= ++

. Finally, the parametric residual network )( fGk′  

is updated for all arcs Pji ∈) ,(  by subtracting 

the parametric residual capacity )(Pr ′  of the 
directed path from the direct arcs and adding it to 
the reverse ones: )(,(,( Pjiji kkk ααα -):) = ; 

)(,(,( Pjiji kkk βββ -):) = ; 

)(,(,( Pijij kkk ααα += ):) ; 

)(,(,( Pijij kkk βββ += ):) . 
 

As soon as the parametric residual network kG ′  

contains no directed path from the source node 
to the sink node, the algorithm reiterates over the 
next subinterval, until the whole interval of the 
parameter values is covered. Due to the fact that 

);,()( λjirPr ′≤′  for all the arcs composing 

any directed path P  within kJ , every directed 

path P  in the parametric residual network 

)( fGk′  is also a conditional decreasing directed 

path P  in )( fG ′  for the subinterval kJ . 

 
Parametric Min Flow Algorithm 

(1) build a feasible flow 0f  in network 
∗G ; 

(2) }0{:=B ; 0:=k ; 0:=kλ ; 

(3) REPEAT  
(4) build the parametric residual network 

)0( fGk′ ; 

(5) Λ=+ :1kλ ;   

(6)  WHILE (exists a directed path P in 

)0( fGk′ ) DO 

(7) build a directed path P in )0( fGk′ ; 

(8) build the parametric residual capacity 
)(Pr ′  of the directed path P; 

(9) update the value of 1+kλ ; 

(10) update the parametric residual network 
)( fGk′ ; 

(13) compute minf  for ],[ 1+= kkkJ λλ ; 

(14) add 1+kλ  to B; 

(15) 1+= kk : ; 
(16) UNTIL ( Λ=kλ ); 

 
In the first line of the algorithm, if that exists, a 
feasible flow 0f  in a nonparametric network is 

built. The nonparametric network, which is 
denoted by ),,,,,( tsuANG ∗∗ = l , is obtained 
from the parametric one by replacing the 

parametric lower bounds );,( λjil  with the 

constants ),( ji∗
l  as shown in the followings: 

}|);,({),( ][0,λλ Λ∈=∗ jimaxji ll , i.e. 

),(),(),( 0 jijiji £⋅Λ−=∗
ll  for 0),( <ji£  and 

),(),( 0 jiji ll =∗  for 0),( ≥ji£ . For this 

phase, see the algorithms presented in the 
papers of Ahuja, Magnanti and Orlin [10] or 
Ciurea and Ciupală [11]. Further on, with 0=k  
the algorithm builds the parametric residual 

network )( 0fGk′  for ],0[0 Λ=J , i.e. 

),(),(),(),(),()0;,( 0000 jijifijfijujijir l−+−==′ α  

for 00 =λ . During its successive iterations an 

ordered list },,,0{ 1 Λ=== +KB λλλ 10 K  of the 

parameter values which define the successive 

parametric residual networks )( fGk′  is used. 

Initially, for 0=k , the list is initialised as 
}0{:=B . As soon as the parametric residual 

network )( fGk′  contains no directed paths, the 

value 1+kλ  of the lower limit of the next 

subinterval ],[ 1 Λ= +kkJ λ , corresponding to the 

parametric residual network )(1 fGk +′ , is added 

to B . At those moments the parametric 

minimum flow );,(min λjif  is computed for the 

subinterval ],[ 1+= kkkJ λλ  and the algorithm 

goes on iterating within the next subinterval 
],[ 1 Λ= +kkJ λ  until the value Λ=+1kλ  is 

reached. After all the necessary updating steps 
within the subinterval ],[ 1+= kkkJ λλ , from the 

optimal residual capacities, the algorithm 
computes the parametric minimum flow 

);,(min λjif  for all Aji ∈),( . 
 
Theorem 2.  (THEOREM OF CORRECTNESS) If there 
exists a feasible flow in the parametric network 



 
 
 
 

Parpalea and Ciurea; BJAST, 13(6): 1-8, 2016; Article no.BJAST.22636 
 
 

 
6 
 

),,,,,( tsuANG l= , PARAMETRIC MIN FLOW algorithm 
correctly computes a minimum parametric flow 
within the parameter values interval ][0,λ Λ∈ . 
 
Proof. The algorithm runs in successive 

parametric residual networks )( fGk′ where both 

);,( λjir ′ , Aji ∈∀ ),(  and )(Pr ′  are linear 
functions without intersections within 

],[ 1+= kkkJ λλ . It follows that the evolution of the 

algorithm is similar to the one of the 
nonparametric algorithm and thus, its 
correctness in every subinterval kJ  results 

directly from the previously mentioned similarity.                                                                                
 
Theorem 3. (THEOREM OF COMPLEXITY) The 
complexity of PARAMETRIC MIN FLOW algorithm is 

)( 2mKnO , with 1|| −= BK . 
 
Proof. In every subinterval of ][0,Λ  the algorithm 
actually performs a non-parametric successive 
shortest decreasing directed path algorithm with 

the complexity )( 2mnO  (see Ahuja et al. [10]). 
Consequently, the complexity of the algorithm is 

)( 2mKnO .                    
 
Considering that Orlin reported solving the 
maximum flow problem in a special type of 

nonparametric static network with 06.1nm <  (see 
[12]) in )(nmO  time, results that the problem of 
the parametric minimum flow solved in best time 
could have a complexity of )(KnmO . 
 

6. EXAMPLE 
 
For the network presented in Fig. 1(a) with λ 
taking values in [0, 1], i.e. Λ=1, the source is node 

0=s  and the sink is node 3=t . The 

nonparametric network ∗G  is presented in Fig. 

1(b). The parametric residual network )00 ( fG ′  is 

presented in Fig. 2(a) where the parametric 
residual capacity function 

),(),();,( 00 jijijir βα ⋅+=′ λλ  for every arc 

),( ji  is indicated. 
 

After the initialisations step (2) of the algorithm, 
in the parametric residual network )00 ( fG ′ , the 

following directed paths: )3,1,0(1 =P , 

)3,2,0(2 =P  and )3,1,2,0(3 =P  with their 

corresponding parametric residual capacities 
λ31)( 1 +=′ Pr , λ34)( 2 +=′ Pr  and 

λ=′ )( 3Pr  are consecutively built. For each of 

the directed paths, the value of the upper limit                 
of the subinterval of the parameter is updated                   
to 3/23/2,1{1 == }λ min , 

2/12/1,3/2{1 == }λ min  and finally to

3/13/1,2/1{1 == }λ min . Since there is no 
directed path from the source to the sink node in 
the updated parametric residual network, which 
is presented in Fig. 2(b), the parametric minimum 
flow minf  (see Fig. 3(a)) for the subinterval 

]3/1,0[0 =J  is computed and the first step of the 

algorithm ends after the final value 3/11=λ  is 
added to the list of breakpoints, which becomes 

}3/1,0{=B , and counter is incremented to 

1=:k . 

 
In the second step, starting with ]1,3/1[1 =J , the 
algorithm builds, in the parametric residual 
network )01( fG ′ , the directed paths )3,1,0(1 =P , 

)3,2,0(2 =P  and )3,1,2,0(3 =P  with the 

parametric residual capacities λ32)( 1 +=′ Pr , 

λ35)( 2 +=′ Pr  and λ23/1)( 3 −=′ Pr  which 

narrows the subinterval of the parameter values 
to ]2/1,3/1[1 =J  and leads to the parametric 

minimum flow minf  for the considered 
subinterval, presented in Fig. 3(b). After two 
more steps, the algorithm ends with the 
parametric minimum flow minf  computed for the 

subintervals ]3/2,2/1[2 =J  and ]1,3/2[3 =J  as 

presented in Fig. 3(c) and (d).  
 
As it was defined in equation (3.a) of definition 2, 
the piecewise linear minimum flow value function 

)v λ(  is presented Fig. 3(e), for the parametric 

network G  shown in Fig. 1(a) and for the whole 
range of values of the parameter ],0[ Λ∈λ . It 

can be easily seen that for the value 2/1=λ  the 

function )v λ(  does not change its slope but the 
parametric flow only distributes differently over 

the arcs of the network G . 
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Fig. 1. (a) The parametric network G ; (b)  The non-parametric network  ∗G . 
(a): For every arc ),( ji , the linear lower bound function );,( λjil  and the constant upper bound value ),( jiu  

are indicated; 

(b): The three numbers on each arc ),( ji  denote ),(* jil , ),(0 jif  and ),( jiu . 

 

  
         

Fig. 2. The parametric residual networks (a) )00 ( fG ′  and (b) )min0( fG ′ . 

The sets of two numbers indicated for every arc ),( ji  denote ( ),(0 jiα , ),(0 jiβ ).

 
 
Fig. 3. (a)-(d) The parametric minimum flow minf  for subinterval of the parametric values ; (e) The 

piecewise linear minimum flow value function )v λ(  for the considered parametric network G . 

(a): ]3/1,0[0 =J ; (b): ]2/1,3/1[1 =J ; (c): ]3/2,2/1[2 =J ; (d): ]1,3/2[3 =J . 

 
7. CONCLUSIONS 
 
Since the proposed approach for the parametric 
minimum flow problem is based on an algorithm 
which works in the parametric residual network, 
the changes occurring by considering parametric 
upper bounds instead of constant ones are easy 
to be dealt. Thus the proposed algorithm can be 
extended to networks with both lower and upper 

parametric bounds. The main advantage of the 
proposed approach consists in working with 
linear instead of piecewise linear functions, i.e. 
the residual capacity of every arc in the residual 
network is explicitly written as a linear function. 
Considering that the parametric upper bounds 
are linear functions instead of constants, the 
parametric residual capacity of every arc in the 
residual network also remains written as a linear 
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function, allowing the running of the algorithm in 
a similar manner. Consequently, the proposed 
algorithm remains valid (with the appropriate 
modifications) for the case of both parametric 
upper bounds and parametric lower bounds. 
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