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ABSTRACT 
 

This paper proposes an enhanced dung beetle optimization (EDBO) algorithm in order to address 
the issues of the dung beetle optimization (DBO) algorithm which include easy convergence to the 
local optimal, slow convergence speed, and poor global search capability. The improvements in the 
EDBO are implemented via the following four aspects. Firstly, the SPM chaotic mapping designed 
through combing Sine mapping and Piece-Wise Linear Chaotic Mapping is introduced to initialize 
the population for increasing diversity of population. Secondly, the position update formula in the 
Golden Sine Algorithm (Golden-SA) is used to replace the formula for the mathematical model of 
dung beetle ball-rolling behavior without obstacle with the purpose of improving the convergence 
accuracy and accelerating the convergence speed. Thirdly, the spiral foraging strategy in the tuna 
swam optimization (TSO) is hybridized with the mathematical model of dung beetle breeding and 
foraging behavior. The hybridization not only balances the global exploration and local exploitation 
but also keeps the diversity of the population. Finally, the EDBO can enhance the capability of 
escaping the local optima and extending the search space by means of bringing in the two different 
sets of adaptive weight coefficients. The performance of the EDBO is evaluated and compared with 
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other swarm intelligence optimization algorithms via the benchmark functions of different 
characteristics. The results demonstrate that the EDBO outperforms the classical DBO and other 
compared algorithms in terms of convergence speed and accuracy.  

 

 
Keywords: Enhanced dung beetle optimization (EDBO); SPM chaotic mapping; golden sine 

algorithm; Spiral foraging strategy; adaptive weight coefficients. 
 

1. INTRODUCTION 
 
“The swarm intelligence (SI) optimization 
algorithm is a heuristic algorithm inspired by the 
biological behaviors which is used to find out the 
global optimal solution in the design space for 
optimization problems” [1,2]. The characteristics 
of the SI algorithms contain simple theoretical 
framework, excellent convergence accuracy and 
speed, and powerful global search ability. The 
common SI algorithms include Particle Swarm 
Optimization (PSO) [3], Grey Wolf Optimizer 
(GWO) [4], Cuckoo search (CS) [5], Wild Horse 
Optimizer (WHO) [6], Harris Hawks Optimization 
(HHO) [7], Northern Goshawk Optimization 
(NGO) [8], Coot Optimization Algorithm (COOT) 
[9], and so on. The dung beetle optimization 
(DBO) algorithm was first put forth by Jiankai 
Xue and Bo Shen in 2022 as a novel approach 
for handling the optimization issues [10]. The 
optimization performance of the DBO is superior 
to most of traditional optimization algorithms and 
has been used for handling the engineering 
optimization. Nevertheless, there are some 
drawbacks in the DBO including poor global 
search capability, premature convergence to the 
local optima and slow convergence speed.  
 
In recent years, scholars have proposed 
improved metaheuristic algorithms by introducing 
several modification tactics to enhance the 
optimization performance due to the existing 
drawbacks of the metaheuristic algorithms. Zeng 
et al. [11] proposed “the improved Wild Horse 
Optimizer (IWHO)in which the diversity of the 
population was improved by using the SPM 
chaotic mapping for population initialization, the 
Golden Sine Algorithm was introduced to 
improve the convergence accuracy and speed, 
and the opposition-based learning and the 
Cauchy variation strategy were utilized to extend 
the search space and enhance the ability of 
avoiding getting trapped into the local optima”. 
Han et al. [12] fused “the weight coefficients, 
optimal bootstrap position, and spiral search 
strategy in the Crow Search Algorithm to keep a 
balance between global exploration and local 
exploitation and improve the convergence rate”. 
Liu et al. [13] combined “the Arithmetic 

Optimization Algorithm (AOA) with Gold-SA and 
additionally the Levy flight and Brownian 
mutation strategy proposed in this paper were 
introduced to improve the capability of the hybrid 
algorithm”. 
 

Thus, it is necessary to introduce several 
modification tactics to address the drawbacks of 
the DBO. This paper proposes an enhanced 
dung beetle optimization (EDBO) algorithm, 
which is reflected in four aspects: 
 

(1) EDBO utilizes the SPM chaotic mapping to 
initialize the population aiming at 
increasing the diversity of population  

(2) The individual update strategy in Golden 
Sine Algorithm is introduced in the EDBO 
to replace the formula for the mathematical 
model of dung beetle ball-rolling behavior 
without obstacle for the purpose of 
extending the search range and 
accelerating the convergence speed. 

(3) The control coefficients of the spiral 
foraging strategy in the TSO are used to 
renew the formula for the mathematical 
model of dung beetle breeding and 
foraging behavior in order to reduce the 
probability of falling into the local optima 
and balance the global exploration and 
local exploitation. 

(4) The two different sets of adaptive weight 
coefficients are introduced in the formula 
for the mathematical model of dung beetle 
stealing behavior to enhance the global 
searchability and avoid getting trapped in 
the local optima. The first one comes from 
the spiral foraging strategy of the TSO and 
the other one is newly proposed in the 
paper. 

 

The rest of the paper is arranged as follows: The 
basic theory of the DBO is provided in Section 2; 
Section 3 introduces the proposed EDBO 
algorithm model at length; The efficacy of the 
proposed EDBO algorithm is evaluated in 
Section 4 by comparing with other optimization 
algorithms, including the classical DBO, on 
different unimodal benchmark functions and 
multimodal benchmark functions. Section 5 gives 
the conclusion of the paper. 
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2. THE CLASSICAL DBO ALGORITHM 
 
“The Dung Beetle Optimization algorithm is a 
novel swarm intelligence optimization algorithm 
designed for handling both unconstrained and 
constrained optimization problems. The 
inspiration of the DBO comes from some dung 
beetle habits including ball-rolling, dancing, 
foraging, breeding, and stealing. The basic 
principle of this algorithm is that the DBO divides 
the dung beetle population into four 
subpopulations and then conducts the following 
four optimization processes which consist of 
rolling balls, foraging, breeding, and stealing” 
[10]. 
 

2.1 The Mathematical Model of Dung 
Beetle Ball-rolling Behavior 

 
The dung beetle ball-rolling behavior is made up 
of the following two different situations. The first 
one is obstacle-free mode which means that the 
dung beetle will move forwards for search based 
on the navigation of sun without obstacle during 
the ball-rolling process. In this model, the 
position of dung beetles is updated by the 
following formula:  
 

  
   

   
 
       

   
  

    
 
       

 
                     1  

 
where g represents the number of the current 

iterations,   
 
 represents the position information 

of     dung beetle in the population at the     
iteration,   represents a natural coefficient taking 
value of 1 or -1 in different situations where the 
value of 1 means no deviation and the value of -1 
means deviation from the original direction,   
represents an invariant quantity indicating the 
flexure coefficient in the range of          ,   
represents a fixed parameter within the range 

     ,       
 

 represents the global worst position 

in the current iteration,    
 
       

 
  represents 

the difference between     dung beetle and the 
global worst dung beetle which is used to 
simulate the changes in light intensity. 
 
The second situation is obstructed mode which 
means that the dung beetles need to seek a new 
direction to move forwards by dancing when it 
encounters an obstacle and has difficulty in 
continuing to conduct the behavior of ball-rolling. 
A tangent function which only considers the 
values in the range of       is used to mimic the 
behavior of dance as a method to determine a 
new ball-rolling direction. Thus, the position of 

dung beetle can be updated by the formula which 
is defined as follows: 
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where    
 
   

   
  represents the difference 

between     dung beetle and         dung 
beetle. It should be noted that the position of 
dung beetle is not be updated when   

  
 

 
     . 

 

2.2 The mathematical Model of Dung 
Beetle Breeding Behavior 

 
In nature, female dung beetles roll their dung 
balls to a safe place and then hide them. It is 
important for female dung beetles to choose a 
suitable place for laying their eggs so as to 
provide a safe habitat for their offspring. Inspired 
by this behavior, a frontier option strategy is 
proposed to determine the area where the eggs 
are produced. The strategy can be written as 
follows: 
 

 
   

 
                  

   
 
                  

                     3  

 
where    represents the current local optimal 

position,    
 
 and    

 
 represent the bottom and 

top boundaries of the area where female dung 

beetles lay their eggs,     and     represent the 
lower and upper bounds of optimization problem, 
       , and   represents the upper limits 
of iterations.  
 
Once the female dung beetles determine the 
spawning area, they produce their eggs in the 
area. It should be noted that each female dung 
beetle generates only one egg per iteration in the 
DBO. The boundary range is dynamically 
adjusted with the number of iterations increasing, 
thus the position where female dung beetles 
produce their eggs is also dynamic. The position 
update equation for the dung beetle breeding 
behavior can be defined as follows: 
 

  
   

          
 
    

 
    

    
 
    

 
                         

 

where   
 

 represents the location information of 

the     brood ball in the population at the     
iteration,    and    represent two random and 

independent vectors which have the size of     
each,   represents the number of variables in 
the optimization problem. It is essential to ensure 
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the position of the brood ball to be strictly 
restricted to a defined range. 
 

2.3 The Mathematical Model of Dung 
Beetle Foraging Behavior 

 
The foraging behavior is mainly designed for 
small dung beetles which emerge from the 
ground for searching food. Thus, it is necessary 
to determine the optimal foraging area for guiding 
the foraging dung beetles. The optimal foraging 
area is dynamically adjusted with the number of 
iterations increasing which can be expressed as 
follows: 
 

 
   

 
                  

   
 
                  

                     

 

where    represents the global best position, 

   
 

 and    
 

 represent the lower and upper 
bounds of the optimal foraging region, other 
parameters have the same definition as in 
section 2.2. So, the location of small dung 
beetles can be updated by using the equation 
which is defined as follows: 
 

  
   

   
 
       

 
    

 
    

    
 
    

 
                        

 

where   
 

 represents the location information of 

the     small dung beetles in the population at the 

    iteration,    is a random number with 
standard normal distribution, and    represents a 

random vector within the range       which has 
the size of    .  
 

2.4 The Mathematical Model of Dung 
Beetle Stealing Behavior 

 

There are some dung beetles called thieves 
which steal dung balls from other dung beetles in 
the population. Thus, the position update 
equation for the thieves can be defined as 
follows: 
 

  
   

            
 
        

 
                  

 

where   
 

 represents the location information of 

the     thief in the population at the     iteration, 
  represents a random vector obeying normal 
distribution with the size of    , and   
represent a fixed parameter.  
 
The flowchart of the DBO algorithm is given in 
Fig. 1. 
 

3. ENHANCED DUNG BEETLE 
OPTIMIZATION ALGORITHM 

 
Although the DBO algorithm is simple and has 
been applied to handle some unconstrained and 
constrained optimization problems, there are 
some shortcomings in it which include weak 
ability of global search and premature 
convergence to the local optimal. An enhanced 
dung beetle optimization algorithm has been 
proposed to overcome the existing deficiency. 
 

3.1 SPM Chaotic Mapping 
 
The DBO generates initial population randomly in 
the design space which can cause the loss of the 
population diversity and overconvergence in the 
subsequent iteration process. The chaos models 
have been confirmed to be effective for 
increasing diversity of population in swarm 
intelligence optimization algorithm. Common 
chaos models include Tent [14], Logistic [15], 
Henon [16], and Kent [17] chaos mapping whose 
basic method is to involves mapping chaotic 
sequences into individual search spaces. Two 
significant factors including simplicity and 
ergodicity should be considered when it comes to 
selecting a suitable chaotic mapping to generate 
a random sequence. Thus, the paper chooses an 
efficient chaotic mapping called SPM designed 
through combing Sine mapping and Piece-Wise 
Linear Chaotic Mapping which has superior 
chaotic and ergodic properties [11]. The formula 
is defined as follows: 

     

 
 
 
 

 
 
     

  
 
                      

    
    
     

                        

    
      
     

                              

    
    
 

                            

                                                     

 
 
 



 
 
 
 

Lu and Zhang; Curr. J. Appl. Sci. Technol., vol. 42, no. 17, pp. 9-22, 2023; Article no.CJAST.102486 
 

 

 
13 

 

With the control parameter         and 

       , the system is in a chaotic state. SPM 
Chaotic Mapping the value of control parameter 
and the initial value of    at first. Then a random 
sequence within the range of       are generated 
after a certain number of cyclic iterations. The 
initial population dung beetles based on the 
random sequence obtained by SPM Chaotic 
Mapping improve diversity of population. This 
paper chooses the Logistic mapping and Cubic 
mapping for comparison under the condition 
where it set the same iteration number 5000 and 

the same initial value   . The frequency 
distribution histograms of the three different 
chaotic mappings are presented in Fig. 2 It can 
be seen from Fig. 2 that SMP chaotic mapping 
displays better chaotic performance and 
ergodicity. Fig. 3 presents the population 
distribution scatter map of the three different 
chaotic mappings. The SPM mapping distributes 
more uniformly while the individuals of the 
Logistic and Cubic mappings distributed more 
around boundaries which causes the loss of the 
population diversity.  

 

 
 

Fig. 1. The flowchart of the DBO algorithm 
 

   

 

Fig. 2. Chaotic Mapping Histogram. (a) Logistic mapping; (b) Cubic mapping; (c) SPM mapping 
 

   

 

Fig. 3. Chaotic Mapping Scatter map: (a) Logistic mapping; (b) Cubic mapping; (c) SPM 
mapping 
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3.2 Golden Sine Algorithm 
 

Golden sine algorithm has strong ability of global 
search and meanwhile the golden partition 
coefficient is introduced to enhance the 
capability of local search [18]. Thus, Golden Sine 
Strategy can keep a good balance between 
global exploration and local exploitation. The 
formula of golden sine algorithm can be 
expressed as follows: 
 

  
   

   
 
                     

       
 
      

 
                   

 

where    represents a random number in the 

interval        which determines the movement 

distance of     individual in the next iteration,    
represents a random number in the interval       
which determines the movement direction of     
individual in the next iteration,    and    
represent golden partition coefficients which is 
used to reduce the search space and guide the 
current individual to the global optimal. The 
coefficients    and    can be calculated by the 
equations as follows: 
 

                 
                  

                                                                         
 

where   and   represent initial golden values, 

and   represents the golden ratio. 
 

In the DBO algorithm, the position update 
approach in the condition where dung beetles 
conduct ball-rolling behavior without obstacle is 
poor in the capability of local search. Therefore, 
this paper replaces the equation (1) with 
equation (9) to improve the DBO performance.  

 
3.3 Tuna Swarm Optimization 
 
The tuna swarm optimization (TSO) is a novel 
swarm-based metaheuristic algorithm inspired by 
the two different foraging behaviors of tuna 
swarm which consist of spiral foraging and 
parabolic foraging. [19]. The paper only focuses 
on spiral foraging behavior of tuna swarm which 
can keep a balance between global exploration 
and local exploitation on the premise of ensuring 
speed of convergence. The mathematical model 
of spiral foraging behavior can be expressed as 
follows: 
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where    represents a weight coefficient which is 
applied to control the tendency of current 
individuals to get close to optimal individual,    
represents a weight coefficient which is used to 
control the tendency of current individuals to 
approach to previous individual,   represents a 
fix parameter used to determine the extent that 
tuna go after the optimal individual and previous 
individual in the early stage, and   represents a 
uniformly distributed within the range [0,1].  
 
In the DBO algorithm, the position update 
approach in the condition where dung beetles 
conduct dung beetle breeding behavior are 
based on current optimal position which could 
decrease the population diversity and premature 
convergence to the local optimal. Meanwhile, the 
position update approach in the condition where 
dung beetles conduct dung beetle foraging 
behavior are strictly controlled by the current 
global optimal position which the capability of 
global exploration could decrease during the 
iteration process and it is also easy to get 
trapped into the local optimal position.  
 
It can be seen from equation (11) that   is 
significant for tuna to conduct spiral foraging 
strategy. Thus, the paper introduces the specific 
coefficient into the DBO algorithm for the 
purpose of extending the searching capability of 
dung beetle populations, and balancing the 
global exploration and local exploitation on the 
premise of keep the population diversity. The 
updated equation for the mathematical model of 
dung beetle breeding behavior and foraging 
behavior can be expressed as follows: 
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The paper introduces two different sets of 
adaptive weight coefficients into the 
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mathematical model of dung beetle stealing 
behavior to generate new position update 
formula. One of the sets of adaptive weight 
coefficients originates from spiral foraging 
strategy of the TSO. The updated formula can be 
expressed as follows: 
 

  
   

     
             

 
        

 
                1   

 

In addition, the paper newly proposed a set of 
adaptive weight coefficients which is introduced 
for updating the equation (7). The new position 
update formula can be expressed as follows: 
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                                                                   1   

 

Adaptive weight coefficients are added into 
equation (7) in order to improve the ability to 
jump out of local optima, extend the search 
space and keep a balance between global 
exploration and local exploitation.  
 

3.4 The Pseudo Code of EDBO 
 

The Pseudo Code of EDBO is illustrated in the 
Algorithm 1. The EDBO can be outlined as 
follows: 1) utilize SPM chaotic mapping to 
initialize the dung beetle population and set the 
related parameters of the EDBO; 2) calculate the 
fitness values of the dung beetle individuals in 
the population according to the objective 
function; 3) update the position information of 
each dung beetle individual according to 
corresponding formula; 4) check whether each 
individual in the population is out of the boundary 
of the design space for the optimization; 5) 
update the current optimal solution and its 
corresponding fitness values; 6) repeat the 
above steps until the EDBO satisfies 
convergence criteria (  meets the upper limits of 
iterations); 7) output the global optimal solution 
and its corresponding value. 

4. NUMERICAL EXPERIMENT AND 
ANALYSIS 

 
The efficacy of the proposed EDBO algorithm is 
evaluated through a range of experiments on 
some benchmark functions in this section. 
 

4.1 Benchmark Functions 
 
In order to validate capacity for optimization of 
the EDBO, 10 benchmark functions were 
selected to conduct simulation experiment. The 
benchmark function can be divided into two 
different categories which include unimodal 
function, and multimodal function. Unimodal 
benchmark functions such as       listed in 
Table 1 which contain only one single global 
optimum solution are utilized to test the speed 
and exactness of convergence of the algorithm. 
Multimodal benchmark functions such as        
listed in Table 2 which contain a global optimum 
solution and several local optimum solutions are 
used to gauge the performance of the algorithm 
to overstep the local optimum. 
 

4.2 Comparison Algorithm and 
Experimental Parameters Settings 

 
In this paper, several swarm intelligence 
optimization algorithms were selected for 
comparison to verify the robustness of the 
proposed the EDBO algorithm which include 
GWO [4], HHO [7], TSO [19], DBO [10]. Table 3 
presents the parameter settings whose values 
were recommended in their respective paper. To 
ensure the fairness of the comparison between 
EDBO and other comparative algorithms, the 
experiments need to be implemented in the 
same environment where the size of population 
was      and the number of maximum 

iterations were      . The experiment was 
conducted on Windows 10 operating system, 64-
bit OS, Intel(R) Xeon(R) Silver 4210 CPU @ 
2.20GHz, 96GB. The simulation software was 
Matlab 2021a.  

 

Algorithm1 The Pseudo Code of the EGDBO algorithm. 
Input: The size of population N, the number of maximum iterations G, the objective  
function f, the problem bounds    and   , the problem dimension  . 
/* Initialization */ 

1: Initialize population           and define relevant parameter of algorithm. 

2: Calculate the fitness of every individual and obtain the optimal solution   . 
/* Main loop */ 

3: while       do 
4: for       
/* The ball-rolling behavior */ 
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5: if     ball-rolling dung beetle  
6: if        
7: Update the position according to Eq. (9) 
8: else 
9: Update the position according to Eq. (2) 
10: end if  
11: end if  
/* The breeding behavior */ 

12: if     brood ball 

13: if        
14: Update the position according to Eq. (4) 
15: else  
16: Update the position according to Eq. (14) 
17: end if  
18: end if 
/* The foraging behavior */ 

19: if     small dung beetle 

20: if        
21: Update the position according to Eq. (6) 
22: else 
23: Update the position according to Eq. (15) 
24: end if 
25: end if  
/* The stealing behavior */ 

26: if     thief 
27: if        
28: Update the position according to Eq. (16) 
29: else 
30: Update the position according to Eq. (17) 
31: end if 
32: end if  
33: end for 
34: if the newly generated position is better than previous position  
35: Accept the new position. 
36: else 
37: Accept the previous position. 
38: end if  

39:      ; 
40: end while 

Output: Optimal position    and its corresponding fitness value. 
 

Table 1. Unimodal benchmark functions 
 

Function name Function Dim Range      

Sphere 
         

 

 

   

 
30            0 

Schwefel 2.22 
           

 

   

      

 

   

 
30          0 
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Function name Function Dim Range      

Schwefel 1.2  

        

 

   

 

 
 

   

 

30            0 

Schwefel 2.21                       30            0 

Cjgar 
        

        
 

 

   

 
30            0 

Zakharov 

         
 

 

   

      

 

   

 

 

      

 

   

 

 

 

30         0 

 
Table 2. Multimodal benchmark functions 

 

Function 
name 

Function Dim Range      

Rastrigin 
          

                 

 

   

 
30              0 

Ackley 

                  
 

 
   

 

 

   

      
 

 
            

 

   

    

   

30          0 

Griewank 
      

 

    
   

 

 

   

      
  

  
 

 

   

   
30            0 

Apline 
                         

 

   

 
30          0 

 

Table 3. The parameters setting of the compared algorithms 
 

Algorithm Parameter Setting 

GWO   Uniformly lowered from 2 to 0 

HHO Interval of           
TSO   and   0.05 and 0.7 
DBO  ,  ,  , and   0.1, 0.1, 0.3, and 0.5 

EDBO   ,   , and     ,  , and 0.85 
 

4.3 Experimental Results and Discussion 
 
It should be noted that the proposed EDBO and 
several compared algorithms need to be 
repeated for 30 times independently for the 
purpose of reducing the influence of 
randomness. This section selects three different 
statistical tools as the performance indicators 
which include best-seeking optimum (Best), the 
mean value (Mean), and the standard deviation 
(Std). The mathematical expressions are defined 
as follows: 

 

                                                         

     
 

 
   

 

   

      

     
 

   
          

 

 

   

                          

 
where   represents the number of                    
independent runs for optimization                   
experiment, and    represents the optimum of the 

    run.  



 
 
 
 

Lu and Zhang; Curr. J. Appl. Sci. Technol., vol. 42, no. 17, pp. 9-22, 2023; Article no.CJAST.102486 
 

 

 
18 

 

The experimental results of the three 
performance indicators for six unimodal 
benchmark functions and four multimodal 
benchmark functions after 30 independent runs 
are showed in Table 4. The EDBO outperforms 
other compared algorithms. It can be seen that 
for the unimodal benchmark functions   ~  , the 
EDBO can obtain the theoretical optimal value 
with the mean value and standard deviation of 0, 
which demonstrates that the EDBO possesses 
strong robustness and stability. For multimodal 
benchmark functions   ~  , the performance of 
the EDBO, DBO, HHO, and TSO are comparable 

and the three different performance indicators 
are significantly better than GWO. For    , the 
EDBO converges to theoretical optimal value 
with mean value and standard deviation of 0. The 
EDBO proposed in the paper is an improvement 
based on the DBO. Thus, it is necessary to 
compare the performance between the EDBO 
and the DBO. It can be seen from the Table 4 
that the EDBO is significantly better than the 
DBO in terms of the three performance indicators 
which suggests that the amelioration strategy 
used in the paper can effectively enhance the 
performance of the classical DBO.  

 
Table 4. The experimental results of unimodal and multimodal benchmark functions 

 

Function Indicator EDBO DBO HHO GWO TSO 

   Best 0.00E+00 1.03E-159 3.86E-114 2.29E-29 7.77E-274 

Mean 0.00E+00 6.24E-103 1.31E-92 9.76E-28 2.99E-228 

Std 0.00E+00 3.36E-102 7.17E-92 1.64E-27 0.00E+00 

   Best 0.00E+00 2.42E-82 3.99E-59 4.90E-18 2.46E-134 

Mean 0.00E+00 8.88E-59 3.51E-48 9.64E-17 4.62E-116 

Std 0.00E+00 4.38E-58 1.88E-47 6.42E-17 2.35E-115 

   Best 0.00E+00 8.43E-136 6.77E-96 3.11E-08 7.89E-257 

Mean 0.00E+00 3.05E-48 9.88E-70 9.67E-06 5.72E-215 

Std 0.00E+00 1.67E-47 5.28E-69 1.70E-05 0.00E+00 

   Best 0.00E+00 2.46E-80 5.36E-57 9.58E-08 2.95E-139 

Mean 0.00E+00 7.62E-51 1.84E-49 6.16E-07 1.27E-115 

Std 0.00E+00 3.20E-50 5.79E-49 3.96E-07 3.57E-115 

   Best 0.00E+00 2.28E-156 1.49E-113 1.77E-23 6.63E-261 

Mean 0.00E+00 7.01E-108 1.73E-85 6.38E-22 8.70E-219 

Std 0.00E+00 3.84E-107 9.48E-85 7.93E-22 0.00E+00 

   Best 0.00E+00 4.04E-120 7.34E-86 9.50E-11 2.80E-229 

Mean 0.00E+00 1.67E-19 6.80E-41 2.00E-07 8.67E-192 

Std 0.00E+00 9.14E-19 3.72E-40 5.20E-07 0.00E+00 

   Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Mean 0.00E+00 1.59E+00 0.00E+00 2.42E+00 0.00E+00 

Std 0.00E+00 6.95E+00 0.00E+00 3.09E+00 0.00E+00 

   Best 8.88E-16 8.88E-16 8.88E-16 6.48E-14 8.88E-16 

Mean 8.88E-16 8.88E-16 8.88E-16 1.01E-13 8.88E-16 

Std 0.00E+00 0.00E+00 0.00E+00 1.92E-14 0.00E+00 

   Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Mean 0.00E+00 0.00E+00 0.00E+00 6.53E-03 0.00E+00 

Std 0.00E+00 0.00E+00 0.00E+00 1.10E-02 0.00E+00 

    Best 0.00E+00 9.08E-82 3.16E-61 2.57E-16 5.97E-131 

Mean 0.00E+00 1.09E-04 4.59E-51 6.66E-04 1.01E-34 

Std 0.00E+00 2.62E-04 1.75E-50 7.34E-04 5.49E-34 
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The convergence curves of the proposed EDBO 
and other four compared algorithms for six 
unimodal benchmark functions and four 
multimodal benchmark functions are displayed in 
Fig. 4 with the purpose of comparing the 
convergence accuracy and rate of different 
algorithms more intuitively.  
 

In Fig. 4, the horizontal axis denotes the number 
of iterations and the vertical axis represents the 
average fitness values which have been 
expressed in logarithmic form with the base of 10 
to better display the trend of convergence. It can 
be seen from Fig. 4 that the proposed EDBO 
exhibits faster convergence rate and higher 
convergence accuracy than the compared 
algorithms. By observing several convergence 
curves based on unimodal benchmark                     
functions   ~   , it can be seen that the 
convergence performance of the EDBO is far 
superior to that of the compared algorithms and 
the convergence curves present a                              
near-linear descent to the theoretical optimal 
values or approximate theoretical optimal values 

which indicate that the EDBO can determine the 
region immediately where the global optimal 
solution may exist and move towards it. Next, it 
can be summarized from the convergence 
curves of the multimodal benchmark functions 
that the EDBO outperforms the compared 
algorithms on the part of the convergence 
accuracy and rate. The convergence curves of 
function     is similar to that of unimodal 
benchmark functions. In the convergence curves 
of function   ~  , the EDBO converges with a 
sharp decline in a straight line to obtain 
theoretical optimal values which suggest that the 
proposed EDBO can jump out of the local optima 
effectively. Finally, by comparing the 
convergence curves of EDBO and the 
convergence curves of the DBO, it can be seen 
that the convergence accuracy and rate of                  
EDBO are significantly better than that                      
of the DBO, which indicates that the modification 
tactic proposed in the paper are useful for 
enhancing the convergence performance of the 
DBO.  

  

(a)    average convergence curve (b)    average convergence curve 

  

(c)    average convergence curve (d)    average convergence curve 
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(e)    average convergence curve (f)    average convergence curve 

  

(g)    average convergence curve (h)    average convergence curve 

  

(i)    average convergence curve (j)     average convergence curve 

 
Fig. 4. Average convergence curve of the benchmark function 
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Table 5.  -values of Wilcoxon sign-rank test 
 

Function EDBO vs 

DBO HHO GWO TSO 

   1.21E-12 1.21E-12 1.21E-12 1.21E-12 

   1.21E-12 1.21E-12 1.21E-12 1.21E-12 

   1.21E-12 1.21E-12 1.21E-12 1.21E-12 

   1.21E-12 1.21E-12 1.21E-12 1.21E-12 

   1.21E-12 1.21E-12 1.21E-12 1.21E-12 

   1.21E-12 1.21E-12 1.21E-12 1.21E-12 

   1.61E-01 N/A 4.47E-12 N/A 

   N/A N/A 1.17E-12 N/A 

   N/A N/A 6.62E-04 N/A 

    1.21E-12 1.21E-12 1.21E-12 1.21E-12 

                               

 
In addition, the Wilcoxon sign-rank test with a 
significant level        is included in the paper 
for finding out whether the proposed EDBO has a 
significant performance difference compared with 
the classical DBO, HHO, GWO, and TSO on the 
basis of 30 independent runs in the 10 
benchmark functions. The results of Wilcoxon 
sign-rank test are displayed in Table 5. 
 
The symbol ‘+’ indicates the EDBO is superior to 
the compared algorithms; the symbol ‘-’ indicates 
the EDBO is inferior to the compared algorithms; 
the symbol ‘=’ indicates the EDBO is similar to 
the compared algorithms, and ‘N/A’ presents the 
EDBO and the compared algorithm have a 
comparable performance. According to Table 5, 
the EDBO differs significantly from DBO, HHO, 
GWO, and TSO for function   ~  and    . There 
is no significant performance difference between 
the EDBO and DBO, HHO, and TSO for function 
  ~  . In general, the convergence performance 
of EDBO is superior to that of the compared 
algorithms. 
 

5. CONCLUSION 
 
This paper proposes the EDBO algorithm to 
address the existing drawbacks of the classical 
DBO algorithm which include the poor capability 
to conduct global search and escape the local 
optimum. The SPM chaotic mapping model is 
utilized to initialize the population and keep 
diversity. The individual update strategy in 
Golden Sine Algorithm is introduced in the EDBO 
to enhance the ability of search. Additionally, the 
spiral foraging strategy in tuna swarm 
optimization is implemented to modify the 
position update equation for the mathematical 
model of dung beetle breeding and foraging 
behavior with the purpose of extending the 

search range and keeping a balance the global 
exploration and local exploitation. Finally, the two 
different sets of adaptive weight parameters are 
added into the position update equation for the 
mathematical model of dung beetle stealing 
behavior in order to increase the likelihood of 
jumping out of the local optima and enhance the 
later search ability. The performance of the 
EDBO is compared with four different swarm 
intelligence optimization algorithms, including 
DBO, HHO, GWO, and TSO, on six unimodal 
benchmark functions and four multimodal 
benchmark functions. The three performance 
indicators, including ‘Best’, ‘Mean’, and ‘Std’, and 
Wilcoxon sign-rank test are used to verify the 
effectiveness of modification tactics. According to 
the outcomes of the simulation experiment, the 
EDBO is superior to other compared algorithms 
in terms of convergence accuracy and speed and 
meanwhile enhances the capability of jumping 
out of the local optima.  
 
Nevertheless, the current research is still 
insufficient. In the future, we will consider further 
improving the convergence performance of the 
EDBO so that it can be utilized to handle 
complex multi-objective optimization problem and 
engineering optimization problems. 
 

COMPETING INTERESTS 
 
Authors have declared that no competing 
interests exist. 
 

REFERENCES 
 

1. Tang J, Liu G, Pan Q. A review on 
representative swarm intelligence 
algorithms for solving optimization 
problems: Applications and trends[J]. 



 
 
 
 

Lu and Zhang; Curr. J. Appl. Sci. Technol., vol. 42, no. 17, pp. 9-22, 2023; Article no.CJAST.102486 
 

 

 
22 

 

IEEE/CAA Journal of Automatica Sinica, 
2021;8(10):1627-1643. 

2. Al-Betar M A, Awadallah M A, Faris H, et 
al. Natural selection methods for grey wolf 
optimizer[J]. Expert Systems with 
Applications. 2018;113:481-498. 

3. Kennedy J, Eberhart R. Particle swarm 
optimization[C]//Proceedings of ICNN'95-
international conference on neural 
networks. IEEE. 1995;4:1942-1948. 

4. Mirjalili S, Mirjalili S M, Lewis A. Grey wolf 
optimizer[J]. Advances in engineering 
software, 2014;69:46-61. 

5. Yang XS, Deb S. Cuckoo search: recent 
advances and applications[J]. Neural 
Computing and applications. 2014;24:             
169-174. 

6. Naruei I, Keynia F. Wild horse optimizer: A 
new meta-heuristic algorithm for solving 
engineering optimization problems[J]. 
Engineering with computers. 2022; 
38(Suppl 4):3025-3056. 

7. Heidari AA, Mirjalili S, Faris H, et al. Harris 
hawks optimization: Algorithm and 
applications[J]. Future generation 
computer systems. 2019;97:849-872. 

8. Dehghani M, Hubálovský Š, Trojovský P. 
Northern goshawk optimization: A new 
swarm-based algorithm for solving 
optimization problems[J]. IEEE Access. 
2021;9:162059-162080. 

9. Naruei I, Keynia F. A new optimization 
method based on COOT bird natural life 
model[J]. Expert Systems with 
Applications. 2021;183:115352. 

10. Xue J, Shen B. Dung beetle optimizer: A 
new meta-heuristic algorithm for global 
optimization[J]. The Journal of 
Supercomputing. 2023;79(7):7305-7336. 

11. Zeng C, Qin T, Tan W, et al. Coverage 
Optimization of Heterogeneous Wireless 
Sensor Network Based on Improved Wild 
Horse Optimizer[J]. Biomimetics. 2023; 
8(1):70. 

12. Han X, Xu Q, Yue L, et al. An improved 
crow search algorithm based on spiral 
search mechanism for solving              
numerical and engineering optimization 
problems[J]. IEEE Access. 2020;8:92363-
92382. 

13. Liu Q, Li N, Jia H, et al. A hybrid arithmetic 
optimization and golden sine algorithm for 
solving industrial engineering design 
problems[J]. Mathematics. 2022; 
10(9):1567. 

14. Liu M, Zhang Y, Guo J, et al. An Adaptive 
Lion Swarm Optimization Algorithm 
Incorporating Tent Chaotic Search and 
Information Entropy[J]. International 
Journal of Computational Intelligence 
Systems. 2023;16(1):39. 

15. Si Q, Li C. Indoor Robot Path Planning 
Using an Improved Whale Optimization 
Algorithm[J]. Sensors. 2023;23(8):                 
3988. 

16. Shouyu LI, Qing HE, Nisuo DU. Butterfly 
optimization algorithm for chaotic feedback 
sharing and group synergy[J]. Journal of 
Frontiers of Computer Science & 
Technology. 2022;16(7):1661. 

17. Wang Y, Chen S, Wang Y. Chaos 
encryption algorithm based on kent 
mapping and AES combination[C]//2018 
international conference on network, 
communication, computer engineering 
(NCCE 2018). Atlantis Press. 2018;588-
592. 

18. Tanyildizi E, Demir G. Golden sine 
algorithm: A novel math-inspired 
algorithm[J]. Advances in Electrical and 
Computer Engineering. 2017;17(2):              
71-78. 

19. Xie L, Han T, Zhou H, et al. Tuna                   
swarm optimization: A novel swarm-                  
based metaheuristic algorithm for                   
global optimization[J]. Computational 
intelligence and Neuroscience. 2021; 
2021:1-22. 

_________________________________________________________________________________ 
© 2023 Lu and Zhang; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

 
 

 

Peer-review history: 
The peer review history for this paper can be accessed here: 

https://www.sdiarticle5.com/review-history/102486 

http://creativecommons.org/licenses/by/4.0

