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ABSTRACT 
 

Background: Several factors may affect heart failure status of patients. It is important to investigate 
whether or not the effects are direct. The purpose of this study was learning Bayesian networks that 
encode the joint probability distribution for a set of random variables. 
Methods: The design was a retrospective cohort study. The target population for this study was 
heart failure patients who were under follow- up at Asella referral teaching Hospital from February, 
2009 to March, 2012. Bayesian Network is used in this paper to examine causal relationships 
between variables via Directed Acyclic Graph (DAG). 
Results: Death of patients can be determined using HIV, hypertension, diabetes, anemia, renal 
inefficiency and sinus. Hypertension and sinus were found to have direct effects while TB had only 
indirect effect. Age did not have an effect. 
Conclusion: Anemia, HIV, diabetes mellitus renal inefficiency and sinus directly affect the 
death of heart failure patient. Death is conditionally independent on TB and age, given all other 
variables. 
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1. INTRODUCTION 
 
Graphs, as stated in [1], provide a 
comprehensive picture of a problem that makes 
for a more complete and better balanced 
understanding than could be derived from tabular 
or textual forms of presentation. Moreover, 
graphs can bring out hidden facts and 
relationships and can stimulate, as well as aid, 
analytical thinking and investigation. 
 
The main focus of this paper is to describe and 
drive conditional independence relations existing 
among random variables through Directed 
Graphical model called Bayesian networks. 
Bayesian networks are among the leading 
techno logies to investigate such relations. 
 

A Bayesian network [2] is a graphical model that 
encodes the joint probability distribution for a set 
of random variables and a way of finding 
important relationships between variables. 
Bayesian Networks provide a power full 
technique to understand causal relationships 
between variables via Directed Acyclic Graph 
(DAG). Directed graphical models represent 
probability distributions that can be factored into 
products of conditional distributions, and have 
the potential for causal interpretations. The 
nodes in the graph represent the random 
variables and missing arrows between the 
nodes, specify properties of conditional 
independence between the variables. We refer 
the reader [3] for detailed understanding of 
Undirected Graphical Models counterpart and 
comprehensive comparison with Directed 
Graphical Models. 
 

A method for learning the parameters and 
structure of such Bayesian networks has recently 
been described by in [4]. [5] described a modern 
method for learning the parameters and 
structures of Bayesian networks in deal package 
of R statistical Software. 
 

Bayesian networks are designed for making 
decisions in systems with uncertainties [6]. 
 

Bayesian networks are therefore suitable for 
problems where the variables exhibit a 
complicated dependency structure. 
 

2. METHODS 
 

2.1 Data Description 
 
The design was a retrospective cohort study, 
which reviews the patient’s card 

and information sheet. The data of size 263 were 
obtained from record reviews of all inpatient 
heart failure patients admitted to Asella Referral 
Hospital from February, 2009 to March, 2012. 
 

2.2 Response Variables 
 
Death status of patients during hospital stays due 
to heart failure. This status of patient is coded as 
1 if the patient died in hospital and 0 if the patient 
alive. 
 
2.3 Independent Variables 
 
The prognostic variables which are expected to 
be the risk factors of heart failure are categorical 
and continuous (see Table 1). 
 

Table 1. Independent variables and their 
coding 

 

Variables Category and coding 

Age at the start of 
treatment 

Continues 

Renal inefficiency Yes= 1, No= 0 
TB Positive= 1, Negative= 0 
Diabetes mellitus Positive= 1, Negative= 0 

HIV Reactive= 1, 
Nonreactive= 0 

Anemia Anemic = 1, Non-anemic 
= 0 

Hypertension Positive= 1, Negative= 0 
Sinus Positive= 1, Negative= 0 

 

2.4 Bayesian Networks 
 
A Bayesian network is a graphical model that 
encodes the joint probability distribution for a set 
of random variables. Bayesian network, [7], is a 
specific type of graphical model which is a 
directed acyclic graph (DAG). [8] described A 
Bayesian network as a compact, graphical model 
of a probability distribution. It consists of two 
parts: a directed acyclic graph which represents 
direct influences among variables, and a set of 
conditional probability tables that quantify the 
strengths of these influences. A graph consists of 
a set of vertices (nodes), along with a set of 
edges joining some pairs of the vertices. 
However, the edges have directional arrows (but 
no directed cycles) [3]. The nodes in the graph 
represent the random variables and missing 
arrows between the nodes, specify properties of 
conditional independence between the variables. 
Bayesian networks are designed for making 
decisions in systems with uncertainties. Here we 
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perform the analysis using Bayesian networks for 
discrete and continuous variables in which the 
joint distribution of all the variables are 
Conditional Gaussian (CG). 
 
Let D = (V, E) be a Directed Acyclic Graph 
(DAG), where V is a finite nonempty set of nodes 
and E is a finite set of directed edges (arrows) 
between the nodes. The DAG defines the 
structure of the Bayesian network. To each node 
v ∈ V in the graph corresponds to a random 

variable vX . The set of variables associated with 

the graph D is then )( vXX  , v ∈ V. Often, we 

do not distinguish between a variable vX  and 

the corresponding node v. To each node v with 
parents pa(v), a local probability distribution, 

)|( )(vpav xxp  is attached. The set of local 

probability distributions for all variables in the 
network is P. A Bayesian network for a set of 
random variables X is then the pair (D, P). The 
possible lack of directed edges in D encodes 
conditional independences between the random 
variables X through the factorization of the joint 
probability distribution, 
 





Vv

vpav xxpXp )|()( )(                         (1) 

 
Here, Bayesian networks with both discrete and 
continuous variables are allowed as treated in 
[4] So the set of nodes V is given by V = ∆UΓ, 
where ∆ and Γ are the sets of discrete and 
continuous nodes, respectively. The 
corresponding random variables X can then be 
denoted by 

   ),(,),((),(,)( YIYIVvXX v  
,i.e. I and Y used for the sets of discrete and 
continuous variables, respectively. The set of 
levels for each discrete variable δ ∈ ∆ is denoted 

as I . To ensure availability of exact local 

computation methods, we do not allow discrete 
variables to have continuous parents. The joint 
probability distribution then factorizes into a 
discrete part and a mixed part, so 
 

 
 


 

 ),|()|(),()( )()()( papapa iyypiipyipxp     

 

Where )(pai and )(pay denote observations of 

the discrete and continuous parents respectively. 
A method for estimating the parameters and 

learning the dependency structure of a 
conditional Gaussian networks with mixed 
variables is presented in [4] and implemented in 
the software package deal in [5] and [9]. 
 
2.4.1 Inference 
 
A substantial feature of Bayesian networks is that 
it enables us to infer conditional dependencies 
between variables by visually inspecting the 
network’s graph. Therefore we can divide the set 
of Bayesian network nodes into nonoverlapping 
subsets of conditional independent nodes. 
Decomposition is very important when doing 
inference. Inference is the task of computing the 
probability of each state of a node in a Bayesian 
network when other variables are known. To 
perform inference we first need to be familiar with 
the belief propagation. Belief propagation is the 
action of updating the beliefs in each variable 
when observations are given to some of the 
variables. Inference in Bayesian networks is 
performed using Bayes’ theorem. Variables in 
BNs can be divided into groups depending on 
their position in BNs and taking into account the 
meaning of real world state that they represent 
including their observability. Consider a network 
for a set of random variables X and assume that 
some of the variables, B, are observed (visible 
variable) and the rest, A, are not (hidden 
variable). Let Uk be any arbitrary subset of X. 
The goal of inference is to find the conditional 
probability density functions (pdfs) over U given 
the observed variable B Which can be written 
using Bayes’ theorem as 
 

)(

)|()(

)(

),(
)|(

Bp

UBpUp

Bp

BUp
BUp kkk

k 
 

 

Thus )( kUp  is the prior distribution of kU  , i.e. 

the distribution of kU before we observe B,

)|( kUBp is the likelihood of kU and 

)|( kUBp  is the posterior distribution of kU , 

i.e. the distribution of kU , when we have 

observed B. 

 
Generally, finding these distributions are 
computationally demanding as it involves 
calculating huge joint distributions, especially if 
there are many variables in the network. The 
marginal or conditional distributions of interest 
can then be found by a series of local 
computations, involving only some of the 
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variables at a time. For a thorough treatment of 
these methods see [2]. 
 

2.4.2 Parameter and structure learning 
 
To estimate the parameters in the network and to 
find the structure of the network, a Bayesian 
approach has been used. So, regarding the 
parameters, uncertainty about µ is encoded in a 

prior distribution )(p , using data d to update 

this distribution (see equation 2), i.e. learn the 
parameters, and here by obtain the posterior 

distribution )|( datap  . The section is based on 

[4] and [10]. Consider a situation with one 

random variable X. Let   be the parameter to be 

assessed and be the parameter space and d
a random sample of size n from the probability 

distribution )|( xp . We call d our database and 

dxc   a case. Then, according to Bayes’ 
theorem, 

                             

 


 ,
)(

)()|(
)|(

dp

pdp
dp                  (2)  

 

where   )|()|(  c
dx xpdp c is the joint 

probability distribution of d, also called the 
likelihood of θ. As prior parameter distributions, 
the Dirichlet distribution and the Gaussian 
inverse Gamma distribution have beenused for 
the discrete variables and for the continuous 
variables respectively. These distributions are 
conjugate to observations from the respective 
distributions and this ensures simple calculations 
of the posterior distributions. Now, to learn the 
structure of the network, we calculate the 

posterior probability o f the D AG, )|( dDp , 

which from  Bayes’ theorem is given by 
 

)(

)()|(
)|(

dp

DpDdp
dDp    

 

Where )|( Ddp  is the likelihood of D and p(D) is 

the prior probability of D. As the normalizing 
constant p(d) does not depend upon structure, 
another measure, which gives the relative 
probability, is 
 

)()|(),( DpDdpdDp   
 

We use the above measure and refer to it as the 
network score. For simplicity, we choose to let 

)(Dp be the same for all DAGs, so we are only 

interested in calculating the likelihood )|( Ddp . 

So learning the DAG from data, we can in 
principle first calculate the network scores for all 
possible DAGs and then select the DAG with the 
highest network score. If many DAGs are 
possible, it is computationally infeasible to 
calculate the network score for all 
these DAGs. In this situation it is necessary to 
use some kind of search strategy to find the DAG 
with the highest score. In some cases it can be 
more accurate to average over the possible 
DAGs for prediction, instead of just selecting a 
single DAG. So if x is the quantity we are 
interested in, we can use the weighted average, 
 





DAGD

dDpDdxpdxp ),|(),|()|(

 
 

Where D AG is the set of all DAGs and )|( dDp
is the weight. Again, if many DAGs are possible, 
this sum is too hard to compute, so instead, by 
using a search strategy, we can find a few DAGs 
with high score and average over these. In order 
to calculate the network score for a specific DAG 
D, in a CG network, we need to know the prior 
probability and the likelihood of the DAG. For 
simplicity, we could for example choose to let all 
DAGs be equally likely, then 
 

�(�|�) ∝ �(�|�) 
 
In a CG network, the likelihood of the DAGD is 
given by 
 








 dDpDdpDdp )|(),|()|( , 

 
To evaluate which DAG or possible several 
DAGs that represent the conditional 
independences in a Bayesian network well, we 
want to find the DAG or D AGs with the highest 
network scores. To calculate these scores, we 
must specify the local probability distributions 
and the local prior distributions for the 
parameters for each network under evaluation. 
We see in the above equation that it, besides the 
likelihood of the parameters, also involves the 

prior distribution over the parameters, )|( Dp  . 

This means that we for each possible DAG have 
to specify a prior distribution for the parameters. 
In [1] this method is extended to the mixed case. 
With this method, the parameter priors for all 
possible networks can be deduced from one joint 
parameter prior, called master prior. To specify 
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this master prior, we only have to specify a prior 
Bayesian network, i.e. a prior DAG and a prior 
probability distribution, together with a measure 
of how confident we are in the prior network. 
 
2.5 Ethical Considerations 
 
Ethical clearance was obtained from the 
Hospital. 
 

3. RESULTS AND DISCUSSION 
 
For this study, the data of heart failure patients 
which was taken from Asella Referral Hospital is 
used and analyzed using Bayesian Networks. 
The data of size 263 were obtained from record 
reviews of all in patient heart failure patients 
admitted to Medical ward from February, 2009 to 
March, 2012. In this analysis, nine variables are 
considered each containing 263 observations as 
presented in Table 2. 
 

Table 2. Variables used in this analysis 
 

Node index Variables 

1 Age 

2 Hypertension 

3 HIV 

4 Diabetes 

5 TB 

6 anemia 

7 Sinus 

8 Renal inefficiency 

9 Death 
 
Here we consider Bayesian networks with both 
discrete and continuous random variables. We 
use the deal package of R Statistical Software to 
analyze the data of heart failure patients 
obtained from Asella Referral Hospital. 
 
The purpose of analyzing data under this section 
is to find dependency relations between the 
variables where the main interest lies in finding 
out which variables influence the death status of 
heart failure patients. 
 
Age is continuous variable which may cause the 
death of heart failure patients. However, in deal 
continuous parents of discrete nodes are not 
allowed. Thus, describing such a relation is 
impossible. A remedial measure is handle death 
as a continuous variable, even though this is 
clearly not. 
 

3.1 Specification of a Bayesian Network 
 

Here is the R-code for building Bayesian Network 
for Heart failure Data. 
 

> Data<- read.table("mom.dat",header=T) ## 
invoke Data from working Directory 
> attach(Data) 
> Data<-
data.frame(age,hypertension,HIV,diabetes,TB,a
nemia,sinus,renalineffeciency, death) 
> Data$death<-as.numeric(Data$death) 
> Data$age<-as.numeric(Data$age) 
> Data$anemia <-as.factor(Data$anemia) 
> Data$diabetes <-as.factor(Data$diabetes) 
> Data$hypertension <-
as.factor(Data$hypertension) 
> Data$sinus <-as.factor(Data$sinus) 
> Data$TB <-as.factor(Data$TB) 
> Data$HIV <-as.factor(Data$HIV) 
> Data$renalineffeciency <-
as.factor(Data$renalineffeciency) 
 

Hereafter, we are in position to specify a prior 
Bayesian network. We use the empty DAG as 
the prior DAG since we have no prior knowledge 
about specific dependency relations and let the 
probability distribution of the discrete variables 
be uniform. The assessment of the probability 
distribution for the continuous variables is based 
on data. 
 
> library(deal) ## call deal package 
> Data.nw<-network(Data) ## specify prior 
network 
> Data.prior <- jointprior(Data.nw) ## create 
joint prior distribution 
Imaginary sample size: 256 
# banlist for age and HIV as none of 
#the other variables can influence these 
variables. 
> from1<-c(2,3,4,5,6,7,8,9) 
> to1<-rep(1,8) 
> from2<-c(1,2,4,5,6,7,8,9) 
> to2<-rep(3,8) 
> from3<-rep(9,6) 
> to3<-c(2,4,5,6,7,8) 
> banlist<-
matrix(c(from1,from2,from3,to1,to2,to3),ncol=2) 
> banlist(Data.nw) <- banlist 
 

The ban list is a matrix with two columns. Each 
row contains the directed edge that is not 
allowed. The final stage is to learn the 
parameters in the network and initiate the 
structural learning using auto search () and 
heuristic (). 
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> Data.nw <- 
getnetwork(learn(Data.nw,Data,Data.prior)) 
> Data.search <- 
autosearch(Data.nw,Data,Data.prior,trace=TRU
E) 
> Data.heuristic <- 
heuristic(getnetwork(Data.search),Data,Data.pr
ior,restart=2, 
                              
degree=10,trace=TRUE,trylist=gettrylist(Data.se
arch)) 
 
NB: The banlist forces: 
 
 Death to be a leaf node (death can only 

receive arcs) (in our dataset death is 
variable number 9) 

 Age and HIV cannot receive arcs (in our 
dataset age is variable number1 & HIV is 
variable number 3). 

 
As can be seen from the Bayesian network plot, 
Fig. 1, death depends directly on Human 
Immune deficiency Virus (HIV), hypertension, 
diabetes, anemia, renal inefficiency and sinus. 
Hence, given these variables, death is 
conditionally independent on TB and age. 
 

 
 
Fig. 1. Bayesian network plot for heart failure 

data 
 
Death is conditionally independent on TB, given 
all other variables. We also see that age is 
independent from all other variables. How can 
we explain these findings? TB has an impact on 
death but only indirectly through complications 
like HIV, hypertension, diabetes, anemia, renal 
inefficiency and sinus. TB does not provoke 
death directly but only through these events, 
which absolutely seems very reasonable. 
Anemia is one of the important variables that can 
lead to death directly, but also indirectly: through 

hypertension and sinus. This shows that anemia 
has some- how three ways to impact death: 
directly or indirectly, because it increase the 
possibility to importance of hypertension and 
sinus. 
 
As a comparison, we see that HIV has a direct 
effect and also an indirect effect through all other 
variables. There are many further interesting 
indirect effects in this network. 
 
Age seems independent from all other variables. 
This is an interesting finding of the Bayesian 
network. Age is clearly associated with death in 
the other studies (like GAM), but here, when 
focus is on conditional independence, we 
estimated that all other variables have an impact 
on death, direct or indirect, but age has not. We 
can understand this in the following way: age is 
in some sense a surrogate variable for health 
status, in itself age is not a danger, but through 
events that become more lively with age, like 
hypertension. Indirect effects are therefore 
possible, but not direct ones. Apparently there is 
not enough support in our data to estimate age 
as a master node that from the top regulates all 
other variables which then point to death even 
though age is known as main cause of 
cardiology. 

 
We build up another separated network that 
includes age and other causes of heart failure 
(HIV, hypertension, diabetes, etc) but excludes 
death in order to discover relationships between 
age and other causes (HIV, hypertension, 
diabetes, etc). For brevity, we prefer to determine 
which variables influence the presence or 
absence of hypertension. From a medical 
viewpoint, it is possible that hypertension is 
among the classical variables related to heart 
failure and influenced by some of the variables 
listed in this research. 
 
R-code for new network for presence or absence 
of hypertension 
 
> Data<- read.table("mom.dat",header=T) ## 
invoke Data from working Directory 
> attach(Data) 
> Data2<-
data.frame(age,hypertension,HIV,diabetes,TB,a
nemia,sinus,renalineffeciency) 
> Data2$age<-as.numeric(Data$age) 
> Data2$anemia <-as.factor(Data2$anemia) 
> Data2$diabetes <-as.factor(Data2$diabetes) 
> Data$hypertension <-
as.numeric(Data2$hypertension) 
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> Data2$sinus <-as.factor(Data2$sinus) 
> Data2$TB <-as.factor(Data2$TB) 
> Data2$HIV <-as.factor(Data2$HIV) 
> Data2$renalineffeciency <-
as.factor(Data2$renalineffeciency) 
> library(deal) ## call deal package 
> Data.nw2<- network(Data2) ## specify prior 
network 
> Data.prior2<- jointprior(Data.nw2) 
Imaginary sample size: 128 
> from1<- c(2,3,4,5,6,7,8) 
> to1<- rep(1,7) 
> from2<- c(1,2,4,5,6,7,8) 
> to2<- rep(3,7) 
> from3<- rep(2,5) 
> to3<- c(4,5,6,7,8) 
> banlist2<- matrix( 
c(from1,from2,from3,to1,to2,to3),ncol=2) 
> banlist(Data.nw2)<- banlist2 
> Data.nw2 <- 
getnetwork(learn(Data.nw2,Data2,Data.prior2)) 
> Data.search2 <- 
autosearch(Data.nw2,Data2,Data.prior2,trace=T
RUE) 
> Data.heuristic2<- 
heuristic(getnetwork(Data.search2),Data2,Data
.prior2, 
restart=2, 
degree=10,trace=TRUE,trylist=gettrylist( 
Data.search2)) 
 
The network is displayed in Fig. 2. On the 
contrary to Fig. 1, Fig. 2 implies age is directly 
related to hypertension which justifies our 
assumption of indirect impact of age on death 
status of heart failure patients through 
hypertension. 
 

 
 

Fig. 2. Network for absence/presence of 
hypertension 

 
 

We can build up another separated network that 
includes age and other causes of heart failure 
(HIV, hypertension, diabetes, etc) but excludes 
death status in order to discover dependency 
relationships between age and other causes 
(HIV, hypertension, diabetes, etc) in similar 
manner.  
 

3.2 Discussion 
 
In this paper we have established a nice way of 
determining the the impact of several variable on 
death status of heart failure patients. We have 
given an introduction to Bayesian networks with 
both discrete and continuous random variables. 
Several literatures were done on mixed variables 
(Discrete and continuous). For instance [4,5] and 
[11]. We also applied Bayesian Networks to 
clinical data obtained from Asella Referral 
Hospital. Different literatures have been done on 
the use of Bayesian Networks in clinical studies 
one of which is [12]. 
 
4. CONCLUSIONS 
 
In this paper we described a powerful technique 
for analyzing Heart Failure data based on the 
theory and algorithms for learning Bayesian 
networks. We explained how to apply these 
techniques to Heart Failure data. The result of 
this analysis showed that death of a patient can 
be determined by HIV, hypertension, diabetes, 
TB, anemia, renal inefficiency and sinus directly 
or indirectly. The finding revealed that age does 
not have direct impact on death of a patient but it 
has an impact indirectly through complications 
like hypertension. 
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