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ABSTRACT

In this paper, we study the positive solutions of nonlinear singular two-point boundary
value problems for second-order impulsive differential equations. The existence of
positive solutions is established by using the fixed point theorem in cones.
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1. INTRODUCTION

Impulsive and singular differential equations play a very important role in modern applied
mathematics due to their deep physical background and broad application. In this paper, we
consider the existence of positive solutions of
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-Lu=g(xu), xdl',
—A(pU) |y = 1 (U(X)), kK=12:-,m

R(u) =au(0)+ Bu'(0)=0 (1.1)
R,(u) = a,u()+ A’ ()=Q
here Lu=(p(X)u’)’ +q(X)u is sturm-liouville operator, | =[0,1], 1"=1\{x,X,, -+, %X}

and 0<X <X, <---<X, <1 are given

R =[0,+), gOC(I xR",R"), I, OC(R",R"), A(pU’) |-, = P(X)U' (%) = P(X)U'(%),
u'(x;) (respectively U'(X.)) denotes the right limit (respectively left limit) of U'(X) at
X=X, g(X,u) may be singular at u = 0.

Throughout this paper, we always suppose that

(S) p()OCY(0,1]R), p(x) >0,q(x)0C([0,1 R), a(x)< 0,a,,a,, 5,20 5,<Q

ar + B >0,a;+B;>0.

In recent years, boundary problems of second-order differential equations with impulses
have been studied extensively in the literature (see for instance [1-9] and their references).
In [1], Lin and Jiang studied the second-order impulsive differential equation with no
singularity and obtained two positive solutions by using the fixed point index theorem in
cones. However they did not consider the case when the function is singular. Motivated by
the work mentioned above, we study the positive solutions of nonlinear singular two-point

boundary value problems for second order impulsive differential equations (1.1) in this
paper. Our argument is based on the fixed point theorem in cones.

Moreover, for the simplicity in the following discussion, we introduce the following
hypotheses.

(H,): There exists an &, >0 such that g(x,u) and I, (u) are non increasing in
U < &, for each fixed XU[0,1]
(H,): For each fixed 0<8< &,

m(y) n(y)
0< : dy <
jg(y( D o)V <

(see section?2)

(Hy): @.(X) is the eigenfunction related to the smallest eigenvalue A, of the

eigenvalue problem -L¢ =19, R(¢) =R,(#) =0.

1806



Ying He; JSRR, Article no. JSRR.2014.13.009

. znjlm(k)¢1(xk)
(H4) 9 FE_’;(X)n(x) < /11'
0

m(1) n(o))¢1(X)dX

where goo - ||m Supxrg['loa]jw, |°° k ): ullm SUIikl(Ju),

U — +oo

Theorem 1. Assume that (H,)—(H,) are satisfied. Then problem (1.1) has at least one

positive solution U.Moreover, there exists a 6" >0 such that

o, M(X) N(x)
U(X) >0 (M@), XD[O,].]

2. PRELIMINARY

In order to define the solution of (1.1) we shall consider the following space.

PC'(I,R) ={uDC(1,R;u' [, )T X %) s U(X) =U(%), Ou( %), k=1,2,---,m}
with the norm |u] ... = max{|ul|, |u'[} . here ||u|= sup|u &)I. |u| = sup|u &)|. Then
X10,1] X10,1]

PC'(1,R) is a Banach space.

Definition 2.1: A function ulPC'(l,R) n C*(1',R) is a solution of (1.1) if it satisfies the
differential equation

Lu+g(x,u)=0, x0OI'

and the function U satisfies conditions A( pu’) ey, = 1 (U(X)) and R (u) = R,(u) =0.

Let Q=Ixl and Q ={(xyY)UQI0=<x<y<l},Q,={(xy QP <sys<x<l}. Let

G(X, Y) is the Green’s function of the boundary value problem

-Lu=0,R(u)=R,(u)=0.
Following from [6], G(X, y) can be written by
M’ (X, y) ] Ql’

G(xy):=1 ¥ (2.2)
m(y)n(x)
—w (X Y)UQ,.
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Lemma 2.1 [10]: Suppose that (S) holds, then the Green’s function G(X,Y), defined by
(2.1), possesses the following properties:

(i): m(x)OC?(1,R) is increasing and m(x) >0, x (0, 1]

(i) : n(x) OC?(1,R) is decreasing and n(x) >0, x(1[0, 1).

(iii) : (Lm)(x) =0, m(0)=-4,, m (0)=aq,.

(v): (LX) =0,n(1)= 5, ()= -a,.

(V): w is a positive constant. Moreover, p(X)(M(X)n(x) —m(x)n'(X)) = w.

(vi) : G(X,y) is continuous and symmetrical over Q.

(vii) : G(X,y) has continuously partial derivative over Q,, Q,.

(viii) : For each fixed Y1, G(X,Y) satisfies LG(X,y) =0 for x£ y, X1 .
Moreover, R,(G) = R,(G) =0 for yI(0,1).

(viiii) : G", has discontinuous point of the first kind at X=Y and

G,.G(y+0,y)-G,(y-0, y)=—i, yO(Q1)
p(y)

Consider the linear Sturm-Liouvile problem

—(Lu)(®) =Au(x), R(u)=R,(u)=0.

By the Sturm-Liouvile theory of ordinary differential equations, we know that there exists an
eigenfunction ¢,(X) with respect to the first eigenvalue A, >0 such that ¢@,(x) >0 for

x0(0,).

Following from Lemma 2.1, it is easy to see that

(209 Ny NG _ 6y vy < Gy, ) = T (o vymoaix[0,1] (22
m@) n(0) w

Lemma 2.2 [9]: If U is a solution of the equation

U = [ G g udy-+ Y. Gx )1 (u(x)), xO1. @3

then U is a solution of (1.1).

In fact by using inequalities (2.2), we have that
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Jul= [} 60y VUMY + . Gx %1 (U(x,)

and

m(Xx) n(x)

ue0 2 (o (O))j G(y, Y)g(y,u(y))dy +

QUL

m0J N0,

G |
T (0)2 (% X1 (U(%))

3. MAIN RESULTS

Lemma 3.1; Let E = (E,”[n) be a Banach space and let K [J E be a cone in E and ||[n]
be increasing with respect to K .Also, r, R are constants with 0<r < R. Suppose that

CD:(g_zR\Q,)ﬂK - K (Qx ={uDE,||u||< R ) is a continuous, compact map and
assume that the conditions are satisfied:

() lloull> % for udaQ, (1K
(i) u# (), for £0[0,1) and u0dQ, [ 1K

Then @ has a fixed point in K ﬂ{u OE:r< ||u|| <R.

Proof. In applications below, we take E =C(l,R) and define

K={udd1,R :u(¥ =ao]ul,x[aH4}.

One may readily verify that K is a conein E. Now,let r >0 such that
. 1 1 i 1
r<minfe;, [ G~ D oy, £dy+ D (=, X) 1,(£9) (3.1)
k=1

and let R>T be chosen large enough later.

Let us define an operator @ : (Q R\Qr)ﬂ K - K by

(Pu)(x) = I:G(x, y)g(y,U(y))dy+iG(X,Xk)lk(U(Xk)), xul.
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First we show that ® is well defined. To see this, notice that if UJ(Qg\Q,) ﬂ K then

r<|u| <R and u(x) = (F3+3)|u| 2 (GRBT@)r,0< x< 1 Also notice by (H,) that

g(x,u(¥) < g(x (m((;‘)) ”((’c‘))))) when 0<u(x)<r,

and

a(x, u(x))<maxmaxg ku) whenr<ugk xR

r<usR Osx<1

These inequalities with (H,) guarantee that @ : (Qg\ Qr)ﬂ K - K is well defined.
Next we show that P : (ﬁR\Qr)ﬂ K - K.ful(Qg\Q,) ﬂ K, then we have

[oul < [ 60 V.UM + > G06 X1 (0(x)

m(x) n(x) G dv+ m(x) n(x) G |
@002 (T GG UEY (TN Gl 51 ()
m(x) n(x)
_(m(l) (O))||q>u|| x0[0,1].

le.®uDK so @:(3\Q,)[ 1K - K.

It is clear that @ is continuous and completely continuous.
We now show that

loul>ul,  for udaQ, K (3.2)

To see thatlet uAQ, [ 1K then [u] =1 and u(x) 2 (E32Hr for xI[0,2]. So by
(H,) and (3.1) we have

(G =[G NI+ D G X1, (UX)

2 (16 Y9ty Ny + Y. 65 K1, (0)
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1 & 1
2 [ GG 9.y +Y 6. %14 (&)
k=1
>r =|ul.
so (3.2) is satisfied.

On the other hand, from (H,), there exist 0<& <A, — f* and H > p such that

ey [ MO N0 S .
)| (o D (o) O8> 2 (17 (k) + ) ()

gxu)<(g”+au,l () <(1*(k)+&u OxO[0,1u=H. (3.3)

Let C = max maxg ,u )FZ max, \ ,itis clear that

rsusH Osx<1 r<usH

m(x) n(x)
g(x,u) < g(X,(—= m@) n (0))) C+(g” +é)u,
1, (u) < k((m(x) n(X))) +C+(1°(K)+£)u,0 xO[0,1],u 0.

m(1) n(0)

Next we show that if R is large enough ,then pdPu#u for any uDKﬂaQR and

O< <1 If this is not true ,then there exist U, JK ﬂGQR and 0< /4, <1 such that

Ho®Uy = U, Thus [[Uy [I=R>T and Uy(X) 2 (R 1) R Note that Uy (X) satisfies

Lu,(X) + 1,9(%U,(X)) =0, xO1',
“D(PUy ) e, = Mol (Ug(%)), K =L2:--,m

au,(0)+ Bu'o(0)=0
au, D)+ Bus(@)=0

(3.4)

Multiply equation (3.4) by ¢1(X) and integrate from O to 1, using integration by parts in the
left side, notice that
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[ . POIU ) + AU (9T = [ BRI P(H U B) "+ o B ug ] o
#3 [ BOIPOIU00) + AT+ [ SO ) + o 9 uf 9] i
= 4,(%) POYU; (X,~0) = #,0)p(O) , (O)- [[* P &)U, ()¢, (¥)dx

[ 00U, (9, (8 + Y 190X, P06 U5 (1= 0) = 8% IP(X, 1 405, + O

=[ POu (9, ()dx+ [ (U ()8, + 41 PLuro(2)
~,(%,) P0G (%, +0)= [ POug (98 G0+ [ a0, (x)¢ (x)ox

= =3 (PO (62,05~ [ POIB, (9u; (9 [} A0, (9u ()
+,)p@'o (@)~ ¢, (O)p (O, (0)

Also notice that
[ P08, (¥)u; (9dx = [ p()¢; (x)duy(x)
= pL)g, (U, W)~ P (O, (0N, (O) [ Uy &) & ¥, & )X
= p()F, (1, (W) PO, (O, (O [ Uy & 1 & P, & Yix
A, j: U, (X)@,(X)dx.
thus, by the boundary conditions, we have
[ . 00LPOIUA(R) + AW up(W] x = —gA( () U (X)) %)
- P, @, (D+ P (O, (), (OF [ Uy & B & P, & I
= A [, Up(¥(x)8x-+ [ A ,(¥)u(X) e+ ¢ 1) pio (1)~ 4,(0)p (O g (O
=2 (RO G050 = A, 0,099 ()

= iﬂolk(uo(xk))%(xk) —Alj:uo(x)qbl(x)dx.
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So we obtain
A [ U00BI0K= 163 1, (6 )B.05) + 1 9% U L8 ()

<0709+ U0 +CX 060+ 31 (T8, (6)

(g7 + )], 00U 0900 CL 400t 16,0906 (T =
Consequently, we obtain that
(h=9" =€), 0 0P090xS X (179 +£)6, 05 ()
m(x) n(x mx) n(x)
+[ (9% G ) c<2¢1(xk)+ [ #.09c) + zu (o o2 %)
<l 3 0709 +£)6.00)+ [, 2,00 000 (Rl S )

m(1) n(0)

m(Xx) n(x)
C d |
+ (z¢1(xk)+j #,(X)cx) + 2 (o oy VA0

We also have

m(Xx) n(x)
[ U (08,92 Jug| [ (o? D n() I

Thus

[ #.000(x m(:i:zz)r)dxm(Z AR ¢1(x)dx)+z| (R 2HNA (%)

Juoll < =R
(A=0” = &) (2329, ()X - Z(l (k) +£)(x)

Let R>max{R H}, then for any uDKﬂaQR and 0< <1, we have udu#u.
Hence all the assumptions of Lemma 3.1 are satisfied, ® has a fixed point U in

K ﬂ{uD E:rgjlulc R,ux)= (%%)r , Ox0O[0,1]. Let 8”:=r, this completes the

proof of Theorem 1.
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