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Abstract
Particle physics is a branch of science aiming at discovering the fundamental laws of matter and
forces. Graph neural networks are trainable functions which operate on graphs—sets of elements
and their pairwise relations—and are a central method within the broader field of geometric deep
learning. They are very expressive and have demonstrated superior performance to other classical
deep learning approaches in a variety of domains. The data in particle physics are often represented
by sets and graphs and as such, graph neural networks offer key advantages. Here we review
various applications of graph neural networks in particle physics, including different graph
constructions, model architectures and learning objectives, as well as key open problems in particle
physics for which graph neural networks are promising.

1. Introduction

Particle physics focuses on understanding fundamental laws of nature by observing elementary particles,
either in controlled environments (collider physics) or in nature (astro-particle). The standard model of
particle physics is a theory of the strong, weak and electromagnetic forces, and elementary particles (quarks
and leptons). Physicists are building experiments to measure elementary particles and by using statistical
methods can test the validity of various models. The data from the experiments are generally a sparse
sampling of a physics process in both time and space.

Machine learning has historically played a significant role in particle physics [1], with classification and
regression applications using classical techniques, such as boosted decision trees, support vector machine,
simple multi-layer perceptrons, etc. Inspired by the success deep learning has achieved at reaching
super-human performance at various tasks, various domains in the physical sciences [2], including particle
physics [1, 3–6], have begun exploring deep learning as a unique tool for handling difficult scientific
problems that go beyond straightforward classification, to organize and make sense of vast data sources,
draw inferences about unobserved causal factors, and even discover physical principles underpinning
complex phenomena [7, 8].

High Energy Physics (HEP) experiments often use machine learning for learning complicated inverse
functions, trying to infer something about the underlying physics process from the information measured in
the detector. This scheme is illustrated in figure 1.

While the most widely used trio of deep learning building blocks—the fully connected network (FC),
convolutional neural network (CNN) and recurrent neural network (RNN)—have proven valuable across
many scientific domains, the focus of this review is on a class of architectures called graph neural networks
(GNNs)—as described below, we regard self-attention as a graph-based architecture—,which can be trained
from data to learn functions on graphs. Many problems involve data represented as unordered sets of
elements with rich relations and interactions with one another, and can be naturally expressed as graphs.
They are however not convenient to represent as vectors, grids, or sequences—the format required by FCs,
CNNs, and RNNs, respectively—unless for specific structure of tree [9, 10]. Extensive reviews of GNNs are
available in the literature [11–15]. However applications of GNNs in HEP are evolving rapidly, and the
purposes of this review are to outline the key principles and uses of GNNs for particle physics, and build
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Figure 1. Simulation is used in HEP experiments to create a ‘truth record’ of the physics event which caused a certain detector
response. This ‘truth record’ is used to train supervised learning algorithms to invert the detector simulation and infer something
about the underlying physics from the observed data. These algorithms are then applied to real data that were measured by the
detector.

bridges between physics and machine learning by exposing researchers on both sides to important,
challenging problems in each others’ domains.

1.1. Data representation
Measurements in particle physics are commonly done in large accelerator facilities (CERN KEK, Fermilab,
etc.), using detectors with sizes on the order of tens of meters, which capture millions of high-dimensional
measurements each second. These detectors are composed of multiple sub-detectors—tracking detector,
calorimeters, muon detector, etc.—each using a different technology to measure the trace of particles. The
data in particle physics are therefore heterogeneous. Detectors in astrophysics are typically bigger, with size
up to kilometers (IceCube, Antares, etc.) constructed around a single measurement technology, the data are
therefore homogeneous. In both cases, the measurements are inherently sparse in space, due to the design of
the geometry of the sensors. The measurements therefore do not a-priori fit homogeneous, grid-like data
structures.

Deep learning is often applied on high level features derived from particle physics data [1]. This can
improve over more classical data analysis methods, but does not use the full potential of deep learning, which
can be effective when operating on lower level information.

Some data in particle physics can be fractionally interpreted as images and hence computer vision
techniques (CNNs) are being applied with improved performances [16–21]. However, image representations
face some limitations with irregular geometry of detectors or sparsity of the projections applied. Because of
the inherent loss of information, image representations may constrain the amount of information that can be
extracted from the data.

Measurement and reconstructed objects can be viewed as sequences, with an order imposed from
theoretical or experimental understanding of the data. Methods otherwise applied to natural language
processing (e.g. RNNs, LSTMs [22] and GRUs [23]) have thus been explored [24, 25]. While the ordering
used can usually be justified experimentally, it is often imposed and therefore constrains how the data are
presented to models. This ordering can also be learned [26] in some cases, using prior experimental
knowledge of the physics process at stake. This is however not always the case and one may expect that the
imposed ordering will reduce the learning performance—ordering that is not required as we will see in the
following. For example [27] shows evidence that a permutation invariant network outperforms a sequence
based algorithm that uses the exact same input features, for the same classification task.

At many levels the data are, by definition, sets (unordered collection) of items. If one considers relation
between items (geometrical, or physical) a set transforms into a graph with the addition of an adjacency
matrix. There is a-priori less limitation in applying deep learning on this intrinsic representation of the data,
than at the other levels mentioned above. A variety of HEP data and their formulation as graphs is illustrated
in figure 2.

We concentrate in this review on the applications of GNNs to HEP. We argue why graphs are a very useful
data representation, and review key architectures. Common traits in graph construction and model
architecture will be linked to the specific requirements of the HEP problems under consideration. By
providing a normalized description of the models through the formalism introduced in [13] we hope to
make the adoption and further development of GNNs for HEP simpler.
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(a)

(b)

(c) (d)

Figure 2. HEP data lend itself to being represented as a graph for many applications: (a) clustering tracking detector hits into
tracks, (b) segmenting calorimeter cells, (c) classifying events with multiple types of physics objects, (d) jet classification based on
the particles associated to the jet.

This review paper is organized as follows. An overview of the field of geometrical deep learning is given in
section 2. Existing applications to particle physics are reviewed in 3. General guidelines for formulating HEP
tasks for GNNs are given in section 4. In particular we go in the details of the different approaches in
building the graph connectivity in section 4.2, the various model architecture adopted in section 4.3. This
paper concludes with a discussion on the various approaches and the remaining open questions in section 5.

2. Geometric deep learning

2.1. Overview
Deep learning has been central to the past decade’s advances in machine learning and artificial
intelligence [28, 29], and can be understood as the confluence of several key factors. First, large neural
networks can express very complex functions. Second, valuable information in big data can be encoded into
the parameters of large neural networks via gradient-based training procedures. Third, parallel computer
hardware can perform such training in hours or days, which is efficient enough for many important use
cases. Fourth, well-designed software frameworks, such as TensorFlow [30] and PyTorch [31], lower the
technical bar to developing and distributing deep learning applications, making powerful machine learning
tools broadly accessible to practitioners.

Fully connected, convolutional, and recurrent layers have been the primary building blocks in modern
deep learning, each of which carries different inductive biases, which incentivize or constrain the learning
algorithm to prioritize one solution over another. For example, convolutional layers share their underlying
kernel function across spatial dimensions of the input signal, while recurrent layers share across the temporal
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dimension of the input. These building blocks are most suitable for approximating functions on vectors,
grids, and sequences, but when a problem involves data with richer structure, these modules are not always
convenient or effective to apply. For example, consider learning functions over sets of particles—while it is
possible to order them, for example sorting by the transverse momentum pT of the particle, the imposed
ordering in not unique, and it fails to reflect that particles are fundamentally unordered. The aforementioned
deep learning modules do not have appropriate inductive biases to exploit this richer graphical structure.

Graph-structured data are ubiquitous across science, engineering, and many other problem domains. A
graph is defined, minimally, as a set of nodes as well as a set of edges adjacent to pairs of nodes. Richer
varieties and special cases include: trees, where there is exactly one sequence of edges connecting any two
nodes; directed graphs, where the two nodes associated with an edge are ordered; attributed graphs, which
include node-level, edge-level, or graph-level attributes; multigraphs, where more than one edge may exist
between a pair of nodes; hypergraphs, where more than two nodes are associated with an edge; etc. Crucially,
graphs are a natural and powerful way of representing many complex systems [11–15], e.g. trees for
representing evolution of species, or the hierarchical structure of sentences; lattices and meshes for
representing regular and irregular discretizations of space, respectively; dynamic networks for representing
traffic on roads and social relationships over time.

GNNs [11–13, 32] are a class of deep learning architectures which implement strong relational inductive
biases for learning functions that operate on graphs. They implement a form of parameterized
message-passing whereby information is propagated across the graph, allowing sophisticated edge-, node-,
and graph-level outputs to be computed. Within a GNN there are one or more standard neural network
building blocks, typically fully connected layers, which implement the message computations and
propagation functions. The first GNNs [32, 33] were developed and applied for network analysis, especially
on internet data, and were trained not with the back-propagation algorithm, but with fixed point iteration
via the Almeida–Pineda algorithm [34, 35]. Li et al’s [36]’s gated graph sequence neural networks helped
integrate more recent deep learning innovations into GNNs, adding RNN modules for improving multiple
rounds of message-passing and optimizing their parameters by the back-propagation learning rule [28, 29].

In recent years, the field of GNNs has grown very rapidly, with applications to science and engineering.
For example, graph convolution has been used for molecular fingerprinting [37]. Message-passing neural
networks [12], which provided a general formulation of GNNs which captured a number of previous
methods, were introduced for quantum chemistry. Interaction networks [38] and graph networks [13] have
been developed for learning to simulate increasingly complex physical systems [38–41].

GNNs are situated within the broader family of what Bronstein et al [11] term geometric deep learning,
which, aside from GNNs, captures related deep learning methods which apply to data structures beyond
vectors, tensors, sequences, etc. Their survey explores graph signal processing and how it can be connected to
deep learning, with substantial discussion on how the general principles of CNNs applied to Euclidean signals
can be transferred to graph-structured signals. Key examples of spectral graph convolution approaches
are [42–44], which applied neural networks to the eigenvalues and eigenvectors of the graph Laplacian.

Much work on GNs has focused on learning physical simulation [38–40, 45], similar to Lagrangian
methods for particle-based simulation in engineering and graphics. The system is represented as a set of
particle vertices, whose interactions are represented by edges and computed via learned functions. Recent
work by [41] highlights how far this sub-field has advanced: they trained models to predict systems of
thousands of particles, which represent fluids, solids, sand, and ‘goop’, and show generalization to orders of
magnitude more particles and longer trajectories than experienced during training. Because GNs are highly
parallelizable on modern deep learning hardware (GPUs, TPUs, FPGAs), their approach scaled well, and its
speed was on par with heavily engineered state-of-the-art fluid simulation engines, despite that they did not
optimize for speed in their work.

Recently GNs have been extended by adding inductive biases derived from physics, adjusting their
architectures to be consistent with Hamiltonian [46] and Lagrangian mechanics [47], which can improve
performance and generalization on various physical prediction problems. Other recent work [7] has shown
symbolic physical laws can be extracted from the learned functions within a GN.

2.2. The graph network formalism
Here we focus on the graph network (GN) formalism [13], which generalizes various GNNs, as well as other
methods (e.g. Transformer-style self-attention [48]). GNs are graph-to-graph functions, whose output
graphs have the same node and edge structure as the input. Adopting [13]’s formalism, a graph can be
represented by, G= (u,V,E), with Nv vertices and Ne edges. The u represents graph-level attributes. The set
of nodes (or vertices) are V= {vi}i=1:Nv , where vi represents the ith node’s attributes. The set of edges are
E= {(ek, rk, sk)}k=1:Ne , where ek represents the kth edge’s attributes, and rk and sk are the indices of the two
(receiver and sender, respectively) nodes connected by the k-th edge.
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Figure 3. The internal components of a GN block are update functions and aggregation functions. (a) The update functions take a
set of objects with a fixed size representation, and apply the same function to each of the elements in the set, resulting in an
updated representation (also with a fixed size). (b) The aggregation functions take a set of objects and create one fixed size
representation for the entire set, by using some order invariant function to group together the representations of the objects (such
as an element-wise sum).

A GN’s stages of processing are as follows.

e ′k= ϕe (ek,vrk ,vsk ,u)
v ′i = ϕv (ē ′i ,vi,u)
u ′= ϕu (ē ′, v̄ ′,u)

ē ′i = ρe→v (E ′
i ) ▷ Edge block

ē ′= ρe→u (E ′) ▷Vertex block
v̄ ′= ρv→u (V ′) ▷Global block

(1)

A GN block contains 6 internal functions: 3 update functions (ϕe, ϕv, and ϕu) and 3 aggregation functions
(ρe→v, ρe→u, and ρv→u). The GN formalism is not a specific model architecture, it does not determine what
exactly those functions are. The update functions are functions of fixed size input and fixed size output, and
the aggregation functions take in a variable-sized set of inputs (such as a set of edges connected to a
particular node) and output a fixed size representation of the input set. This is illustrated in figure 3.

The edge block computes one output for each edge, e ′k, and aggregates them by their corresponding
receiving node, ē ′i , where E

′
i is the set of edges incident on the ith node. The vertex block computes one output

for each node, v ′i . The edge- and node-level outputs are all aggregated in order to compute the global block.
The output of the GN is the set of all edge-, node-, and graph-level outputs, G ′ = (u ′,V ′,E ′). See figure 4(a).

In practice the ϕe, ϕv, and ϕu are often implemented as a simple trainable neural network, e.g. a FC. The
ρe→v, ρe→u, and ρv→u functions are typically implemented as permutation invariant reduction operators,
such as element-wise sums, means, or maximums. The ρ functions must be permutation invariant if the GN
block is to maintain permutation equivariance.

Some key benefits of GNs are that they are generic: if a problem can be expressed as requiring a graph to
be mapped to another graph or some summary output, GNs are often suitable. They also tend to generalize
well to graphs not experienced during training, because the learning is focused on the edge- and
node-level—in fact if the global block is omitted, the GN is not even aware of the full graph in any of its
computations, as the edge and node blocks take only their respective localities as input. Yet when multiple GN
blocks are arranged in deep or recurrent configurations, as in figure 4(b), information can be processed and
propagated across the graph’s structure, to allow more complex, long-range computations to be performed.

The GN formalism is a general framework which can capture a variety of other GNN architectures. Such
architectures can be expressed by removing or rearranging internal components of the general GN block in
figure 4, and implementing the various ϕ and ρ functions using specific functional forms. For example, one
very popular GNN architecture is the graph convolutional network (GCN) [49]. Using the GN formalism
[12, 13], a GCN can be expressed as,

e′k = ϕe (ek,vsk) = ekvsk , where ek =
1√

degree(rk)degree(sk)

ē′i = ρe→v (E ′
i ) =

∑
{k | rk=i}

e′k

v′i = ϕv (ē′i) = σ (ē′iW)

Figure 5 shows the correspondence between the GCN and the GN depicted in figure 4.
In section 4 we will discuss the considerations taken into account when deciding how to choose the actual

implementation of the GNs internal functions. The choice of the specific architecture is motivated by the
relationships that exist between the elements in the input data and the task one is trying to solve with the
model.
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Figure 4. (a) A GN block (from [13]). An input graph, G= (u,V,E), is processed and a graph with the same edge structure but
different attributes, G ′ = (u ′,V ′,E ′), is returned as output. The component functions are described in equation (1). (b) GN
blocks can be composed into more complex computational architectures. The top row shows a sequence of different GN blocks
arranged in series, or depth-wise, fashion. The bottom row replaces the distinct GN blocks with a shared, recurrent, configuration.

3. Survey of applications to particle physics

Beyond discriminating signals from background in physics analysis, machine learning can be applied in
many of the steps of the event: triggering, reconstruction and simulation. GNNs are used in three different
ways to make predictions: at the level of the graph, or node, or edge, depending on the task at hand. We
described briefly below the challenges and the methods applied, coming back in further details in 4. All the
presented methods were developed on simulated events, and no performance on real data is reported so far.

In each line of work described below, a decision was first made about how the data could be expressed as
a graph: What are the entities and relations which would be represented as nodes and edges, respectively?
What is the required output, i.e. edge-, node-, or graph-level predictions? From there, choices about the
specific GNN architecture were made to reflect the desired computation: Is a global output network required
to produce graph-level outputs? Should pairwise interactions among nodes be computed, or more GCN-like
summation and non-linear transformation? How many message-passing steps should be used, in order to
propagate information among distant nodes in the graph?

3.1. Graph classification
3.1.1. Jet classification
Jets or showers are sprays of stable particles that are stemming from multiple successive interaction and
decays of particles, originating from a single initial object. The identification of this original object is of
paramount importance in particle physics. Because of the rather large lifetime of the b-hadrons [50] and
hence a significantly displaced decay vertex, identification of b-jet (b-tagging) using classical methods has
been rather successful. With the advent of deep learning methods, lower level information has been used to
improve the performance of b-tagging, and opened the possibility of identifying jets coming from other
particle (c-hadron, top-quark, tau, etc.). The jets coming from pure hadronic interaction driven by quantum
chromo-dynamics (QCD) (so called QCD jets), are covering an extremely large phase space and constitute an
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Figure 5. (a) The graph convolutional network (GCN) [49], a type of message-passing neural network, can be expressed as a GN,
without a global attribute and a linear, non-pairwise edge function. (b) A more dramatic rearrangement of the GN’s components
gives rise to a model which pools vertex attributes and combines them with a global attribute, then updates the vertex attributes
using the combined feature as context.

irreducible background to other classes of jets. In particular, within the framework of the particle flow
reconstruction [51], the event is interpreted through a set of particle candidates. As such, in references
[52–58] the collection of particle candidates is represented on a graph and various methods are applied.

The authors of [52] use a fully connected graph, and message passing architecture to learn the adjacency
matrix, comparing several directed and undirected graph constructions. The classification of jets originating
from the hadronic decay of aW boson and QCD jets is shown to improve with the proposed method. Work
on physics-based inductive biases is left for future work to improve the learning of the adjacency matrix. It
should be noted that learning the adjacency matrix is related to learning attention in [57].

In [54] the authors use the edgeconvmethod from [59] to derive a point cloud architecture for jet tagging.
The connectivity of the graph is defined dynamically by computing node neighborhoods over the distance in
either the input space, or an intermediate latent space when graph layers are stacked. The architecture
respects the particle permutation invariance by mean of averaging of contributions from the connected
neighbors. The performance of this model for the quark/gluon discrimination (separating jets originating
from a quark or a gluon) and top tagging (discriminating hadronic top decay and QCD jet) tasks is reported
to be better than other previously studied architectures. The learned edge function is constrained to taking as
input a node feature and the feature difference between this node and the connected node. In [58] the same
model architecture is applied to the specific case of semi-visible jet originating from the cascade decay of
hypothetical dark hadrons. The method outperforms neural networks that operate on images, as well as
models including physical inductive biases [60]. The authors demonstrate an order of magnitude
improvement on the sensitivity of dark matter search when using this method.

The authors of [55, 56] take inspiration from [38] and adapt the interaction network architecture to the
purpose of graph categorization. Using a fully connected graph over the particles of a jet and primary vertices
of the event, a graph category is extracted after one step of message passing. The performance of this model
on a multi-class categorization (light quarks, gluon, W and Z bosons hadronic decays, and hadronic top jets)
is better than other non-graph-based architectures against which it was compared. On the specific use case of
tagging jets which stem from Higgs bosons decaying onto a pair of b quarks, the algorithm outperforms state
of the art methods, even when the proper mass decorrelation method [61] is applied. The authors report
some potential computation performance issues with running the model for predictions. The measurement
however, is done with a model obtained from a format conversion between major frameworks, and the
performance could be improved with a native implementation instead.
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With [53] the authors applied the Deep Setsmethod from [62] to jet tagging. They propose a simplified
model architecture with provable physics properties, such as infrared and colinear safety. The features of each
particle are encoded into a latent space and the graph category is extracted from the summed representation
in that latent space. The model has no connectivity, and thus no attention or message passing, and pools
information globally across all the elements before the categorization is output, and yet the performance of
this simple model on the quark/gluon classification is surprisingly on par with other more complicated
models. The authors provide ways of interpreting what the model has learned, and are able to extract
closed-form observables from their trained model.

In [57] the graph attention network from [63] is adapted for graph categorization. The node and edge
features are created and updated by means of multiple fully connected neural networks, operating on the
graph, and an additional attention factor, equivalent to a weighted, directed adjacency matrix is computed
per directed edge, and used in the update rule. A k-nearest neighborhood connectivity pattern is constructed
using the distance over the edge features, initialized to the difference between node features, and later in a
latent space when using stacked graph layers. Stability of the models is improved with the use of a multi-head
mechanism, and skip connections at multiple level are added to facilitate the information flow. Their model
outperforms the model from [54] on the quark/gluon classification task, indicating the importance of the
attention mechanism—to which we come back to in sections 4.3 and 5.

3.2. Event classification
Here we use the term event for the capture by an experiment of the full history of a physics process. In
astroparticle, for example it is the collection of signals that covers the interaction of an high energy particle
interacting with the atmosphere. The jet tagging task presented in the previous section is part of a full event
identification in collider physics. Event classification is the task of predicting or inferring the physics process
at the origin of the recorded data.

The authors of [64] applied a graph convolution method for the classification of the signal in the IceCube
detector, to determine if a muon originated from a cosmic neutrino, or from a cosmic ray showering in the
earth atmosphere. The adjacency matrix of a fully connected graph of the detector sensors is constrained to a
Gaussian kernel on the physical distance, with a learnable locality parameter. Node features are updated by
application of the adjacency matrix and non-linear activation. The graph property is extracted from the sum
over the latent features of the nodes of the graph. This GNNmodel yields a signal-to-background ratio about
three times as big as the baseline analysis of such signal.

In [65], themessage passing neural network architecture from [12] is used over a fully connected graph
composed of the final state particles, and the missing transverse energy. Messages are computed from the
node features and a distance in the azimuth-rapidity plane first, then in the node latent space for later
iterations. Such messages are passed across the graph in two iterations, and each node receives a
categorization. The node-averaged value is used to predict the event category. The model is compared to
densely connected models, and is showing superior performance when comparing the S/

√
B analysis

significance. From the same authors, in [66, 67], a similar architecture is applied to event classification for
other signal topologies, demonstrating the versatility of the method.

3.3. Node Classification and Regression
3.3.1. Pileup mitigation
In a view to increase the overall probability of producing rare processes and exotic events, the particle density
of bunches composing the colliding beams can be increased. This results in multiple possible interactions per
beam crossing. The downside of this increased probability is that, when occurring, an interesting interaction
will be accompanied with other spurious, less interesting interactions (pileup), considered as noise for the
analysis. Mitigation of pileup is of prime importance for analysis at colliders. While it is rather easy to
suppress charged particles by virtue of the primary vertex they are originating from, neutral particles are
harder to suppress. In a particle flow reconstruction [51], the state of the art is to compute a pileup weight
per particle [68], and use it for mitigation.

In [69] the authors utilize the gated graph network architecture [36] to predict a per particle probability of
belonging to the pileup part of the event. The graph is composed of one node per charged and neutral
particle in the event, and the connectivity is imposed to∆R≡

√
δϕ2 + δη2 < 0.3 in the azimuth-

pseudorapidity plane. An averaged R-dependent message is computed and gated with each previous node
representation by mean of a gated recurrent unit (GRU) to form the new node representation. The
per-particle pileup probability is extracted with a dense model, after three stacked graph layers, and a skip
connection into the last graph layer. The model outperforms other standard methods for pileup subtraction
and improves resolution of several physical observables.
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The authors of [57] take inspiration from the graph attention network from [63] to predict a per-particle
pileup probability. An architecture very similar to the one used for the jet classification (described
previously) is used to create a global graph latent representation, which in turn is used to compute an output
that is mapped back to each node, thanks to a given order of the latter. This method is shown to improve the
resolution on the jet and di-jet mass observables, while being stable over a large range of pileup density.

3.3.2. Calorimeter reconstruction
A calorimeter is a detector which goal is to contain and measure the total energy of a system. In particle
physics, a calorimeter is commonly composed on the one hand of inactive material inducing showering of
particles and energy loss (absorber), and on the other hand a sensitive material that aims at measuring the
collective released energy in the absorber. Reconstruction of the energy of the incoming particle in such a
sampling calorimeter involves calibration and clustering of the signal of various cells.

With [70] a GN based approach is proposed to cluster and assign the signal in a high granularity
calorimeter to two incoming particles. A latent edge representation is constructed in the latent space of the
nodes, using a potential function of the distance also in the latent space. Two methods are proposed for the
graph connectivity, one—GravNet—using nearest neighbors in a latent space, the other — GarNet —using a
fixed number of additional nodes (dubbed aggregator) in the graph. Node features are updated using
concatenated message from multiple aggregation methods, and provides in output the fraction of energy of
the cell belonging to each particle. The proposed methods are slightly improving over more classical
approaches, and could be beneficial in more complex detector geometry than the one studied.

3.3.3. Particle flow reconstruction
Typically, detectors in particle physics are composed of multiple sub-detectors with various sensing
technologies. Each sub-detector is targeting the measurement of specific characteristic of the particle. The
assembly of all measurements allows for the characterisation of the particle properties. The particle flow—or
energy flow—reconstruction is an algorithm that aims at assigning to a candidate particle all the
measurements in each sub-detector [51]. Since all particles produced during a collision can potentially be
reconstructed, particle flow reconstruction allows for fine grained interpretation and analysis of collision
events.

The author of [71] proposes the object condensation loss formulation, using a GNNmethod to extract the
particles’ information from the graph of individual measurements. In this context, the model is set to predict
the properties of a smaller number of particles than there are measurements, in essence doing a graph
reduction. A stacked-GravNet-based model performs node-wise regression of a kinematic corrective factor
together with a condensation weight. The latter indicates whether a node of the graph has to be considered as
representative of a particle in the event, and have its regressed quantities be assigned to that particle. The
performance of this algorithm is compared with a baseline particle-flow algorithm on rather sparse large
hadron collider (LHC) environments. The proposed method is shown to be more efficient and produces less
fake particles than the standard approach.

3.3.4. Efficiency parameterization
The analysis of particle physics data—in particular collider experiment data—requires applying selection
criteria on the large volume of data, in a view to enhance the proportion of interesting signals. It is crucial to
determine with as little uncertainty as possible the fraction of signal passing these selections, if one wants to
measure the rate of production of that signal during the experiment. Much care is taken to determine these
selection efficiencies, as they play significant roles in measuring the cross section of known processes, or
while setting limits on production of unknown signals. The efficiencies can be measured from data or
simulation, per event or any component of it. It is often the case that the efficiency of a specific selection on a
component of the full events also depends on the other components of the event. Taking into account the
correlation between all components of an event is a hard task that machine learning can help with.

The authors of [72] use GNNs to learn the per-jet tagging efficiency, from a fully connected graph
representation of the jets in the event. The model is a message passing GNN. The edge update and node
updates are both implemented as simple FN. The final node representation is used to predict the per-jet
efficiency for each jet in an event. The GN allows taking into account the dependency of the per-jet efficiency
on the other jets in the event. The comparison is made with the classical method of explicitly parameterizing
the per-jet efficiency with a two dimensional histogram, whose axis are the jet transverse momentum and
pseudo-rapidity. The authors show how the graph representation and GNN parametrisation allows
improving determination of the per-jet efficiency, compared to the more traditional method.
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3.4. Edge classification
3.4.1. Charged particle tracking
Charged particles have the property of ionizing the material they traverse. This property is utilized in a
tracking device (tracker) to perform precise measurement of the passage of charged particles. Contrary to
calorimeters, trackers should not alter too much the energy of the incoming particle, as such it usually
produces a sparse spatial sampling of the trajectory. The reconstruction of the trajectory of original particles
amounts to finding what set of isolated measurement (hits) belong to the same particle. Most tracking
devices are embedded in a magnetic field that will curve the trajectories and hence provide a handle at
measuring the particle momentum component transverse to the magnetic field, since this quantity and the
curvature are inversely proportional.

The authors of [73] propose a GNN approach to charged particle tracking using edge classification. Each
node of the graph represents one sparse measurement, or hit, with edge constructed between pairs of hits
with geometrically plausible relations. Using multiple updates of the node representation and edge weight
over the graph (using the edge weight as attention), the model learns what are the edges truly connecting hits
belonging to the same track. This approach transforms the clustering problem into an edge classification that
defines the sub-graphs of hits belonging to the same trajectory. The performance of this method has high
accuracy when applied in a simplified case, and is promising for more realistic scenarios. In [74], a GNN
model involving message passing is presented and provides improved performance.

3.4.2. Secondary vertex reconstruction
The particles within a jet often originate from various intermediate particles that are worth identifying for
the purpose of identifying the origin of the jet (see the paragraph on jet identification above). The decay
of the intermediate particles are identified as secondary vertices within the jet, using clustering algorithms on
the particles, such as the adaptive vertex reconstruction [75]. Based on the association to secondary vertex,
the particles within a jet can henceforth be partitioned.

In [76], the authors develop a general formalism for set-to-graph neural networks and provide
mathematical proof that their formulation is a universal approximation of function mapping a graph
structure onto an input set—all invariance taken into account. In particular, they apply a set-to-2-edge—
predicting single edge characteristics from the input set—approximation to the problem of particle
association within a jet. The model is a composition of an embedding model, a fixed broadcasting mapping
and a graph-to-graph model. All components are actually rather simple and the expressivity of the full model
stems from the specific equivariant formulation. Their model outperforms the standard methods on jet
partitioning by about 10% over multiple metrics.

4. Formulating HEP tasks with GNN

The articles described in section 3 make use of multiple graph connectivity schemes, model architecture and
loss functions. Experience shows that using our knowledge about the underlying physics in order to encode
the relationship between the nodes—whatever they may represent—in both the input graph and the model
architecture is key in developing algorithms. Unfortunately it is not always clear which methods and model
architectures will outperform the others. This section aims to clarify the choices made and provide a checklist
of considerations for the particle physicist looking to develop a new application using a GNN.

4.1. Task definition
The first step is to decide what function one wants to learn with the GNN. In some applications this is
trivial—for example jet, event or particle classification. In those cases a GNN is used to learn some
representation of the node or the entire graph/set and a standard classifier is trained on that representation.

For tasks such as segmentation or clustering, there is a choice between formulating the task as edge
classification or something like the object condensation method which uses node representations to
formulate a partition of the input set. The object condensation method has an important advantage, in that
it computes relationships between objects (the attractive or repulsive potential) only while training the
algorithm, in the computation of the loss function. An edge classifier will learn an edge representation and
use that to classify edges. The number of edges can be large, increasing the computation and memory
requirements of the algorithm. The determination of the set partition in the object condensation method is a
simple function of the node representation, which greatly reduces those requirements.

None of the work presented in section 3 is using a mapping of the input onto the edges of the graph.
Because an edge can only link two nodes—while a node can be connected to as many edges as
desirable—construction of such graph would require a specific structure of the input. One such use case
could be in situations where observations arise from two concurrent measurements, such as hit position in
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Figure 6. Different methods for constructing the graph. (a) Connecting every node to every other node (b) Connecting
neighboring nodes in some predefined feature space (c) Connecting neighboring nodes in a learned feature space.

stereo strip detectors. The detector is composed of two rectangular modules with a thin strip of sensors along
one dimension, and the modules are tilted with respect to each other by a couple of degrees so as to have the
strip sensors overlapping and hence creating a grid. With strip measurement positioned on the nodes, the
important information would be located on the edges, as a combination of two such hits. Other examples in
network communication might also be relevant.

4.2. Graph construction
In most particle physics applications, the nature of the relationships between different elements in the set are
not clear cut (as it would be for a molecule or a social network). Therefore a decision needs to be made about
how to construct a graph from the set of inputs. Different graph construction methods are illustrated in
figure 6. Depending on the task, one might even want to avoid creating any pairwise relationships between
nodes. If the objects have no pairwise conditional dependence—a DeepSet [53] architecture with only node
and global properties might be more suitable. Edges in the graph serve 3 roles:

(a) The edges are communication channels among the nodes.
(b) Input edge features can indicate a relationship between objects, and can encode physics motivated vari-

ables about that relationship (such as∆R between objects).
(c) Latent edges store relational information computed during message-passing, allowing the network to

encode such variables it sees relevant for the task.

In cases where the input sets are small (Nv ∼O(10) ) the typical and easiest choice is to form a fully
connected graph, allowing the network to learn which object relationships are important. In larger sets, as
the number of edges between all nodes increases as Ne ∝ (Nv)

2, the computational load of using a neural
network to create an edge representation or compute attention weights becomes prohibitive. One possible
work-around is to choose a fixed edge feature that is easy to pre-compute—such as distance between detector
modules.

If an edge-level computation is required, it is necessary to only form some edges. Edges can be formed
based on a relevant metric such as the∆R between particles in a detector, or the physical distance between
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detector modules. Given a distance measure between nodes, some criterion for connecting them needs to be
formulated, such as connecting k-nearest neighbors in the feature space.

The node features used to connect edges can also be based on a learned representation. This is sometimes
referred to as dynamic graph construction, and used by the EdgeConv [54] and GravNet [70] architectures,
for example. We will discuss this in more detail in section 4.3, showing the connection between the idea of
dynamic graph construction and attention mechanisms.

When the graph is constructed dynamically, such as using the node representation to connect edges
between k-nearest neighbors, the gradient of the neural network parameters is only affected by those nodes
that have actually been connected. Since the indexing of node-neighborhood is non differentiable, its
parameters cannot be learn with gradient descent, but can be optimized on hyper-parameter search.

In initial stages of the training, the edge formation is essentially random, allowing the network to explore
which node representations should be closer together in the latest space. During later stages of the training,
one may wish to encourage further exploration by the network. One possible way to do this is to inject
random edges—for example besides connecting nodes to k-nearest neighbors in latest space, connecting an
additional small number of random connections to nodes further away in the latent space.

A recent paper [77] introduces a reinforcement learning agent which traverses an input graph to reach
nodes which should be connected by new edges. Its policy is optimized for some downstream task
performance, so that the nodes it chooses to connect with new edges improve the task performance.

4.3. Model architecture
Designing the model architecture should reflect a logical combination of the inputs towards the learning
task. In the language of the GN formalism (section 2.2), we need to select a concrete implementation of the
GN block update and aggregation functions ϕ and ρ, and decide how to configure their sequence inside the
GN block. Additionally we need to decide which kinds of GN blocks we want to combine and how to stack
them together. As explained in section 2.2, different architectures such as Graph Convolution Networks,
Graph Attention Networks, are specific choices for constructing a GNN—but they are all equivalent in the
sense that their output is a graph with learned node/edge/graph representations which are then used to
perform the actual task.

4.3.1. GN block functions
The key question here is what logical steps one would take to form the GN block output in a way that serves
the task, and which parts of this logical process should be modeled with neural networks? The most general
GN block (as shown in figure 4(a)) could have all of its update functions implemented as neural networks,
which allows the most flexibility in the learning processes. This flexibility might not be required for the task,
and it might carry computational costs that we wish to keep to a minimum. Therefore its probably better to
start with a simple architecture, and only add complexity gradually, until the algorithms performance is
satisfactory.

Figure 7 shows two examples of possible configurations, either creating an edge representation before
aggregating edges and forming a node update, or using global aggregation before a node update. Both
configurations result in an updated node representation, but one of them is based on a sum of pair-wise
representations, and the other on a global sum of node representations—the information content is the
same, but the inductive bias is different. For example, the authors of [72] assumed that the jet-tagging
efficiency is heavily affected by the∆R between neighboring jets—therefore an edge update step created a
representation of pair-wise interaction between jets, which was then summed for each jet to create the
updated node representation. In contrast the authors of [53] used a DeepSet architecture, where each node
representation is created independently from its neighbors, the node representations are then summed to
create the graph representation, with each node representation weighted by the particles energy.

4.3.2. Attention mechanisms
Another important component that can be used in defining the ρe→v and ρv,e→u aggregation functions is
using attention mechanisms, as illustrated in figure 8. The term attention is rooted in the perceptual
psychology and neuroscience literatures, where it refers to the phenomenon and mechanisms by which a
subset of incoming sensory information is selected for more extensive processing, while other information is
deprioritized or filtered out.

The key consideration for defining and adding an attention mechanism is whether different parts of the
input data are more important than others. For example, in classifying jets, some particles that originate
from a secondary decay are an important footprint of a particular class of jets—therefore those particles may
be more important for the classification task. There are a few different implementations of attention
mechanisms. They all share the basic concept of using a neural network or a pre-defined function to
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Figure 7. Possible architectures for a GN block that create an updated node representation. Using an edge representation as an
intermediate step (upper diagram) gives a different inductive bias to the model, compared to using a global representation of the
set (lower diagram). The function names are from equation (1) and figure 4(a).

Figure 8. Attention mechanisms allow the network to learn relative importance of different nodes/edges in the aggregation
functions. The red node is a node whose neighbors are being aggregated by ρe→v , the attention mechanism will learn to provide
relative weights for the adjacent nodes/edges (the green highlights) such that the output of ρe→v is a weighted sum of either the
node or edge representations.

compute weights which represent the relative importance of different elements in a set. In the GN block ρ
functions, these weights are used to create weighted sums of the representations of the different elements.

Here we want to draw attention to the connection between attention mechanisms and dynamic graph
construction. Figure 9 shows the structure of two architectures discussed in section 3, the EdgeConv,
GravNet layers. These are both GN block implementations, they take as input a set of nodes (without explicit
edges) and output an updated node representation. Both begin with a node embedding stage, which creates a
node representation without exchanging information between the nodes. This node embedding (or only part
of its feature vector, in the case of GravNet) is interpreted as a position of the node in a latent euclidean
space, and edges are formed between k-nearest neighbors. This can be thought of as a fully connected graph
with an attention mechanism that assigns a weight of 1 to nodes within the set of k-nearest neighbors, and 0
otherwise. The advantage of this procedure over using a neural network to compute attention weights is the
much lower computational cost of both computing the edge attention weight and the subsequent
edge-related operations.

It is worth noting that the GarNet layer [70] can be described as a form ofmulti-headed self-attention
mechanism [48]. The GarNet layer interprets the node embedding as s different ‘distances’ (with s being the
dimension of the embedding). These distances are attention weights over each node of the graph, and they
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Figure 9. The GN block structure of the EdgeConv, GravNet layers as described in the GN formalism. The node embedding stage
is a GN block which operates on the nodes independently (without any information exchange between them), followed by a GN
block which creates an edge representation for every pair of vertices, aggregates edges for each node and then updates the vertex
representation. The edge update function ϕe does not use a neural network, but uses a pre-defined function of the node
representation—leading to a reduction in computational cost.

Figure 10. Each iteration of message passing between nodes increases a nodes receptive field. For example the node in red
communicates with its three connected neighbors (red outline) in the first message passing step. The orange and yellow dotted
lines represent the nodes that communicate after two and three iterations, respectively. The node left out of the yellow line have
not exchanged information with the red node, after three iterations only.

are used to compute s different weighted sums—these are the s different heads of the attention mechanism.
The weighted sums are propagated back to the nodes again via attention weights of each node to each of the s
attention heads. The reason GarNet is computationally affordable without a hard cutoff—such as k-nearest
neighbors—is that ϕv, the node embedding function, is the only one computed with a neural network. The
attention weights are all computed with pre-defined functions given the node embedding (specifically, the
function is exp(−|w|) where w is the attention weight).

4.3.3. Stacking GN blocks
A stack of GN blocks (as described in figure 4(b)) serves two purposes. First, in the same way that stacked
layers in any neural network architecture (such as a CNN) can be thought of as gradually constructing a high
level representation of the data, GN blocks arranged sequentially serve the same purpose for constructing the
node/edge and graph representations. Therefore, additional GN blocks increase the depth of the model and
its expressive power.

Second, after one iteration of message passing in a single GN block, the node has only exchanged
information with its immediate connected neighbors. This is illustrated in figure 10. Multiple iterations with
a GN block (either the same block applied multiple times, or different blocks applied in a sequence) increase
each nodes receptive field, as the representation of its neighboring nodes was previously updated with
information from their neighbors. Often skip or residual connections, which combine the input with the
output, are used to prevent corruption of the updated representations, and preservation of the gradient
signal, over many message passing steps, as is common in CNNs and RNNs.
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5. Summary and discussion

The papers reviewed in section 3 can be seen as the first wave of application of graph neural network
architectures to diverse tasks in HEP. The methods show superior performance over other model
architecture, thanks to the inductive bias, reduction of number of parameters, more elaborated loss function,
and above all a much more natural data representation. Graphs are constructed from observable in various
ways, often with sparse connectivity to lessen computational requirements.

While multiple architectures are presented with different names, and slightly different formalisms, they
all share the core concept of exchanging information across the graph. We deciphered the variety of models
in section 4 by providing some considerations on how the models were build. We provide in the following
some new directions to be considered as future direction for the next generation of graph neural network
applications in HEP.

5.1. Transformer, reformer, etc
Following the discussion of the GravNet and EdgeConv layers in section 4.3 and their relation to attention
mechanisms, another class of models which are closely related to GNNs, and which perform a type of soft
structural prediction, are Transformer architectures, based on the self-attention mechanism [48]. In GNN
language, a Transformer computes normalized edge weights in a complete graph (i.e. a graph with edges
connecting all pairs of nodes), and passes messages along the edges in proportion to these weights, analogous
to a hybrid of graph attention networks [63] and GCNs [49].

In GN notation, described in [13] and used explicitly in graph attention networks [63], the Transformer
uses a ϕe which produces both a vector message and a scalar unnormalized weight, and the ρe→v function
normalizes the weights before computing a weighted sum of the message vectors. This allows a set of input
items to be treated as nodes in a graph, without observed input edges, and the edge structure to be inferred
and used within the architecture for message-passing. Different variants of attention mechanisms are a way to
give different weights in the pooling operations ρe→v, ρv,e→u, as illustrated if figure 8. The implementation of
attention should reflect the nature of the interaction between the objects in the set, as they relate to the task.

The Reformer [78] architecture overcomes the quadratic computational and memory costs that challenge
traditional Transformer-based methods, by projecting nodes into a learned high-dimensional embedding
space where nearest neighbors are efficiently computed to inform a sparse graph over which to pass messages.
The recent Linformer [79] method is similar, but with a low rank approximation to the soft adjacency matrix.

5.2. Graph generative models
Importantly, the GN does not predict structural changes directly. However, many recent papers use GNs (or
other GNNs) to decide how to modify a graph’s structure. For example, [80] and [81] are autogressive graph
generators, which use a GN or Transformer to predict whether a new vertex should be added to a graph (by
the graph-level output), and which existing vertices to connect it to with edges (by the vertex-level outputs).
The GraphRNN [82], and Graphite [83] are generative models over edges that use an RNN for sequential
prediction, and GraphGAN [84] is an analogous method based on generative adversarial networks. [85]’s
Neural Relational Inference treats the existence of edges as latent random variables, and trains a posterior
edge inference front-end via variational autoencoding. In [86] and [87], a GN is used to guide the policy of a
reinforcement learning agent and build graphs that represent physical scenes. The DiffPool [88] architecture
(illustrated in figure 11 is an attention-based soft edge prediction mechanism, but over hierarchies of graphs,
where lower-level ones are pooled to higher-level ones.

Generative models of graphs have not been explored much in particle physics, though some unpublished
work is on-going. The need for computational resource for simulation in particle physics is almost as large as
the requirements for event reconstruction. There is a breadth of efforts on using machine learning as
surrogate simulators in particle physics. For the reasons exposed in section 1 that data in particle physics can
often be represented as graphs, it is natural to investigate the use of generative models using graphs as a
possible solution. Models under development are for example predicting energy deposition in the cells of a
calorimeter or the particle candidates obtained from a particle flow reconstruction algorithm. In all cases, the
generated quantities are naturally represented as a set or graph, with fixed or variable size.

5.3. Computation performance
An important consideration for building and efficiently training GNNs on hardware is whether to use dense
or sparse implementations of the graph’s edges. The number of edges in a graph usually defines the memory
and speed bottleneck, because there are typically more edges than nodes and the ϕe function is applied the
most times. A dense adjacency matrix supports fast, parallel matrix multiplication to compute E ′, which, for
example, is exploited in speed-efficient GCN- and Transformer-style models. The downside is that the
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Figure 11. The DiffPool [88] layer and similar architectures allow to modify the graph structure as an intermediate step of the
model computation. In the illustration, nodes in the input graph are grouped together to form nodes in the output graph. Each
node is colored according to the outline of the nodes associated to it in the input graph. The output graph adjacency matrix is also
learned as part of the DiffPool layer output.

adjacency matrix’s memory footprint is quadratic in the number of nodes. Alternatively, using sparse
adjacency matrices allows the memory to scale linearly in the number of edges, which allows much larger
graphs to be processed. But the sparse indexing operations required to implement sparse matrix
multiplication can incur greater time costs than their dense counterparts—this is an active area of
development for both software and hardware acceleration. However, sparse operations are a key bottleneck
in current deep learning hardware, and should next generation hardware substantially improve their speed,
this would potentially improve the relative advantage of sparse edge implementations of GNNs. In a
computing environment in HEP, one cannot expect to have access to dedicated accelerators (GPU, TPU,
FPGA, etc.)—although work is going in the direction of building the infrastructure—and one needs to keep
into consideration the time for running the model in production.

5.4. Final remarks
Neural networks that operate on sets are increasing in popularity in HEP tasks, both in event reconstruction,
and in physics analysis. These neural networks are performing well in proof-of-concept studies, either
surpassing or matching existing state of the art techniques. They have not yet been tested in the field with real
detector data. It is important to understand that all of the models use the same basic building blocks to
perform their tasks, and the most important consideration in designing the architecture for these neural
networks is to correctly model the nature of interaction between the objects in the input set. It is probably
the best practice to start with a simple graph model and architecture then build up on additional complexity
geared towards incorporating scientific understanding of the physical process at stake.

Acknowledgments

We thank Thomas Keck for valuable feedback on the manuscript. J S is supported by the NSF-BSF Grant
2017600 and the ISF Grant 125756 and partially supported by the Israeli Council for Higher Education
(CHE) via the Weizmann Data Science Research Center. J-R V is partially supported by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program
(Grant No. 772369) and by the U S Department of Energy, Office of Science, Office of High Energy Physics
under Grant Nos. DE-SC0011925, DE-SC0019227 and DE-AC02-07CH11359.

Data sharing is not applicable to this article as no new data were created or analysed in this study.

ORCID iDs

Jonathan Shlomi https://orcid.org/0000-0002-2628-3470
Peter Battaglia https://orcid.org/0000-0003-3622-7111
Jean-Roch Vlimant https://orcid.org/0000-0002-9705-101X

References

[1] Radovic A, Williams M, Rousseau D, Kagan M, Bonacorsi D, Himmel A, Aurisano A, Terao K and Wongjirad T 2018 Machine
learning at the energy and intensity frontiers of particle physics Nature 560 41–8

[2] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L and Lenka Z 2019 Machine learning and the
physical sciences Rev. Mod. Phys. 91 045002

16

https://orcid.org/0000-0002-2628-3470
https://orcid.org/0000-0002-2628-3470
https://orcid.org/0000-0003-3622-7111
https://orcid.org/0000-0003-3622-7111
https://orcid.org/0000-0002-9705-101X
https://orcid.org/0000-0002-9705-101X


Mach. Learn.: Sci. Technol. 2 (2021) 021001 J Shlomi et al

[3] Guest D, Cranmer K and Whiteson D 2018 Deep Learning and its application to LHC physics Ann. Rev. Nucl. Part. Sci. 68 161–81
[4] Bourilkov D 2020 Machine and deep learning applications in particle physics Int. J. Mod. Phys. A 34 1930019
[5] Larkoski A J, Moult I and Nachman B 2020 Jet substructure at the Large Hadron Collider: a review of recent advances in theory and

machine learning Phys. Rept. 841 1–63
[6] Community H E P 2020 A Living Review of Machine Learning for Particle Physics (https://iml-wg.github.io/HEPML-LivingReview/)
[7] Cranmer M D, Rui X, Battaglia P, and Shirley H 2019 Learning symbolic physics with graph networks arXiv:1909.05862
[8] Cranmer M, Sanchez-Gonzalez A, Battaglia P, Rui X, Cranmer K, Spergel D, and Shirley H 2020 Discovering symbolic models from

deep learning with inductive biases arXiv:2006.11287
[9] Mou L, Li G, Zhang L, Wang T and Jin Z 2014 Convolutional Neural Networks Over Tree Structures for Programming Language

Processing arXiv:1409.5718
[10] Shen Y, Tan S, Sordoni A and Courville A 2018 Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks

Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks arXiv:1810.09536
[11] Bronstein MM, Bruna J, LeCun Y, Szlam A and Vandergheynst P 2017 Geometric deep learning: going beyond euclidean data IEEE

Signal Process. Mag. 34 18–42
[12] Gilmer J, Schoenholz P F, Riley O V and Dahl G E 2017 Neural Message Passing for Quantum Chemistry Neural Message Passing for

Quantum Chemistry arXiv:1704.01212
[13] Battaglia P et al 2018 Relational Inductive Biases, Deep Learning and Graph Networks Relational Inductive Biases, Deep Learning

and Graph Networks arXiv:1806.01261
[14] Zhou J, Cui G, Zhang Z, Yang C, Liu Z, Wang L, Changcheng Li, and Sun M 2018 Graph neural networks: A review of methods and

applications arXiv:1812.08434
[15] Zonghan W, Pan S, Chen F, Long G, Zhang C and Yu P S 2019 A Comprehensive Survey on Graph Neural Networks

arXiv:1901.00596
[16] The ATLAS Collaboration 2017 Quark versus Gluon Jet Tagging Using Jet Images with the ATLAS Detector Technical Report No.

ATL-PHYS-PUB-2017-017 CERN
[17] Kasieczka G, Plehn T, Russell M and Schell T 2017 Deep-learning Top Taggers or The End of QCD? JHEP 05 006
[18] Macaluso S and Shih D 2018 Pulling out all the tops with computer vision and deep learning JHEP 10 121
[19] Andrews M, Paulini M, Gleyzer S and Poczos B 2020 End-to-end physics event classification with CMS open data: applying

image-based deep learning to detector data for the direct classification of collision events at the LHC Comput. Softw. Big Sci. 4 6
[20] Lin J, Freytsis M, Moult I and Nachman B 2018 Boosting H→ bb̄ with Machine Learning JHEP 10 101
[21] ATLAS 2019 Convolutional Neural Networks with Event Images for Pileup Mitigation with the ATLAS Detector
[22] Hochreiter S and Schmidhuber Jurgen 1997 Long short-term memory Neural Comput. 9 1735–80
[23] Cho K, Bart Van Merriënboer, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, and Bengio Y 2014 Learning phrase

representations using RNN encoder-decoder for statistical machine translation arXiv:1406.1078
[24] The ATLAS Collaboration 2017 Identification of Jets Containing b-Hadrons With Recurrent Neural Networks at the Atlas

Experiment Technical Report No. ATL-PHYS-PUB-2017-003 CERN
[25] Collaboration C M S 2020 Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques

JINST 15 P06005
[26] Louppe G, Cho K, Becot C and Cranmer K 2019 QCD-aware recursive neural networks for jet physics JHEP 01 057
[27] Deep sets based neural networks for impact parameter flavour tagging in ATLAS Technical Report ATL-PHYS-PUB-2020-014,

CERN, Geneva, May 2020
[28] Schmidhuber Jurgen 2015 Deep learning in neural networks: An overview Neural Netw. 61 85–117
[29] LeCun Y, Bengio Y and Hinton G 2015 Deep learning Nature 521 436–44
[30] Abadi M et al 2015 TensorFlow: large-scale machine learning on heterogeneous systems Software available from

(https://tensorflow.org)
[31] Paszke A et al 2017 Automatoic differentiation of PyTorch 31st Conf. on Neural Information Processing Systems (NIPS 2017),
[32] Scarselli F, Gori M, Tsoi A C, Hagenbuchner M and Monfardini G 2008 The graph neural network model IEEE Trans. Neural Netw.

20 61–80
[33] Gori M, Monfardini G and Scarselli F 2005 A new model for learning in graph domains. In Proc.. 2005 IEEE Int. Conf. on Neural

Networks, 2005 IEEE vol 2 pp 729–734
[34] ALMEIDA L B 1987 A learning rule for asynchronous perceptrons with feedback in a combinatorial environment Proc. of the IEEE

1st International Conference on Neural Networks, 1987 pp 609–618
[35] Pineda F J 1987 Generalization of back-propagation to recurrent neural networks Phys. Rev. Lett. 59 2229
[36] Yujia Li, Tarlow D, Brockschmidt M and Zemel R 2015 Gated Graph Sequence Neural Networks Gated Graph Sequence Neural

Networks arXiv:1511.05493
[37] Kearnes S, McCloskey K, Berndl M, Pande V and Riley P 2016 Molecular graph convolutions: moving beyond fingerprints

J. Computer-Aided Mol. Design 30 595–608
[38] Battaglia P W, Pascanu R, Lai M, Rezende D and Kavukcuoglu K 2016 Interaction networks for learning about objects, relations

and physics arXiv:1612.00222
[39] Sanchez-Gonzalez A, Heess N, Springenberg J T, Merel J, Riedmiller M, Hadsell R, and Battaglia P 2018 Graph networks as

learnable physics engines for inference and control arXiv:1806.01242
[40] Yunzhu Li, Jiajun W, Tedrake R, Tenenbaum J B, and Torralba A 2018 Learning particle dynamics for manipulating rigid bodies,

deformable objects, and fluids arXiv:1810.01566
[41] Sanchez-Gonzalez A, Godwin J, Pfaff T, Ying R, Leskovec J, and Battaglia P W 2020 Learning to simulate complex physics with

graph networks arXiv:2002.09405
[42] Bruna J, Zaremba W, Szlam A, and Yann L 2013 Spectral networks and locally connected networks on graphs arXiv:1312.6203
[43] Defferrard Mel, Bresson X, and Vandergheynst P 2016 Convolutional neural networks on graphs with fast localized spectral

filtering Adv. Neural Inf. Process. Syst. 3844–52
[44] Henaff M, Bruna J, and Yann L 2015 Deep convolutional networks on graph-structured data arXiv:1506.05163
[45] Ummenhofer B, Prantl L, Thuerey N and Koltun V 2020 Lagrangian fluid simulation with continuous convolutions Int. Conf. on

Learning Representations
[46] Sanchez-Gonzalez A, Bapst V, Cranmer K, and Battaglia P 2019 Hamiltonian graph networks with ODE integrators

arXiv:1909.12790
[47] Cranmer M, Greydanus S, Hoyer S, Battaglia P, Spergel D, and Shirley H 2020 Lagrangian neural networks arXiv:2003.04630

17

https://doi.org/10.1146/annurev-nucl-101917-021019
https://doi.org/10.1146/annurev-nucl-101917-021019
https://doi.org/10.1142/S0217751X19300199
https://doi.org/10.1142/S0217751X19300199
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1016/j.physrep.2019.11.001
https://iml-wg.github.io/HEPML-LivingReview/
http://arxiv.org/abs/1909.05862
http://arxiv.org/abs/2006.11287
https://arxiv.org/abs/1409.5718
https://arxiv.org/abs/1810.09536
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1109/MSP.2017.2693418
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1812.08434
https://arxiv.org/abs/1901.00596
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP10(2018)121
https://doi.org/10.1007/JHEP10(2018)121
https://doi.org/10.1007/s41781-020-00038-8
https://doi.org/10.1007/s41781-020-00038-8
https://doi.org/10.1007/JHEP10(2018)101
https://doi.org/10.1007/JHEP10(2018)101
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1406.1078
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://tensorflow.org
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1103/PhysRevLett.59.2229
https://doi.org/10.1103/PhysRevLett.59.2229
https://arxiv.org/abs/1511.05493
https://doi.org/10.1007/s10822-016-9938-8
https://doi.org/10.1007/s10822-016-9938-8
https://arxiv.org/abs/1612.00222
http://arxiv.org/abs/1806.01242
http://arxiv.org/abs/1810.01566
http://arxiv.org/abs/2002.09405
http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1506.05163
http://arxiv.org/abs/1909.12790
http://arxiv.org/abs/2003.04630


Mach. Learn.: Sci. Technol. 2 (2021) 021001 J Shlomi et al

[48] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Łukasz and Polosukhin I 2017 Attention is all you need
Advances in Neural Information Processing Systems pp 5998–6008

[49] Kipf T N and Welling M 2016 Semi-supervised classification with graph convolutional networks arXiv:1609.02907
[50] Tanabashi M et al 2018 Review of Particle Physics Phys. Rev. D 98 030001
[51] Sirunyan A M et al 2017 Particle-flow reconstruction and global event description with the CMS detector JINST 12 P10003
[52] Bruna J, Cho K, Cranmer K, Louppe G Henrion I and Brehmer J et al 2017 Neural message passing for jet physics Deep Learning for

Physical Sciences Workshop at the 31st Conf. on Neural Information Processing Systems (NIPS)
[53] Komiske P T, Metodiev E M and Thaler J 2019 Energy flow networks: deep sets for particle jets J. High Energy Phys. 01 121
[54] Huilin Q and Gouskos L 2020 ParticleNet: Jet tagging via particle clouds 101 056019
[55] Moreno E A et al 2020 Jedi-net: a jet identification algorithm based on interaction networks Eur. Phys. J. C 80 58
[56] Moreno E A, Nguyen T Q, Vlimant J-R, Cerri O, Newman H B, Periwal A, Spiropulu M, Duarte J M and Pierini M 2020

Interaction networks for the identification of boosted h→ bb̄ decays 102 012010
[57] Mikuni V and Canelli F 2020 ABCnet: An Attention-Based Method for Particle Tagging Eur. Phys. J. Plus 135 463
[58] Bernreuther E, Finke T, Kahlhoefer F, Krämer M and Alexander M 2020 Casting a graph net to catch dark showers

arXiv:2006.08639
[59] Wang Y, Sun Y, Liu Z, Sarma S E, Bronstein MM and Solomon J M 2018 Dynamic Graph cnn for Learning on Point Clouds

arXiv:1801.07829
[60] Butter A, Kasieczka G, Plehn T and Russell M 2018 Deep-learned Top Tagging with a Lorentz Layer SciPost Phys. 5 028
[61] CERN 2018 Performance of mass-decorrelated jet substructure observables for hadronic two-body decay tagging in ATLAS

Technical Report No. ATL-PHYS-PUB-2018-014
[62] Zaheer M, Kottur S, Ravanbakhsh S, Poczos B, Salakhutdinov R R and Smola A J 2017 Deep Sets Advances in Neural Information

Processing Systems 30 eds I Guyon, U V Luxburg, S Bengio, H Wallach, R Fergus, S Vishwanathan and R Garnett (Red Hook, NY:
Curran Associates, Inc) 3391–3401 (http://papers.nips.cc/paper/6931-deep-sets.pdf)
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