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ABSTRACT 

The small HSP27 is an actin-specific molecular chaperone involved in cytoskeleton architecture, cell migration, 

metabolism, survival, growth/differentiation, mRNA stabilization, and tumor progression. HSP27 is detected in nearly all 

cells with different expression levels. A variety of stimuli induce expression and/or phosphorylation of HSP27. HSP27 

phosphorylation affects some of its cellular functions as phosphorylation affects HSP27 oligomerization, which in turn has 

an impact on some of HSP27 functions. HSP27 has been involved in different kidney diseases playing protective and 

counter-protective roles. HSP27 shows a protective role against several stressors as reactive oxygen species, hypoxia, 

osmotic stressors, etc. HSP27 and phospho-HSP27 protein levels are increased in stressed and diseased cells.  The current 

review presents HSP27 in the pathogenesis of different kidney diseases as renal injury, fibrosis and renal cell carcinoma, 

highlights its role as a potential biomarker and offers new therapeutic options through manipulation of HSP27.  
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INTRODUCTION 

Heat shock proteins (HSPs) are universally 

expressed across nearly all phyla and classified 

according to molecular weight. They affect several key 

biological processes such as cell division, survival 1, 

differentiation, actin cytoskeleton regulation, and 

resistance to injury resulted from reactive oxygen species 

(ROS), as well as other cell stressors 2. Thermal, 

oxidative, hemodynamic, osmotic, and hypoxic stresses 
3 induce HSP90, HSP70 (in human)/HSP72 (in rodents), 

HSP60 and HSP27(in human)/HSP25 (in rodents) 

expression, resulting in cytoprotection.4 

 

HSP27or HSP beta-1 (HSPB1) belongs to the 

family of small HSPs which includes nine other iso-

forms designated: HSPB2 to HSPB9 5-7. HSP27, an 

actin-specific molecular chaperone, can be detected in 

the majority of examined cells, although the expression 

levels seem to vary from undetectable or fairly low 

expressed levels in some cells to abundant expression in 

other cells.8-10 HSP27 expression can be induced by 

diverse conditions, including heat shock, oxidative stress 

(OS) with other stress conditions in addition to nerve 

injury, and differentiation.8,11,12 

Khan et al showed that elevated intra-renal 

HSP27 levels are normally expressed in the medulla13 a 

kidney region subjected to severe hypoxia14,15 and 

osmotic stress13,16 suggesting that HSP27 plays a 

defensive role against these two stresses.17-19 Moreover, 

HSP27 plays an important role in actin cytoskeletal 

remodeling in proximal tubules20 as well as modulation 

of mesangial and smooth muscle cells contractions.21,22 

HSP27, as a stress protein, has been reported to be a 

potential useful molecule in acute ischemic renal 

failure18,23,24 along with chronic obstructive 

nephropathy25 through promoting cell regeneration and 

adaptation to stress conditions. 
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Crucial roles of HSP27 in response to different 

stresses 
HSP27 acts by key mechanisms as protein 

folding, actin cytoskeleton remodeling, OS reduction and 

suppression of apoptosis diverse modes or other cell 

death forms. HSP27 up-regulation, a biomarker of some 

disease states, is probably the cell’s try to survive by 

using HSP27 to prevent cell death or to decrease OS26 

which is considered a stress condition during which 

HSP27 acts as an antioxidant molecule, raising 

intracellular glutathione levels besides lowering 

intracellular iron levels so as to decrease ROS.27 

Moreover, during chemical stress, HSP27 shows an anti-

apoptotic response through interacting with 

mitochondrial dependent and independent apoptotic 

pathways. HSP27 is above all involved in protection 

from programmed cell death via inhibition of caspase-

dependent apoptosis28, Figure 1. The anti-apoptotic 

properties of HSP27 in response to chemicals that create 

a chemical stress condition in the cells, has major 

consequences on the success of some chemotherapies 

such as doxorubicin and gemcitabine.29,30 

 

HSP27 response to stress conditions in kidney 

disease 
Due to the diversity of complications and the 

complexity of the underlying disturbances, chronic 

kidney disease seems to be an ideal model of cell and 

organ responses to long-lasting multi-factorial stress 

conditions. Multiple factors act as the potential 

machinery of this stress mixture as uremic toxins, 

inflammatory mediators, ROS, apoptosis, infections, 

moreover, the dialysis itself which also act a stress 

factor.31 

Furthermore, Lin et al. have shown that HSP27 

expression in the aortas of rats that underwent subtotal 

nephrectomy was decreased.32 This deficiency was most 

evident in the advanced atherosclerotic lesions, which 

confirm the potential cytoprotective role of this HSP.31 

Alternatively, the anti-apoptotic and protective roles of 

HSP27 reported by several studies in the ischemia-

reperfusion injury showing the active adaptive changes 

following kidney transplantation.33-35 

 

HSP27 and acute renal failure 
 One of the most common causes of acute renal 

failure is ischemia/ reperfusion (I/R) which causes 

formation of ROS, lipid peroxidation, DNA damage, in 

addition to protein dysfunction, leading to renal 

structural and functional impairment.36 Studies revealed 

that HSPs, as molecular chaperones, promote cellular 

tolerance to I/R injury. Elevated post-ischemic 

expression of HSP27 may account for the reduced 

disruption of tubular epithelium cytoskeleton, 

attenuation of OS24,37,38, plus stabilizing of 

microfilaments, preventing protein dysfunction39 and 

reducing ischemia induced membrane lipids 

degradation.40-42 The lack of HSPs alongside 

degenerative lesions in the renal tubular epithelial cells 

may lead to electromechanical dissociation, resulting in 

acute renal failure.43 
 

HSP27 in diabetic nephropathy 
Previous studies have reported an increase in the 

phosphorylated HSP25 (the rodent homolog of human 

HSP27) in the diabetic glomeruli.44-46 Phosphorylated 

HSP25 plays a crucial role in the regulation of actin 

cytoskeletal dynamics. In vitro data by Dai et al. 

demonstrated that podocyte exposure to stretch, 

mimicking glomerular capillary hypertension, induced a 

rapid and significant elevation in phosphorylated HSP27 

levels. Simultaneously exposure of podocytes to high 

glucose level led to increased HSP27 phosphorylation.44 

HSP25 is phosphorylated by upstream p38 mitogen-

activated protein kinase (p38MAPK).47-49 

A study showed synchronized activation of the 

glomerular p38MAPK-HSP25 pathway, acutely after the 

induction of diabetes with streptozotocin (Stz-DM) in 

rats, together with conservation of the podocyte actin 

cytoskeleton and normo-albuminuria. However, when 

Stz-DM becomes chronic, activation of this pathway 

declines, cleavage of F-actin produces G-actin 

monomers, and podocyte effacement (retraction) and 

albuminuria occur.44 With these associations, Ma et al. 

hypothesized that early activation of that pathway might 

be a functional adaptation that maintained podocyte 

structure and function and prevented glucose stressor 

induced albuminuria.50 

 Furthermore, HSP27 up-regulation in response 

to injurious high-glucose or Angiotensin II-rich 

environment, as in diabetic nephropathy (DN), forbids 

podocytes apoptosis and improves their tolerance to 

those adverse stressors51. Recently serum HSP27 

concentration was found to be related to the incidence of 

DN in type 2 diabetic patients and that serum HSP27 may 

be used as an early marker for diagnosis of DN.52 

 

Chronic allograft nephropathy (CAN) affecting 

expression of HSP27 
CAN is a chronic stress state subsequent to kidney 

transplant which is mainly characterized by chronic 

inflammation. Stimulation of HSP25/27 and alteration in 

the expression pattern from the renal medulla to the 

cortex has been observed. Apoptotic markers such as: 

Bcl-2 [B-cell lymphoma 2]–associated X protein (Bax) 

and Fas Ligand as well as markers of hypoxia as: 

Hypoxia-inducible factor (HIF-1α) and Manganese 

Superoxide Dismutase were observed besides the shift in 

HSP27 expression pattern. Accordingly, when 

conditions in the kidney become hypoxic, HSP27 is up-

regulated as a protective response.53 
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Abnormal HSP27 phosphorylation in kidney 

disease  
Involvement of anomalous HSP27 

phosphorylation in several diseases has been reported, 

still the molecular mechanisms explaining this 

implication is to be recognized.54 Animal models of 

nephrotic syndrome and DN showed enhanced HSP27 

phosphorylation compared to control animals.44,46,55 

Abnormal HSP27 phosphorylation is also observed in 

renal cancers, as well as in other kidney diseases.56 

Furthermore, over-expression of HSP27 has been 

contributed to tumor progression in a variety of cancers 

including Renal Cell Carcinoma (RCC). Various HSP27 

phosphorylation patterns were correlated with the 

aggressiveness of tumor phenotype. Moreover, increased 

HSP27 phosphorylation was reported to be associated 

with increased tumor progression in RCC. Up-regulation 

of kinases along with down regulation of phosphatase 

may be playing the main role in creating the environment 

of enhanced phosphorylation in over-expressed 

HSP27.57 The correlation of HSP27 over-expression 

with poor prognosis of cancer through protecting 

malignant cells from undergoing apoptosis was 

illustrated by Vidyasagar et al.. Thus, HSP27 could be 

targeted for prevention and management of fibrosis and 

cancer.26 Increased phosphorylated levels of HSP27 may 

also participate in the patho-physiology of kidney 

tubulo-interstitial fibrosis through up-regulation of E-

cadherin which is a reported biomarker for epithelial to 

mesenchymal transition (EMT), thereby promoting EMT 

of tubular epithelial cells into myofibroblasts.58 

 

HSP27 and tubulo-interstitial fibrosis 
Under stress conditions, resident fibroblasts 

expand by cell division generating pro-fibrotic 

molecules. Several fibroblasts associated diseases can 

arise from tubular epithelia at the injury site through 

EMT.59 EMT is also linked to cell migration, actin 

reorganization, tubular basement membrane disruption, 

and profibrotic molecules generation.59-61 EMT can be 

induced by OS, hypoxia, transforming growth factor β1 

(TGF-β1), interleukin-1, and tissue-invasive 

mononuclear cells. During EMT, tubular epithelial cells 

are gradually changed into myofibroblasts.62-64 HSP27 

produces its cytoprotective achieve through modulation 

of the actin cytoskeleton in addition to inhibition of OS 

and apoptosis.65-67 It also plays a role in inflammation, 

cell signaling, differentiation as well as proliferation.68,69 

It is therefore logical to hypothesize that HSP27 is 

involved in the pathogenesis of induced EMT and 

chronic tubulo-interstitial fibrosis through its induction 

by growth factors as TGFβ1 and OS besides its role as an 

actin specific molecular chaperone and as an antioxidant 

molecule.58 

 

 

 
Figure 1 Some of the major mechanisms of HSP27 on 

disease states.26 HSP27 acts on protein folding, actin 

cytoskeleton remodeling, reduction of oxidative stress and 

suppression of apoptosis or other kinds of cell death.  

DAXX: Death-associated protein 6, ASK1: Apoptosis signal 

regulating kinase 1, Fas: a death receptor on the surface of cells 

that leads to apoptosis. 

 

HSP27 in nephrotic syndrome 
Nephrotic syndrome is characterized by retraction 

or effacement of the distal processes of glomerular 

epithelial cells (GEC) enclosing the capillary loops. 

These processes form a vital component of the kidney’s 

filtration barrier. HSP27 phosphorylation is required for 

the polymerization of actin microfilaments which mainly 

control GEC distal processes structure. Enhanced HSP27 

expression/phosphorylation in podocytes was reported in 

experimental nephrotic syndrome, suggesting that 

HSP27 may regulate polymerization of GEC foot 

process actin, maintaining normal foot process structure 

along with its implication in the pathophysiologic 

changes in these processes during development of the 

nephrotic syndrome.70 

 

CONCLUSIONS 
 The present review highlights some of the data 

considering HSP27 in its diagnostic and protective or 

therapeutic role in various kidney diseases. Despite 

increasing evidence to verify HSP27 as biomarker in 

many diseases, more studies are needed to evaluate its 

specific response. Another challenge lies in applying this 

knowledge towards therapy through understanding of 

HSP27 phosphorylation state in each disease condition. 

There are studies to utilize HSP27 as a therapeutic target 

in cancer. The future of HSP27 therefore ensures its 

development as a therapeutic agent and target. 
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