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Abstract
Physics-informed neural networks (PINN) are machine-learning methods that have been proved
to be very successful and effective for solving governing equations of fluid flow. In this work we
develop a robust and efficient model within this framework and apply it to a series of
two-dimensional three-component stereo particle-image velocimetry (PIV) datasets, to
reconstruct the mean velocity field and correct measurements errors in the data. Within this
framework, the PINNs-based model solves the Reynolds-averaged-Navier–Stokes equations for
zero-pressure-gradient turbulent boundary layer (ZPGTBL) without a prior assumption and only
taking the data at the PIV domain boundaries. The turbulent boundary layer (TBL) data has
different flow conditions upstream of the measurement location due to the effect of an applied
flow control via uniform blowing. The developed PINN model is very robust, adaptable and
independent of the upstream flow conditions due to different rates of wall-normal blowing while
predicting the mean velocity quantities simultaneously. Hence, this approach enables improving
the mean-flow quantities by reducing errors in the PIV data. For comparison, a similar analysis
has been applied to numerical data obtained from a spatially-developing ZPGTBL and an
adverse-pressure-gradient TBL over a NACA4412 airfoil geometry. The PINNs-predicted
results have less than 1% error in the streamwise velocity and are in excellent agreement with
the reference data. This shows that PINNs has potential applicability to shear-driven turbulent
flows with different flow histories, which includes experiments and numerical simulations for
predicting high-fidelity data.

Keywords: deep learning, physics-informed neural networks, particle image velocimetry,
turbulence, flow control
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1. Introduction

Measurement of spatio-temporal velocity data is crucial for
the study of fluid dynamics. Experimentally, this is com-
monly done with intrusive/non-intrusive measurements of
flow quantities such as velocity and pressure. On the other
hand, numerical simulations enables integrating the govern-
ing equations of the flow with appropriate initial and bound-
ary conditions (BCs). Unfortunately, it is quite challenging
to obtain measurements with very detailed spatio-temporal
accuracy.

Particle-image-velocimetry (PIV) is a well-known meas-
urement technique in the field of experimental fluid mechanics
and aerodynamics [17]. This is a non-intrusive optical method
that is used to obtain quantitative spatio-temporal flow velo-
city data. To this end, a laser-illuminated light sheet and one
or more cameras are used for imaging, and the fluid is pre-
viously seeded. Different camera arrangements are applied to
obtain various flow fields with limited/all velocity components
such as 2D2C (classical PIV), 2D3C (stereo PIV) and 3D3C
(volumetric/tomographic PIV) velocity components [30]. PIV
offers technical flexibility that can be adapted to versatile fluid-
flow experiments and hence, accurate velocity data over a con-
siderable large experimental domain can be achieved. In case
of a complex geometry, where the gradient of the streamwise
velocity is sufficiently large and the PIV application suffers
from blind spots, Navier–Stokes simulations are also applied
on the PIV data known as ‘gappy PIV’ [18].

Although PIV is widely used to measure shear-driven tur-
bulent flows, the turbulent boundary layer (TBL) is a promin-
ent case which can be quite challenging in terms of effective
and optimized measurements. TBLs exhibit complex interac-
tions of turbulent structures with different spatial scales ran-
ging from the viscous length scale (l+ = ν/uτ , where ν and
uτ indicate kinematic viscosity and friction velocity respect-
ively) to several boundary-layer thicknesses (δ). Considering
the complex and three-dimensional nature of a TBL, appro-
priate measurement techniques such as PIV are very effective
in order to resolve all scales. Note that here we will consider
incompressible flow with Newtonian fluid.

The PIV peak-detection algorithm uses displacement of
illuminated particles comparing image pairs separated by a
certain time delay. Subsequently, the spatial displacement of
the seeded particles is interpreted as the velocity vector map.
Due to uniform time delay between image pairs, consider-
able spatial difference is observed for particle displacement
from the near-wall region to the outer layer. This provides
higher uncertainty for the near-wall data when the gradually-
decreasing-interrogation-window feature is adopted within the
image-processing algorithm. Considerable effort is dedicated
to measuring the smallest scales together with the large ones
within the same magnification.

Wall-shear stress plays an important role in the analysis of
TBL data, not only when it comes to scaling the mean profile
but also for quantify the role of skin friction in TBL-control
experiments [9]. Traditionally, the determination of wall-shear
stress through direct measurement was mostly based on direct

oil-film interferometry (OFI) [21], surface hot-film interfer-
ometry (SHFA) [31] or non-intrusive laser-doppler anemo-
metry (LDA) [13]. Application of another measurement tech-
nique only to infer wall-shear data in conjunction with PIV
is often not possible depending on the experimental setup.
Note that despite the extensive experimental work on flow
control of TBLs, a number of numerical studies have been
recently published, with focus on flat-plate [14] and also wing
TBLs [1, 2].

The non-intrusive, instantaneous/mean acquisition of wall-
shear stress (τw) was made possible with the advent of
high-magnification PIV/profile PIV [28, 29]. Although this
approach has the potential of accurately measuring the wall-
shear data but strongly depends on the high resolution of mag-
nification within the viscous sub-layer and high seeding dens-
ity. Often the wall BCs of the TBL are modified due to control
experiments, which strongly influence the particle distribu-
tion in the viscous sub-layer. Eventually this problem limits
the application of high-magnification PIVwithin the near-wall
region. Under such circumstances, OFI or SHFA remain as
the only choices to measure the wall-shear stress. If the meas-
urement matrix has a large parameter space, measurement of
the wall-shear stress becomes challenging. Moreover, it is a
common practice to apply other measurement techniques for
the near-wall region besides PIV in order to cover the entire
TBL, thus increasing measurement costs and requiring tedi-
ous effort.

Note that accurately measuring the near-wall data is often
not practical with classical PIV. This is due to spurious data
from the near-wall region due to unavoidable laser reflection
from the wall. A reduction of the boundary-layer thickness (δ)
makes these near-wall measurements even more challenging a
consequence of increased flow velocity [13]. Consequently, all
these issues limit the capacity of classical PIV approaches such
as 2D2C and 2D3C (to some extent all other PIV approaches)
to accurately measure near-wall data.

Spatially-developing TBLs offer the possibility for control
experiments at high Reynolds numbers, mostly intended to
reduce friction drag. The upstream flow can be modified in
order to influence the downstream flow. The effect of the mod-
ified BC on the friction parameters and TBL properties are
studied through modification of turbulent structures and stat-
istical quantities. Particularly, uniform blowing is an effective
active-flow-control technique that extend its influence on the
flow statistics far downstream. Due to its additional mass flux
from a different source, seeding the near-wall region is often
difficult for the purpose of PIV study. Moreover, spatially-
developing TBLs are intentionally set up in such a way that
the boundary layer is thick and therefore, smallest scales are
large enough to resolve while using PIV. Such thick bound-
ary layers require large-field PIVmeasurements which employ
multiple cameras overlapping in their field of view (FoV). Dur-
ing post processing of these overlapping double-frame images,
the frames are reconstructed into a single vector field after
arithmetic averaging, and hence, their difference due to vary-
ing projection angle of each cameras produces an error. Usu-
ally, this error is minimized through statistically analyzing a
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Figure 1. Convergence of the mean streamwise (U), wall-normal
(V) velocity and the Reynolds shear stress uv as a function of the
number of samples for the XYU10S case: U∞ = 3 m s−1 and
Reθ = 7500, at streamwise location, x= 19.063 m (x/δ ≈ 79.13)
and wall normal-location, y= 0.0204 m (y/δ ≈ 0.085).

large number of vector fields. Although large quantities such
as the mean streamwise velocity component (U) reaches a
good convergence after averaging large number of temporal
vectors fields, smaller quantities such as the mean wall-normal
velocity (V) and the mean spanwise velocity (W) suffer from
considerable amount of convergence error. Note that the latter
should be statistically zero in canonical ZPGTBLs. Moreover,
acquisition and processing time overburden the experimental
cost due to handling large number of temporal vector fields.

Hasanuzzaman et al [10] investigated uniform-blowing
effects in ZPGTBL at moderately-high Reynolds num-
bers based on momentum thickness: Reθ = U∞θ/ν = 7500–
19 763, where U∞ and θ represent free stream velocity and
momentum thickness, respectively. Uniform blowing was
applied at an upstream location and the measurement was
conducted immediately after. PIV measurement was conduc-
ted using the stereo arrangement and each set of acquisition
contains 104 vector fields in time for all quantities. Figure 1
presents the convergence of U, V and uv (which is the Reyn-
olds shear stress) from stereo PIV measurements obtained for
Reθ,SBL = 7500, U∞ = 3.1 m s−1. This result was obtained
from temporal-sliding averages of 10 000 streamwise, wall-
normal velocity and Reynolds shear stress samples. In addi-
tion to the convergence problem and the large vector fields,
resolving all scales simultaneously within one magnification
was a challenging and time consuming task, both from image-
processing and experimental-setup points of view.

Time-resolved PIV (TRPIV) measurements are typical for
the study of coherent-structure dynamics, as presented e.g.
in [11]. Their stereo PIV was applied to a vertical plane
within a boundary layer with uniform blowing. To resolve all
scales in a singlemagnification, high-resolution images at high
acquisition rate (3200 images in 3.2 s) were acquired. This is

a memory-intensive measurement procedure and the camera
cache limits the total number of images during a single acquis-
ition. Therefore, coarse measurements with less camera resol-
ution can increase the total number of images. For high-speed
flows, classical, low-speed PIV is still the only choice.

The discussion above on the common problems for PIV
measurements can be summarized as: (a) PIV suffers from
convergence of mean velocities even with high numbers of
samples; (b) reaching the near-wall region (specifically the vis-
cous sub-layer) with regular PIV is challenging due to reflec-
tions from the wall; (c) control experiments in TBL geometry
suffers from insufficient seeding density near the wall; and
finally (d) in order to resolve all scales of the flow field with
TRPIV, the total number of images high resolution is needed.

On the other hand, artificial-intelligence/machine-learning
(ML) methods are being widely used in a number of fluid-
mechanics areas [25], including numerical simulation, mod-
eling of turbulence and measurement data assimilation (DA)
[19]. With increased computational power, this has a great
potential to enhance, denoise [16] or reconstruct PIV velo-
city data in terms of their resolution in time and space. In
typical ML frameworks, for instance those relying on deep
learning (DL), the quality of the data significantly determ-
ines the usability of the methods. Therefore, large datasets are
required, which may not be available from experimental meas-
urements. Note that it is generally not straightforward to com-
bine available data with existing physical laws in DL mod-
els. However, integrating the governing equation and domain
information into the model training is essential in order to
improve its efficiency regarding the empirical, physical and
mathematical perception of the flow. In recent years, ML-
based algorithms have been progressively more widely used
in a wide range of areas [23, 24], including for simulations of
fluid mechanics [25]. In particular, a recent study by Guastoni
et al [8], proposed two models based on convolutional neural
networks (CNNs) to train and predict two-dimensional instant-
aneous velocity-fluctuation fields. They used channel-flow
data, particularly wall-shear stress and wall pressure obtained
through direct numerical simulations (DNSs) as an input to
their models. Predictions from both models were very accur-
ate compared to the reference DNS data, outperforming tra-
ditional linear methods. Along with successful application
of numerical data, the success of their model within shear
bounded flow indicate that non-intrusive sensing can also be
benefited in terms of active control experiments with closed-
loop [26]. In addition to improving numerical data, CNN
has also been effectively applied to improve synthetic PIV
data [20].

In this studywe explore the framework of physics-informed
neural networks (PINNs) to address the problems arising from
the application of PIV. Subsequently, PINNs were also applied
to the data from numerical simulations. PINNs, according to
[15], provide a framework that will integrate data and the phys-
ical laws into the learning process of a neural network, result-
ing in a robust model that can provide accurate and physically-
consistent predictions despite having imperfect data. Note that
the laws governing fluid-dynamics problems are non-linear
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partial differential equations (PDEs). Eivazi and Vinuesa [5]
showed the potential of using PINNs to reconstruct experi-
mental data with noise and other measurement errors, includ-
ing vortical flows and wall-bounded turbulence. A similar
study using PINNs for velocity-field reconstruction from
sparse data can be found in [27]. Another application of PINNs
was presented by Eivazi et al [3] and Eivazi et al [4, 5], who
applied the PINN algorithm to solve the Reynolds-averaged-
Navier–Stokes (RANS) for incompressible ZPGTBLs without
any prior assumptions for turbulence. Along with supervised
learning from the domain boundary, mean-flow quantities
and their coordinates at the domain boundary were used as
input data. This study reports very accurate prediction of the
mean flow field, the skin-friction coefficient and the Reynolds
stresses in complex flow cases involving pressure gradients
and separation.

In the present work we will employ the PINN framework to
augment the spatial resolution of the mean velocity fields. We
will formulate a supervised-learning problem together with
PINNs to solve the RANS equations for incompressible TBL
flows, using mean data as the reference. The RANS equations
are applied without any a-priori turbulence model or assump-
tions. Note that usually modelling assumptions are introduced
to model the Reynolds stresses in the RANS equations. Within
the scope of the present work, we will introduce a novel
approach, where the data points at the mean field boundary
will be used to train the neural network in order to solve the
set of governing equations.

2. Methodology

PINNs are deep-learning-based frameworks for solution of
PDEs. A PINN comprises two parts: a multilayer perceptron
(MLP) and a so-called residual network, which calculates the
residual of the governing equations. For a steady PDE, the spa-
tial coordinates x are the inputs of the MLP and the solution
vector of the PDE system u= f(x) is the output where the
function f is parameterized by the MLP. Automatic differenti-
ation (AD) is utilized to differentiate the outputs uwith respect
to the inputs x and formulate the governing equations. Note
that AD can be implemented directly from the deep-learning
framework since it is used to compute the gradients and update
the network parameters, i.e. weightswww and biases bbb, during the
training. We consider the two-dimensional RANS equations
for steady and incompressible flows as the governing PDE:

∂Ui

∂xi
= 0, (1a)

Uj
∂Ui

∂xj
=−1

ρ

∂P
∂xi

−
∂uiuj
∂xj

+ ν
∂2Ui

∂xj∂xj
, (1b)

where Ui denotes the ith component of mean velocity vector
and uiuj represents components of the Reynolds-stress tensor.
Furthermore, P is the mean pressure, ρ is the density, ν is the
kinematic viscosity and i, j= 1,2. Figure 2 depicts a schematic
view of the PINN, which shows the neurons with non-linear

activation functions, the implementation of AD for differenti-
ating the outputs uwith respect to the inputs x= (x,y) and the
calculation of the residual of the RANS equations e.

The main objective of our PINNs framework is to enhance
the available reference data by reducing the noise and the
error in the measurements. In particular, we aim to obtain
the mean wall-normal velocity by having a set of noisy
measurements for the mean streamwise velocity and the
mean Reynolds-stress components, through solving the RANS
equations. Figures 3(b)–(f) shows the contours of the refer-
ence PIV data set ‘mps3-SBL’. Note that .̂ indicates that the
flow quantities are averaged in time, and are extracted from a
particular streamwise location (x= 19.2 m both for reference
and predicted data), normalized with outer scale: U∞ and U2

∞
respectively.

It can be seen that the obtained mean wall-normal velocity
from the PIV measurements is very noisy. The comparison
with the well-resolved large-eddy-simulation data from the
work in [6] also indicates that the obtained mean wall-normal
velocity from PIV measurements is not accurate. This is due
to the fact that accurate measurement of the wall-normal velo-
city in boundary layers is very challenging, as discussed above.
To reduce the error in the measurements, we consider the out-
put of the MLP for the ith sample as ui = [Ui,uvi,uui,vvi,Vi],
where for V we do not use the PIV data as the targets, rather
we aim to obtain the correct V i by imposing the residual of the
RANS equations ei as an unsupervised loss.

We consider two sets of points for supervised and unsuper-
vised learning. Supervised learning refers to the training pro-
cess by computing a supervised loss for the data for which the
targets are available, and unsupervised learning stands for util-
izing the residual of the RANS equations for training. The total
loss is the summation of the supervised loss and the residual
of the governing equations as:

L= Le+Ls, (2a)

Le =
1
Ne

3∑
i=1

Ne∑
n=1

|eni |
2
, (2b)

Ls =
1
Ns

Ns∑
n=1

|uns − ũns |
2
, (2c)

where Le and Ls are the loss-function components corres-
ponding to the residual of the RANS equations and the tar-
get data us = [U,uv,uu,vv], respectively. Here Ne represents
the number of points for which the residual of the RANS
equations is calculated, i.e. the collocation points xe, and Ns

is the number of training samples with the targets, i.e. the
training-data points xs. Figure 3(a) depicts xe and xs over the
computational domain. We consider Ne = 3350 and Ns = 350,
which are equally-spaced points in logarithmic space in the
y direction.

The MLP comprises four hidden layers, each containing
20 neurons, with hyperbolic tangent as the activation function
and we employ a full-batch training procedure. We initiate the
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Figure 2. A schematic view of PINNs. Green indicates the neurons with non-linear activation functions, blue represents the implementation
of AD for differentiating the outputs u with respect to the inputs x= (x,y) and magenta refers to the calculation of the residual of the RANS
equations e.

Figure 3. Data set ‘mps3–SBL’: (a) Collocation xe (pink) and the training-data points xs (blue) within the computational domain.
(b)–(f) Contours of the mean velocities and Reynolds-stress components.

training using the Adam optimizer for 20 000 epochs with an
exponential decay of learning rate as:

ℓr= ℓr0α
(nc/nd)
d , (3)

where ℓr0 = 0.01 is the initial learning rate, αd = 0.1 is
the decay rate and nd = 5000 is the decay step to be con-
sidered with respect to the current step nc. The decay
of the learning rate is applied according to equation (3)
every nd epochs. Then we utilize the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm as
the optimizer to obtain the solution. The optimization process

of the L-BFGS algorithm is stopped automatically based on
the increment tolerance. Figure 4 represents the supervised Ls,
unsupervised Le and the total loss L during the training process
for the ‘mps3-SBL’ data set.

3. Results

Mean velocity fields obtained from both numerical
simulations and experiments were used as the reference data
for PINNs analysis. The experimental data was obtained from
a ZPGTBL, while the numerical databases correspond to a
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Figure 4. Supervised Ls, unsupervised Le and the total loss L during
the training process for the ‘mps3–SBL’ data set.

Figure 5. The selected computational domain based on Reθ
corresponding to 400< Reθ < 500 for the test case with no control
together with the collocation and training data points.

spatially-developing ZPGTBL and an airfoil. All the reference
data studied active flow control of boundary layer using Wall-
normal blowing to reduce friction drag, subsequently changing
the turbulence and mean properties of the downstream flow
field. This flow-control scheme provides an unique opportun-
ity to prove the robustness of the PINNs algorithm independent
of any assumptions. The details of the reference dataset from
different sources will be discussed in the following sections.

3.1. DNS of TBL with uniform blowing

We employ a data set obtained from DNS of a spatially-
developing turbulent boundary layer with uniform blowing
(UB) [14] for our first experiment. Four test cases are selected
for this study with the magnitude of UB equal to 0% (no con-
trol), 0.1%, 0.5% and 1.0% of the free stream velocity. The
computational domain is selected based on the momentum-
thickness Reynolds number 400< Reθ < 500 for the refer-
ence case without control. Figure 5 depicts the computational
domain together with the collocation and training data points.
We utilize Ne = 17000 and Ns = 188 for all four experiments.

The objective is to reconstruct the wall-normal velocity from
the data on the domain boundaries for streamwise velocity and
Reynolds stresses. It should be noted that we do not use any
training sample for wall-normal velocity; we aim to recon-
struct wall-normal velocity by solving an optimization prob-
lem, which is constrained by the governing RANS equations,
using PINNs. To this end, we employ anMLPwith four hidden
layers and 20 neurons per hidden layer. The training proced-
ure and model hyperparameters are described in section 2. The
learning curves are reported in appendix for all the test cases.

Figure 6 illustrates the obtained profiles for the velocity
and Reynolds-stress components at the middle of the region
of interest (x= 17.20) for the uncontrolled test case (top) and
the case with UB of 1% (bottom) in comparison with the ref-
erence DNS data. It can be seen that excellent reconstructions
are obtained for V̂ using PINNs for both cases. The advant-
age of such reconstruction is that it can be applied over a very
small data set (only 188 sample points with labels), and no
training data is required for wall-normal velocity. Moreover,
we obtain excellent predictions for streamwise velocity and
Reynolds-stress components inside the domain.

The velocity profiles for Û and V̂ at x= 17.20 are depicted
in figure 7 for all the four cases with different magnitudes of
UB. It can be seen that the PINN approach is able to recon-
struct the wall-normal velocity accurately for all the cases and
capture the increase ofwall-normal velocity due to the increase
of UBmagnitude. Our results also show the excellent perform-
ance of PINNs in the prediction of Û inside the domain for all
the cases. To better represent the performance of PINNs in the
prediction of boundary-layer parameters inside the domain we
illustrate the contour of V̂ in figure 9 and contours of Û, ûv, ûu
and v̂v in figure 8 for the test case with UB of 1%. Results are
reported for PINNs predictions compared with the reference
DNS data. We also report the relative errors in the figures. The
relative error is defined as:

ϵ=
|Pred.−Ref.|

|Ref.|
(4)

where (·) indicates the mean over the domain. The maximum
relative error for wall-normal velocity ϵV̂ is less than 5%,
which shows the accurate performance of the PINN approach
in the reconstructions.

Figure 8 presents the contours of Û, ûv, ûu and v̂v alongwith
their relative errors plotted beside each of these mean proper-
ties of the flowfield. As it can be seen in figure 8, themaximum
relative error for streamwise velocity is less than 1%. For the
Reynolds-stress components the maximum relative errors are
higher than those of the mean-velocity components, and are
equal to 11%, 15% and 13% for ûv, ûu and v̂v, respectively.
The mean of the relative error over the domain is less than 3%
for all the Reynolds-stress components, again highlighting the
very good performance of the PINNs-based methodology pro-
posed here. Figure 9 presents the mean wall-normal velocity
with the relative error, which is 4%. PINNs predicted fields
(figures 8 and 9) indicate better convergence of the data.

Our results show that accurate reconstructions of
wall-normal velocity can be obtained from a limited set of
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Figure 6. Profiles for the mean (a) streamwise velocity, (b) wall-normal velocity and (c) Reynolds-stress components at x= 17.20 for the
SBL and same quantities in (d)–(f) for UB of 1%, PINNs prediction in comparison with the reference DNS data.

measurements for streamwise velocity and Reynolds-stress
components in the turbulent boundary layer. It should be
noted that the accuracy of the predictions may vary by chan-
ging the size of the domain, and for larger sizes of the com-
putational domain more training data with labels may be
required.

3.2. Wing boundary layers with uniform blowing

In this section PINNs-predicted results based on the data from
Atzori et al [1, 2] will be presented. The authors performed
high-fidelity simulations on a NACA4412 airfoil at a Reynolds
number based on chord length Rec = U∞C/ν = 0.2 million,C
is the chord length. The suction side of the wing profile exhib-
its an adverse pressure gradient which rapidly increases in the
streamwise direction, therefore; data from a specific section of
the computational domain was used for PINNs prediction as
indicated in figure 10.

In order to exhibit the statistical accuracy of the PINNs pre-
diction, figure 11 plots the mean profiles at 0.75C, where, it
shows that profiles of PINNs predicted data for mean velocity
and Reynolds-stress components are in excellent agreement
with the reference data.

3.3. PINNs predictions of the PIV flow field

The 2D3C stereo PIV measurements used for the present
PINNs predictions are from [10, 12]. The measurements were
taken at the boundary-layer wind-tunnel facility at Labor-
atoire de Mécanique des Fluides de Lille—Kampé de Fériet
[7] in France, within the European High Performance Infra-
structures in Turbulence (EuHIT) framework. The recirculat-
ing wind tunnel has a test section with a length of 20.6 m
with a cross section of 2× 1 m2 (width× height). Figure 12(a)
presents the isometric projection of the flow field schematic
where the reference in Cartesian coordinates is considered at
the leading edge. Therefore, the streamwise, wall-normal and
spanwise directions are indicated by the x, y and z coordin-
ates respectively, where x= 0 at the leading edge center of
the plate. Four cameras with Scheimpflug adapters accord-
ing to stereo arrangement were used with the same magnific-
ation parameters. Here, the FoV was divided into two over-
lapping segments. The TBL at Reθ = 7495 was investigated
along with an active flow control with uniform blowing. Wall-
normal blowing was applied before the measurement plane as
indicated with pink region in figure 12(a) (22 cm upstream
from the beginning of the FoV). Wall-normal blowing was
applied at a blowing ratio BR of 0%, 1%, 3% and 6% of U∞
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Figure 7. Velocity profiles for (a) Û and (b) V̂ at x= 17.20 for all the four cases with different magnitudes of UB: (■) no control, (♦) UB
0.1%, (•) UB 0.5% and (▼) UB 1%. Red dashed lines show PINN predictions and blue solid lines indicate DNS data.

Figure 8. Contours of (a) Û, (d) ûv, (g) ûu and (j) v̂v obtained from PINN in comparison with those of (b), (e), (h) and (k) which are from
the reference high-fidelity database for the test case with UB of 1%, in (c), (f), (i) and (l) we show the relative errors in the field.

(note that BR= Vw/U∞ × 100, where Vw is the wall-normal
blowing velocity). Hence, the various cases will be denoted
as: ‘mps3-SBL’, ‘mps3-b0’, ‘mps3-b1’, ‘mps3-b3’ and ‘mps3-
b6’ respectively in the description of the results. Note that

‘SBL’ corresponds to a smooth wall, whereas ‘b0’ denotes
a case with a perforated wall with no blowing; the effect of
the roughness due to the holes is negligible in U, and very
small in V as discussed below. During the experiment, the free

8
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Figure 9. Contour of V̂ obtained from (a) PINN in comparison with (b) the reference high-fidelity data for the test case with UB of 1%, in
(c) we show the relative error.

Figure 10. (a) Domain for the NACA4412 airfoil on the suction
side. Black dashed line indicates the analyzed region of interest,
which in (b) is shown in more detail. The lengths are scaled with the
wing chord, and the colors indicate mean streamwise velocity.

stream velocity for each of these cases was fairly constant.
On the other hand, blowing convects vertically the turbulent
structures present in the near-wall region towards the outer
region, resulting in an attenuated turbulence in the near wall
region [22]. This leads to increased V and δ, and their increase
depends on the magnitude of BR.

We have selected this data set to assess the robustness of the
PINNs model, using only the data at the boundary and without
a-priory assumptions. Each set of measurements contains 104

time steps at acquisition frequency of 4 Hz, where each time
step contains 402× 333 vectors for each flow quantity with
an uniform interval of 6.5+ ∼ 18.5+ depending on the flow
Reynolds number. The accuracy on mean streamwise velo-
city was±1.5% of U∞ with 95% confidence interval. In aver-
age, the random error for streamwise and wall-normal velocity
components were less than 1% of corresponding U∞. How-
ever, the spanwise velocity component exhibit maximum ran-
dom error (1.1% of U∞) compared to other velocity compon-
ents. Note that this is the out-of-plane velocity component.

The first data point is obtained at a wall-normal distance
of y+ = 16. The streamwise length of the FoV was less than
1δ, and the variation of δ over the streamwise length was less
than 1% for the standard ZPGTBL case. Interested readers are
referred to [10] for a detailed overview of the TBLmean prop-
erties, error estimation and PIV properties of magnification
and post processing algorithms. One common measurement
error for all sets of measurements is the overestimation of V,
this is due to the fact that the overall magnification uncertainty
has the largest effect on the smallest flow quantities.

We applied the PINNs algorithm on a reference data
set measured with PIV on a ZPGTBL [10] to predict the
mean flow field. Only the two-dimensional (2D) Cartesian

coordinates of the vector field and flow-field data averaged
over time was used for the training of the supervised-learning
process and therefore, the PINNs prediction improved the con-
vergence of these mean fields and corrected the spurious data
in terms of over/under estimation. Note that the predicted field
has a size similar to that of the reference data field, therefore
the current predictions are limited to length of the reference
data field. We have predicted only the mean streamwise and
wall-normal velocity fields and the 2D Reynolds stresses.

Figures 13 and 14 present the comparison of turbulence
statistics for the ‘mps3-SBL’ and ‘mps3-b6’ data sets., where
only Û, ûv and v̂v are shown. These figures show that the
reference PIV data exhibits a well-converged Û field, while
both ûv and v̂v exhibit insufficient convergence. On the other
hand, the ûv and v̂v fields predicted via PINNs are very smooth
and clearly show a well-converged statistical behavior. Note
that this result is also observed for the case with BR= 6%,
in which the flow is significantly modified upstream of the
measurement location, and the PINNs framework was cap-
able of successfully predicting the turbulence statistics even
when significant flow-history effects were present. Also note
that the results in figure 14 show the significant boundary-layer
growth associated with the wall-normal convection introduced
by the blowing, a phenomenon which is also well represented
by the PINN framework. Note that the results corresponding
to the intermediate cases ‘mps3-b0’, ‘mps3-b1’ and ‘mps3-b3’
are presented in the appendix.

Next, we will present the turbulence statistics for the ref-
erence data along with their corresponding PINNs predic-
tion and a second reference data set from the well-resolved
LES from [6]. Figure 15 shows the turbulence statistics at
x= 12.9 m as a function of the outer-scaled wall-normal loc-
ation y/δ for the SBL case. This figure shows that the mean
velocity profile from the experiment is in very good agree-
ment with that of the simulation, and also from the PINN
prediction. When it comes to the Reynolds stresses, simu-
lation and experiment are also in good agreement, although
the experiment exhibits a moderate noise, more noticeable
in the ûv field. Interestingly, the PINN predictions signific-
antly reduce this noise, leading to a better agreement with
the reference numerical data. It is also important to note that
the V̂ profile from the experiment does not show good agree-
ment with the simulation, due to the fact that this is a very
small quantity which is generally challenging to accurately
measure as discussed above. Interestingly, the PINN predic-
tion of V̂ is in very good agreement with the high-fidelity

9
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Figure 11. Profiles of (a) mean streamwise velocity, (b) wall-normal velocity and (c) the Reynolds-stress components along the outer-scaled
wall-normal distance at 75% chord length.

Figure 12. (a) Schematic representation of the flow field and the stereo PIV arrangement (all dimension in meter); (b) photograph of the
wind-tunnel test section.

Figure 13. Flow-field reconstruction with PINNs for data set ‘mps3-SBL’, in the top row (a), (c) and (e) are the reference data, (b), (d) and
(f) are the PINNs prediction. Flow quantities are mentioned on top of each column.

numerical data, a fact that shows the great potential of this
approach to correct experimental data. A similar comparison
is presented in figure 16 for the ‘mps3-b6’ case, in which
the numerical data is included only for reference, but no dir-
ect comparison is possible because the simulation does not

involve blowing. The experimental data, in which a signific-
ant blowing ratio of 6% is introduced, shows the expected dif-
ferences in the flow when comparing with the smooth-wall
numerical case, i.e. more pronounced outer-layer fluctuations
and Reynolds shear stress [1]. In this case, the mean flows
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Figure 14. Flow-field reconstruction with PINNs for data set ‘mps3-b6’, in the top row (a), (c) and (e) are the reference data, (b), (d) and
(f) are the PINNs prediction. Flow quantities are mentioned on top of each column.

Figure 15. Turbulence statistics at x= 12.9 m from experiment, simulation [6] and PINN prediction (see legend) for the ‘mps3-SBL’ case.
We show (a) mean streamwise velocity Û, (b) mean wall-normal velocity V̂ and (c) the Reynolds stresses ûv, ûu and v̂v.

Figure 16. Turbulence statistics at x= 19.2 m from experiment, simulation [6] and PINN prediction (see legend) for the ‘mps3-b6’ case.
We show (a) mean streamwise velocity Û, (b) mean wall-normal velocity V̂ and (c) the Reynolds stresses ûv, ûu and v̂v.
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Figure 17. Comparison of PINNs-predicted profiles for the different cases under study (except ‘mps3-SBL’), where the darker colors
correspond to stronger BR. The dashed lines represent the canonical ZPG TBL numerical data from [6]. (a) Outer-scaled mean streamwise
velocity (Û) and (b) outer-scaled mean wall-normal velocity (V̂) profiles at x= 19.2 m.

from PIV and PINNs are in excellent agreement, and a sig-
nificant reduction of the experimental noise is achieved in the
Reynolds stresses. Regarding the V̂ profile, it can be observed
that the experimental measurement provided very noisy data
and even negative velocities, which are not consistent with
the behavior expected for this flow. On the other hand, the
PINN prediction exhibits very smooth behavior, and the trend
increases as the wall is approached, which is consistent with
the strong Vw imposed right upstream of the measurement loc-
ation. Consequently, the PINN framework not only improves
themeasurement of V̂ but also enforces a physically-consistent
behavior.

Finally, figure 17 compares all the PINNs-predicted outer-
scaled profiles of Û and V̂ for all the blowing cases (see the
appendix for all the analysis of the intermediate control con-
figurations). The streamwise-velocity profiles exhibit a trend
consistent with that reported in the experimental work from
[10], while the wall-normal-velocity profiles are very smooth
and also show the expected increase with BR, both as the wake
region and the wall are approached. It is interesting to note
that the ‘mps3-b0’ case exhibits a V̂ profile slightly below that
of the canonical ZPG configuration (even with some values
slightly below zero closer to the wall), which is a consequence
of the perforated plate.

4. Conclusion

We have employed the PINNs framework to make predic-
tions on various datasets extracted from experiments and
numerical simulations. Besides the regular smooth-wall TBLs,
an active control through uniform blowing was also added
upstream of the measurement location/simulated domain,

which introduced several different flow conditions to the
downstream flow field. The change of boundary conditions are
the consequence of different blowing rations BR ranging from
0% to 6%. In contrast to traditional approaches to solve RANS
equations, which require turbulence models, in the PINNs
framework we solve the RANS for incompressible turbulent
flowwithout any specificmodel/assumptions. Instead, only the
mean velocities and the Reynolds-stresses components at the
domain boundary are needed. The training process involves
minimizing the residual of the RANS equations and also being
able to match the implemented boundary conditions.

A logarithmic function was employed to choose data sys-
tematically at the domain boundaries in order to evaluate the
residual of the governing equations. Then, selected data points
were utilized to predict the subsequent flow quantities. The
supervised loss is also calculated based on this selection cri-
terion comparing the predicted and the input data.

The predicted flow quantities including the Reynolds
stresses are in excellent agreement with reference data. Our
results indicate that PINNs can provide accurate predictions
for the mean-flow quantities and the Reynolds stresses. At the
same time, good adaptability and robustness are exhibited by
the PINNs algorithm,which is an additional advantage in order
to apply these techniques to the numerical simulations and PIV
measurements from incompressible turbulent flows, even with
changing upstream flow conditions. The PINNs algorithm has
the capability to reconstruct the flow-field quantities remov-
ing the noise present in the experimental data. Furthermore,
our framework can correct the measurements of V, which is
particularly challenging to measure in these types of turbulent
flows. This constitutes an enormous advantage when enhan-
cing experimental data.
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A traditional PIV system is limited in its spatial resolution,
especially the near-wall region is coarsely resolved. A further
development of this work will be be made taking the near-wall
region also into the PINN simulation to compute the viscous
sub-layer and thus, predict the wall-shear stresses for given
experimental setups. Here, we have shown the advantage of
using PINNs framework to analyse the underlying flow beha-
vior from experimental results. This leads to a new perspective
for complex-flow situations, which are expensive to simulate
and challenging to study with experimental methods.
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Appendix

In this appendix we show the experimental data and the PINN-
based reconstructions from the intermediate cases not shown
above. Figures 18–20 show the flow-field reconstruction of U,
uv and vv for the ‘mps3-b0’, ‘mps3-b1’ and ‘mps3-b3’ cases,
respectively. In these figures, the two-dimensional measure-
ment area is shown, and data from PIV and PINN are presen-
ted. Furthermore, figures 21–23 show numerical, experimental
and PINN prediction of the turbulence statistics at x= 12.9 m
for the ‘mps3-b0’, ‘mps3-b1’ and ‘mps3-b3’ configurations,
respectively.
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Figure 18. Flow-field reconstruction with PINNs for data set ‘mps3-b0’, in the top row (a), (c) and (e) are the reference data, (b), (d) and
(f) are the PINNs prediction. Flow quantities are mentioned on top of each column.

Figure 19. Flow-field reconstruction with PINNs for data set ‘mps3-b1’, in the top row (a), (c) and (e) are the reference data, (b), (d) and
(f) are the PINNs prediction. Flow quantities are mentioned on top of each column.

Figure 20. Flow-field reconstruction with PINNs for data set ‘mps3-b3’, in the top row (a), (c) and (e) are the reference data, (b), (d) and
(f) are the PINNs prediction. Flow quantities are mentioned on top of each column.
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Figure 21. Turbulence statistics at x= 19.2 m from experiment, simulation [6] and PINN prediction (see legend) for the ‘mps3-b0’ case. We
show (a) mean streamwise velocity Û, (b) mean wall-normal velocity V̂ and (c) the Reynolds stresses ûv, ûu and v̂v.

Figure 22. Turbulence statistics at x= 19.2 m from experiment, simulation [6] and PINN prediction (see legend) for the ‘mps3-b1’ case.
We show (a) mean streamwise velocity Û, (b) mean wall-normal velocity V̂ and (c) the Reynolds stresses ûv, ûu and v̂v.

Figure 23. Turbulence statistics at x= 19.2 m from experiment, simulation [6] and PINN prediction (see legend) for the ‘mps3-b3’ case.
We show (a) mean streamwise velocity Û, (b) mean wall-normal velocity V̂ and (c) the Reynolds stresses ûv, ûu and v̂v.
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