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ABSTRACT
Accurate identification of locomotives’ position in large freight
trains is important due to maintenance and management
aspects. Current solutions employ RFIDs, image cameras or
GPS, while the first two are expensive, the third is not an off-
the-shelf hardware for all locomotives. In this paper we inves-
tigate a data driven solution to automatically identify locomo-
tives’ position in large freight trains. We take into account off-
the-shelf hardware alone (that gather instant fuel consump-
tion) seeking for a less expensive solution. We evaluate differ-
ent machine learning approaches and algorithms and different
inputs attributes, achieving significant results.

Introduction

Long freight trains can use several locomotives. These locomotives might be
distributed in different positions along the composition. Accurate identifica-
tion of a locomotive position in large freight trains is important due to
maintenance and management aspects. For instance, the erosion will be
different on the wheels of the locomotives depending on their position.
Solutions employing RFIDs or image cameras (Martin 2008; Zhijun,
Zhongpan, and Shaozi 2008) are expensive and are not off-the-shelf hard-
ware in the locomotives. GPS is another potential solution, although, it is also
not off-the-shelf hardware for all locomotives. In this paper we investigate
a data driven solution to automatically identify locomotives’ position in large
freight trains. We take into account off-the-shelf hardware alone, that gather
instant fuel consumption, seeking for a less expensive solution.

The gathered instant fuel consumption is a time series of fuel consumption
in a given part of the railroad. We evaluate different machine learning
approaches (multi and binary-class classifiers) and five machine learning
algorithms: random forest, multilayer perceptron neural network,
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convolutional neural network, support vector machine, and gaussian process.
Furthermore, we consider that the time series can be transformed in attri-
butes using different spatial resolutions; hence, we evaluate attributes taking
into account 3 different spatial resolutions for the machine learning
algorithms.

In this work, we present an evaluation of machine learning methods to
perform locomotives’ identification taking into account instant fuel con-
sumption alone. This work extends Arruda et al.(Arruda et al. 2016) pre-
senting a more comprehensive evaluation of machine learning approaches
for the task of locomotives’ identification. We aim to answer three research
questions in the paper: (RQ1) which is the best machine learning approach to
identify locomotives’ position. (RQ2) is it better to employ a single (binary)
class approach or a multi-class approach? (RQ3) which is the best way to
treat the instant consumption data (as a 3 km, 6 km or 9 km spatial
resolution)?

This paper is organized into 5 sections. Section 2 brings the related works
to our approach. Section 3 treats of our standpoint for locomotive identifica-
tion, including the data gathering, the system modeling, and the machine
learning techniques. Section 4 describes the results, and Section 5 addresses
the discussion and future works.

Related Works

The identification of rail cars is tried since the 60s. However, the usage of
RFID tags was only implemented from the 80s. The wagons could be
equipped with the tags both underneath as on the sides, though the usage
on the sides is the most recommended in order to ease the maintenance
(Levine 2015). For the tracking of rail cars in rail transportation systems,
Hendrickson et al.(Hendrickson et al. 2005) proposed a system using low on-
car power and with location-reporting accuracy by means of GPS and RFID.

The obstacle detection by digital image processing was used to help
locomotive drivers choose the best speed at certain stretches of the railway,
or to use the brakes. A problem to deal with is the image noise caused by
light, fog, and vibration since they are real-time (Xue et al. 2008). Another
approach related to images is the use a camera on board of a locomotive to
determine its location by means of video frames (Yu et al. 2009). The
ALVeRT framework uses static images and videos to recognize and track on-
road vehicles by means of active learning. Factors such as illumination can be
a problem for this kind of approach, once the quality of images and videos
are primordial to avoid false positives (Sivaraman and Trivedi 2010).

To avoid collisions between locomotives, a method using GPS data was
proposed. Railroad vehicles exchange data frames with its geographic posi-
tions, speed, and direction of travel, among other data. The data are
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processed onboard and if there is a collision risk, the system triggers alarms
as a first warning. At a second stage, the vehicle speed is reduced (Hsu 1996).
In another work, Doner et al.(Doner, Diana, and Clyne 2002) used GPS
coordinates to identify locomotives and determine his operation state.

On-board data is used for locomotive’s diagnosis and monitoring. One
example is the ICARUS case-based reasoning tool. The software uses the fault
codes generated by the locomotives (Varma 1999). Using historical data,
a predictive system was proposed to detect the malfunction of machines
(locomotives), by means of repair and fault log data (Varma and Roddy
2002).

In the machine learning field, a work with vertical acceleration of ballast
wagons, processed by regression algorithms, was used to forecast exceeded
limits and to send messages warning the driver (Shafiullah et al. 2010).
Prediction of train wheel’s failures was used with data from WILD systems
that measure the impact of each wheel on the rail. Each axle of a car is treated
as a time series. Decision Trees and Naive Bayes algorithms were used.
Multiple Classifier Systems were implemented (Yang and Létourneau 2005).

Being that one of the great expenditure for rail organisations is the cost of
fuel, previous works have been trying to minimize the fuel consumption of
long-haul trains that use diesel-electric locomotives, by means of Lagrangian
analysis (Howlett 1996). Speed profiles of long-haul locomotives were used to
minimize local energy usage (Howlett, Pudney, and Vu 2009). To minimize
the costs of fuel purchasing, of the shipment delay, and of the fuel station
contracts, a mathematical model was used. The work proposes a Lagrangian
relaxation framework (Nourbakhsh and Ouyang 2010).

For our purpose, we take into account off-the-shelf hardware alone, that
gather instant fuel consumption, seeking for a less expensive solution. The
usage of RFID, GPS, images, and videos are good options, as mentioned
previously. However, they increase the implementation costs. As our aim is
a low cost solution to identify the locomotive position, we used log data with
machine learning techniques.

Our Approach for Locomotive Identification

Railway Environment and Data Gathering

The train which we refer to is composed by 4 locomotives and 330 train
wagons (Figure 1). This type of formation is a default adopted by Vale S.A.
(Matos et al. 2015). The positions of the locomotives, in order, are: Leader,
Commanded, Remote B and Remote C. We employ a dataset from large
freight trains from Vale S.A., which has the largest trains in operation in the
world with 330 wagons, 3.3 kilometers long, and usually 4 to 6 locomotives.
The Carajás Ridge presents the largest iron ore deposit in the world (Piló,
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Auler, and Martins 2015). From the mine to the harbor, the Carajás railway
has 897 km and crosses two of the largest Brazilian states, Pará and
Maranhão, connecting Carajás ridge to Ponta da Madeira harbor (Figure 2).

We obtained diesel consumption from 3 Vale' locomotives from May 2014
to December 2015. This data was integrated with information from the Vale
operational system which describes the locomotive position in the train. We
have 3 locomotives with a total of 63 trips. A locomotive could be a Leader,
Commanded, RemoteB or RemoteC, from these trips we have, respectively 5,
11, 16 and 31 trips.

Figure 1. The train formation composed by 4 locomotives and 330 train wagons. The locomo-
tives’ positions from the beginning to the end of the train are: Leader, Commanded, Remote
B and Remote C. There are 110 train wagons between Commanded and Remote B, other 110
train wagons between Remote B and Remote C, and 110 more train wagons afer Remote C.

Figure 2. The Carajás railway is 897 km long and connects Carajás ridge, in Pará state, to Ponta
da Madeira harbor, in Maranhão. The yellow line shows the railway, highlighting a small stretch
in red (36 km), which is used in this work (Images from Google Earth, adapted by the authors).
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System Modeling

We employed a subset of 36 km of each trip to perform the classification
because we had access only to a subset of the trips. Noteworthy to point out
that, for all trips, the same 36 km were employed. The data coming from
the monitored locomotives are in plain text format and require preproces-
sing before being imported into a database. The R programming language
(Lantz 2013) was used to deal with raw data and to populate a PostgreSQL
database (Vohra 2016). Once the data was stored in the database, SQL
queries embedded in Python scripts helped the extraction of feature vectors
to be used in machine learning algorithms (Garreta and Moncecchi 2013;
Richert and Coelho 2013). A feature vector (Figure 3) with the mean,
standard deviation, trend, sum, and median of fuel total consumption,
was used instead of raw data according to the best results obtained using
this kind of approach in previous work (Furquim et al. 2014). The algo-
rithms used are part of Weka software (Hall et al. 2009). As the chosen
stretch is 36 km long, three spatial resolutions were used: 4 stretches of
9 km, 6 stretches of 6 km and 12 stretches of 3 km. The first investigation
involved all the classes (Figure 5). The second investigation used each of the
classes against the rest (Figure 6), which is a binary classification (Lorena
and de Carvalho 2010).

For the Gaussian Process there was an extra step onto preprocessing the
dataset. In the comparison among all the classes, each class was repre-
sented by a number. Leader was number 1, Commanded was number 2,
RemoteB was number 3 and RemoteC was number 4. In the comparison
of each class against the rest, Leader, Commanded, RemoteB and
RemoteC were number 6 while the other classes were represented by
number 5. After classification, if the value stood between 0.50 and 1.49,
we assumed that the class was Leader. If the value stood between 1.50 and
2.49, we assumed that the class was Commanded. If the values stood
between 2.50 and 3.49, we assumed that the class was RemoteB. If the
values stood between 3.50 and 4.49, we assumed that the class was
RemoteC. This is for all classes’ comparison. For each class against the
rest, if the values stood between 4.50 and 5.49, we assumed that the class
was Other. If the values stood between 5.50 and 6.49, we assumed that the
class could be Leader, Commanded, RemoteB or RemoteC, depending on
the choice of the binary classification.

Figure 3. The feature vector is composed by repetitions of mean, standard deviation, trend, sum
and median. The last element of the vector is the locomotive type as label.
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Independently of the employed model, the workflow is the same. The
feature vector is submitted to the model and the presented result is the
locomotive type as a percentage (Figure 4). The only exception is the
gaussian process, as explained above.

Employed Machine Learning Techniques

Five machine learning methods were used in the investigation: random
forests (RF), a bagging of multilayer perceptron (MLP) neural networks,
convolutional neural networks (CNN), support vector machines (SVM) and
gaussian process (GP). All methods were executed using cross-validation
with leave-one-out technique, due to the small amount of data (Cawley
and Talbot 2003).

Random Forest (RF)
Random Forest is an algorithm that works as a collection of decision
trees, which chooses the best option among the classes. Each decision tree
is independently initialized and has a unique vote for the best class
(Breiman 2001).

Multilayer Percepetron (MLP)
The Multilayer Perceptron is a system of interconnected neurons where each
neuron is connected to the neurons of previous and next layer. The system is
divided into input layer, hidden layers and output layer. For classification
purposes, which is the aim of this work, the output layer is represented by
each one of the classes as a node. The Multilayer Perceptron is a feed-forward
artificial neural network and learns in supervised mode. The algorithm used

Figure 4. The model is represented by the red circle that receives as input the values from the
feature vector, which are denoted by blue rectangles with mean, standard deviation, trend, sum
and median. The output is the classification of the locomotive type, represented by the green
rectangle.
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for training was backpropagation, which is one of the most basic algorithms
for this kind of task (Gardner and Dorling 1998).

Convolutional Neural Network (CNN)
Convolutional Neural Networks belongs to Deep Learning techniques and
are based on neuroscientific principles. They are artificial neural networks
with at least one convolutional layer. This type of network usually deals

Figure 5. The boxplots show the comparison among 4 classes of locomotives (Leader,
Commanded, RemoteB and RemoteC). There are 5 boxplots for each spatial resolution (3 km,
6 km and 9 km), as shown in the x axis. The blue ones indicate the Random Forest algorithm, the
red ones show the Multilayer Perceptron Bagging, the green ones are the Convolutional Neural
Networks, the yellow ones represents the Support Vector Machines, and the greys ones indicates
the Gaussian Processes. In the y axis are the percentual of success.
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better with input data from images, that can be represented by a 2D grid, or
regular time series intervals, represented as a 1D grid (Goodfellow, Bengio,
and Courville 2016).

Support Vector Machine (SVM)
Support Vector Machines work with kernel substitution and comes from the
statistical learning theory (Bennett and Campbell 2000). An SVM algorithm

Figure 6. Each one of the locomotive’s positions against the others, featuring comparisons
among 2 classes. Figure 6a shows Leader (5 trips) against all (58 trips). Figure 6b shows
Commanded (11 trips) against all (52 trips). Figure 6c shows RemoteB (16 trips) against all (47
trips). Figure 6d shows RemoteC (31 trips) against all (32 trips).
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transforms the data to a higher dimension hyperplane and creates support
vectors with the aim of maximizing the distance between the classes.

Gaussian Process (GP)
Gaussian Process is a supervised learning technique based on the Gaussian
probability distribution. This technique presents computational tractability as
a strong feature (Rasmussen and Williams 2006).

Results

The approach using binary classification showed better results for all the
spatial resolutions. The median was taken into account for the comparisons.
The best result of the multi-classifier was 85.71% for both RF, in 3 km, and
MLP, in 9 km (Figure 5). The Leader locomotive against the other classes
achieved 93.65% of success using CNN for the 6 km spatial resolution, which
was the best result for this binary classification (Figure 6a). The Commanded
locomotive presented a tie between RF, in 3 km resolution, and CNN, in
6 km resolution, with 88.89% of success (Figure 6b).

For RemoteB locomotives in 3 km spatial resolution, both RF and GP were
better, achieving the same result of 95.24%. For the 6 km spatial resolution,
MLP and SVM won with 96.83%. And in 9 km, which presented the best
results, MLP and SVM won again with 98.41% (Figure 6c). The RemoteC
locomotives also achieved the good mark of 98.41% in 3 km spatial resolu-
tion with MLP and SVM (Figure 6d).

Discussion and Future Works

All the machine learning methods showed good results, both working with
all classes or dealing with binary classification. Although the use of binary
classifiers showed better results than the multi-classifier, we did not find
a pattern related to the spatial resolutions (3 km, 6 km or 9 km).

However, with a larger dataset the results should be better. In the next
phases of this work, we intend to have more data to use with the proposed
machine learning methods. Another point that could be taken into account is
to analyze full trips of 897 km. Work with full trips brings to us the
possibility of dealing with locomotive stops, which could be another variable
to the model. In addition, we have interpolated data of temperature from 9
stations over the railway that also could be incorporated to the model
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