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Abstract
This work is concerned with discovering the governing partial differential equation (PDE) of a
physical system. Existing methods have demonstrated the PDE identification from finite
observations but failed to maintain satisfying results against noisy data, partly owing to suboptimal
estimated derivatives and found PDE coefficients. We address the issues by introducing a
noise-aware physics-informed machine learning framework to discover the governing PDE from
data following arbitrary distributions. We propose training a couple of neural networks, namely
solver and preselector, in a multi-task learning paradigm, which yields important scores of basis
candidates that constitute the hidden physical constraint. After they are jointly trained, the solver
network estimates potential candidates, e.g. partial derivatives, for the sparse regression to initially
unveil the most likely parsimonious PDE, decided according to information criterion. Denoising
physics-informed neural networks, based on discrete Fourier transform, is proposed to deliver the
optimal PDE coefficients respecting the noise-reduced variables. Extensive experiments on five
canonical PDEs affirm that the proposed framework presents a robust and interpretable approach
for PDE discovery, leading to a new automatic PDE selection algorithm established on
minimization of the information criterion decay rate.

1. Introduction

Data-driven discovery has recently gained popularity due to its flexibility and satisfactory accuracy in
uncovering the hidden underlying partial differential equation (PDE) of a dynamical system with less
required domain knowledge. Applying sparse regression-based approaches to a library of the target variable
and its partial derivative candidates is a promising method for discovering a parsimonious model purely out
of observational data. A few of such previous attempts were, for instance, sequential threshold ridge
regression (STRidge) [1], L1-regularized sparse optimization [2] based on the least absolute shrinkage and
selection operator (LASSO) [3], and sparse Bayesian regression [4].

Since partial derivatives are the vital input features, their inaccurate estimations can poorly affect the
discovered results. For example, numerical differentiation, such as the finite difference method, may not
accurately approximate high-order derivatives when facing sparse corrupted data. Prior works tackled the
problem by formulating indirect but smoother representations of derivatives, such as weak formulation
(WF) [5] and convolutional weak formulation (CWF) [6], which were demonstrated to be tolerant to noise
and computationally efficient. However, the formulations are usually restricted to spatial data in mesh form.
Particularly for identifying ordinary differential equations, RK4-SINDy [7] deals with noise by internal
simulation of the equation using the 4th-order Runge–Kutta-inspired method. This paper utilizes automatic
differentiation (AD) [8] on a neural network that we refer to as the solver to be an alternative approach, as
formerly suggested by [9]. AD allows derivative computation given a mere implementation of the hypothesis
function; therefore, the method does not suffer from truncation error, mitigating the numerical imprecision
of computing high-order derivatives.
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Although the utilization of neural networks is not restricted by the assumption of particular input
distributions, the solver that learns just by correcting prediction errors may be prone to overfitting the finite
observations and inadequate for capturing the proper PDE solution, especially when encountering sparse
measurements. This trouble motivates us to formulate the solver network with weakly physics-informed
regularization, maintaining the prediction performance while respecting an implicit form of the governing
physical law. Specifically new in this work, we propose multi-task training with a preselector neural network
that promotes sparsity based on an interpretable self-gated mechanism to alleviate the issue. The preselector
learns the estimated system evolution from the spatial derivatives (both are produced by the solver) and
other features to represent the hidden parsimonious PDE. Furthermore, we present a workaround of using
the trained preselector’s feature importance to encourage selecting the expressive candidates that derive
non-overfitted PDEs.

Once both the networks are converged using a multi-task learning procedure and the library of potential
(nonlinear) terms is prepared, we then apply a form of sparse linear regression algorithms, e.g. STRidge [1]
and weak sparse identification of nonlinear dynamics (WSINDy) [6], to the (discretized) domain of interest.
Nonetheless, the proper selection of the regularization hyperparameters regarding the sparse linear model
can be problematic. While the underlying PDE remains unknown, solely cross-validating equations together
with the Pareto analysis based on fixed-valued regularization hyperparameters may still yield insignificant,
probably wrong results, especially in a small data regime. Thus, as an additional consideration, the initial
discovered PDE is encouraged to include the candidates whose importance is greater than a threshold
defined within the proposed preselector network’s L0-regularized self-gated mechanism. After the
cooperative learning, among the expected PDEs formable by the threshold-passing basis candidates, the
parsimonious and informative PDEs are preferred, i.e. having sufficiently low Bayesian information criterion
(BIC) [10] or Akaike information criterion (AIC) [11]. The aforementioned heuristics and experimental
analysis of BIC decay rate per an increase in the complexity (number of included/support candidates) led us
to invent an algorithm for selecting the sparse PDE automatically.

We here clarify the major distinction between our information criterion calculation and the metrics
utilized in the prior studies [12–14]. We choose to calculate BIC on the model that predicts the estimated
system evolution given by the solver network, hence the unnecessity of simulating any found PDEs, unlike
[12, 14], which measured AIC between their model prediction and the ground time series (in the power
spectral density form for [14]). Thereby, our choice is computationally cheaper, but the BIC may be treated
as pseudo-BIC because it does not connect with the direct comparison. In [13], the pruning after STRidge is
executed as follows: if deselecting a candidate results in a ratio between the residual loss and starting loss that
is less than a threshold, the candidate is removed. Obviously, finding a suitable threshold value is challenging,
and the problem of putting the right regularization to STRidge still needs to be understood.

At this point, the sparse learning algorithm has yielded a guess of the hidden governing PDE, referred to
as the initial discovered PDE. However, propagating error is woefully inevitable since the sparse regression is
separated from the candidate library preparation step. This consequently causes the initial PDE to not be at
its optimum concerning the given input data. To achieve the most-favorable PDE, we parameterize all the
discovered coefficients as the gradient-based learnable parameters of the physics-informed solver network
that is finetuned such that its output approximates the target variable while concurrently respecting the
most-relevant underlying PDE as per the core proposal of physics-informed learning [9, 15]. Remark that if
the candidate library is incomplete (we miss including some necessary candidates), the benefit of finetuning
the discovered coefficients becomes less because of the faulty form of governing PDE used. Also, without an
appropriate initialization of targeting PDE coefficients, training a physics-informed neural network (PINN)
[9] may be a task that could be developed further by, for example, multi-task learning [16] or sinusoidal
feature mapping [17], even though the actual governing function is presumably known beforehand.

In a practical scenario where noise may disturb both the independent and dependent variables, the
optimization process of PINN is perturbed; thus, attaining a local optimum set of coefficients is spaced out
from the ground truth. The previous work, abbreviated as DLrSR [18], tackled the difficulty via low-rank
matrix factorization solved by robust principal component analysis (PCA) [19], neglecting the assumably
sparse noise and utilizing the low-rank data. Nevertheless, if the sparse noise presumption does not hold, the
method can be impotent for various situations. To mitigate the issue, we introduce denoising layers based on
precomputed discrete Fourier transform (DFT) to the vanilla PINN, optimizing the solver-founded PDE.
The denoising layers filter out the frequency components of the input signal, whose power is less than a
predefined threshold, then obtain contaminated noise by taking the difference between the original and
reconstructed signal. The extracted noises are projected using projection neural networks to perturb
backwardly or denoise the noisy measurements with the appropriate intensities, then reconstruct the
noise-reduced dataset. This paper coins a PINN attached to the proposed denoising mechanism as denoising
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PINNs (dPINNs). Ultimately, after the dPINNs’ learning, the converged parameters regarding all effective
coefficients are treated as the end results.

Experimental results from five canonical models, including three ordinary PDEs and two
complex-valued PDEs, reveal the robustness and accuracy of the proposed framework in noiseless and noisy
datasets. As a proof of concept distinct from prior works, we conduct investigations on learning from noisy
independent variables, e.g. polluted spatial and temporal variables, which are relevant to Global Positioning
System (GPS) coordinate measurements [20] and manual timing in physical experiments [21].

We summarize our main contributions as follows:

• We introduce the multi-task learning with the preselector network to impose the weakly physics-informed
constraint, which is calculable without labeled supervision.
• We introduce the preselector’s perceived feature importance scores to bring an auxiliary view to the can-
didate selection, later inspiring the new automatic approach of finding the right complexity for the initial
discovered PDE.
• Wepropose dPINNs based onDFT and the projection networks to handle noisy independent and dependent
variables.

2. Related work

The foundation of this work is built upon a combination of the SINDy [22] specifically for PDEs, namely
STRidge [1], and PINN [9]. Previously taking on the similar idea, Berg and Nyström [23] trained a
feed-forward neural network with L2-regularization on its weights to learn the dependent function from the
standardized domain. AD was applied to the converged network to generate derivatives as ingredients for
LASSO, unveiling the latent PDEs formulated on the scaled domain. The found PDE was then transformed
to align with the original domain. Unlike our work, absent a finetuning process, the propagating error
through the pipeline was never taken care of. Nominating a compact physics-informed solution, called
DeepMoD, Both et al [24] added LASSO regression loss (including L1-regularization) to the neural network’s
cost function. Consequently, the constructed candidate library was possibly large and memory-inefficient.
After the sparsity pattern was obtained by the normalization and thresholding, the network was finetuned
without the L1-penalty to find the optimal unbiased coefficients. Yet, given that one of the true coefficients is
small and the data is noisy, the robust model selection by thresholding/pruning may be inaccurate. Chen et al
[25] leveraged STRidge regression loss as the physics cost function instead and let STRidge select the
parsimonious model during the alternating direction optimization (ADO), where not only the coefficients
but the whole PDE was changed or optimized. How much of L0-penalty for STRidge evaluation was decided
by a Pareto analysis, but the regularization hyperparameter on solving a ridge regression problem, possibly
influential to the model selection during ADO, was kept underexplored and fixed to a specific value for each
discovery. More recently, a two-network PDE discovery framework called PDE-READ, where one network
regularizes the other network in the form of physical constraint, was introduced by Stephany and Earls [26].
Different from this work, the interpretation of learned physical constraint (PDE ranking in [26]) relied on
recursive feature elimination [27], not from the regularizing network.

Xu et al were interested in an alternative view of the PDE discovery problem, using genetic algorithms to
deal with the incompleteness of the candidate library [28] and enable the robust algorithm in noisy
conditions [29]. Each genome’s module comprised possible functions and derivatives produced by a neural
network, representing a form of the unknown PDE. Although the proposal discouraged searching the PDE
against giant sets of features by design, the incompleteness problem was boiled down to which functions to
consider when building a genome.

To the best of our knowledge, little to no mentioned previous works have suggested or explored ideas of
the constituted agreement to ensure the found Pareto-optimal PDE. Particularly for those that utilize the
training or finetuning using PINN, e.g. [9, 24–26, 28, 29], none of them have integrated a denoising
mechanism with the process yet.

3. Method: noise-aware physics-informedmachine learning (nPIML) framework

3.1. Problem formulation and overview
We consider the following general form of nonlinear PDE in the dynamical system perspective:

ut =Nξ[Θ]; Θ = [u ux uxx · · · x] . (1)

Nξ is the governing function parameterized by the vector of coefficients ξ. The function depends onΘ,
which may consist of the spatial variable x, the derivatives and any indispensable features. In regards toNξ ,
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Figure 1. Exemplary discovery scheme of the proposed noise-aware physics-informed machine learning (nPIML) framework:
(1) physics-regularized derivative preparation by multi-task learning of the solver and preselector. (2) Initial identification of the
hidden PDE by STRidge. (3) Applying the denoising DFT to (x, t)&u then finetuning the initial PDE coefficients on the denoised
variables using PINN. Here, we suppose that the discovered governing equation is Burgers’ PDE.

Θ is the smallest possible library, merely composed of the necessary terms. u is the dependent PDE solution,
observed with the space-time matrix (x, t).

Figure 1 conceptualizes the three principal procedures for uncovering ξ preferably in a low-dimensional
space by walking through an exemplar of discovering Burgers’ PDE [30]. Step , we numerically equivalizes
u andNξ[Θ] to the solver and preselector neural network’s output Fθ(x, t) and Fθs(ΦDs(θ)).
ΦDs(θ) ∈ C(Nf+Nr)×C is the library of C linearly independent atomic/basis candidates from which the
preselector learns to embed physics by inferring the system evolution. The candidates are evaluated on a

multisetDs = {(xi, ti)
Nf+Nr

i=1 }. Step , the well-fitted networks, θ̂ and θ̂s, put together a larger library of

potential k-degree polynomial features Pk(ΦMval(θ̂)) of which an initial analytical expression of Burgers’
PDE, worked out approximately by STRidge [1], is made. Step , θ̂ is henceforth transferred to the PINN
that is optimally finetuned with the PDE, initialized by nonzero coefficients ξ̂, on the denoised variables x̃, t̃
and ũ, offered by the projection networks PΩ(x,t)

and PΩu . The noise-reduction mechanism functions as a
series of affine transformations, controlled by β(x,t) and βu, of the dataset with the projected noises
PΩ(x,t)

(S(x,t)) and PΩu(Su), after applying the frequency-based denoising DFT. The mathematical derivation
of the relevant variables are elaborated in sections 3.2–3.4. The summary of the main notations and their
description is given in table 11.

3.2. Derivative preparation
Concerning of figure 1, we utilize the solver (Fθ) and preselector (Fθs) networks, which are jointly trained
for the solver network to be weakly physics-constrained. Facilitating the co-training, the solver network is

pretrained on the datasetD = {(xi, ti,ui)
Nf

i=1} to approximate the mapping function. Therefore, the partial
derivative candidate values are assured of becoming close to the valid values. At the pretraining stage, the
solver network minimizes the mean square error (MSE)

LD
sup(θ) =

1

Nf

Nf∑
i=1

(Fθ(xi, ti)− ui)
2; (xi, ti,ui) ∈ D, (2)

where N f is the number of labeled subsamples. If u is complex-valued, the sum of the MSEs from the real
and imaginary parts is taken as the supervised loss function. Since a futile search over infinitely feasible
ΦDs(θ) setups would be intractable, we presume the ability to build an overcomplete basis candidate library
given to the preselector network for deciding the predictive set of features by minimizing

LDs
unsup(θ,θs) =

1

Nf +Nr

Nf+Nr∑
i=1

(
∂Fθ
∂ti
−Fθs(Φ

Ds
i (θ))

)2

;

ΦDs
i (θ) =

[
Fθ(xi, ti)

∂Fθ
∂xi

∂2Fθ
∂x2i

· · · xi

]
,

(3)

where Nr is the number of random unsupervised subsamples within the domain that may disjoint the
supervised setD. We attainDs by fusing up the spatio-temporal measurements without supervision. Each
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derivative term’s input is usually omitted for notational convenience. Inspired by the assumption that
low-order partial derivatives are commonly included more than the higher ones, we embed the thresholded
self-gated mechanism, parameterized byWb, to the preselector forward pass, emphasizing the priority of
simple models as follows:

Fθs(ΦDs(θ)) = Fθrs (FW b(ΦDs(θ))),

FW b(ΦDs(θ)) = ΦDs(θ)⊙AT (ΦDs(θ),Wb),

AT
j (Φ

Ds(θ),Wb) =max(Aj(Φ
Ds(θ),Wb)−T ,0),

Aj(Φ
Ds(θ),Wb) =

∑Nf+Nr

i=1 σ(
∑C

k=1Φ
Ds
ik (θ)Wkj + bj)

Nf +Nr
.

(4)

⊙ refers to Hadamard product (broadcast multiplication).AT (ΦDs(θ),Wb) is interpreted as the thresholded
vector-valued feature importance the preselector perceive. The self-gated mechanism utilizes the activation
function σ to compute the expected importance of each candidate in terms of (unnormalized) probability
across Nf +Nr samples. Note that we only consider the real part of ΦDs(θ)W+ b in the case of
complex-valued PDEs. T is a threshold for allowing the effective basis candidates. The threshold is initialized

to be surely less than the minimal candidate importance, specifically we set T = κminjA(1)
j (ΦDs(θ),Wb),

where 0< κ < 1, before the joint gradient update at the first epoch (superscript (1)). The parameterWb

consists ofW ∈ CC×C and b ∈ C1×C (weights and biases of the linear layer), serving as the share of the
preselector’s parameters:

θs = (Wb,θrs); Fθs = Fθrs ◦FW b . (5)

ExcludingWb, the rest of the preselector network’s parameters get referred to as θrs . We devise RDs(θ,Wb) as
a L0-regularization onAT for selecting the expressive subset with priority to lower-order candidates in favor
of Occam’s razor principle. The regularization, encouraging the sparse and simple preselector learned
representations, reads

RDs(θ,Wb) = λ1

(∥∥AT (ΦDs(θ),Wb)
∥∥
0
+λ2

C∑
j=1

wjAT
j (Φ

Ds(θ),Wb)
)
. (6)

w is the weighting by derivative orders directly applied to the feature importance. For instance, suppose that
jth basis candidate associates to the second-order derivative uxx. Then we have wj = 2. For nonderivative
terms, we assign wj = 1. λ1 is the parameter that controls the regularization intensity. λ2 closes the gap
between the derivative orders such that the high-order derivatives are not always deselected. To practically
minimize RDs(θ,Wb) with LDs

unsup(θ,θs) by a gradient-based optimizer, we have to overcome the obstacle that
the L0-norm is not yet readily differentiable with respect to its input vector. Unlike how [31] mask candidates
(with 0 or 1) before AD, we require the smooth approximation of L0 for achieving the thresholded feature
importance. Adapted from SL0 algorithm [32], we estimates

∥∥AT (ΦDs(θ),Wb)
∥∥
0
≈ C−

C∑
j=1

exp

(
−(AT

j (Φ
Ds(θ),Wb))2

2(ηV(AT (ΦDs(θ),Wb)))2

)
, (7)

where V is the unbiased variance estimator over the C basis candidates. η determines the trade-off between
the accuracy and smoothness: the smaller η gives the closer approximation, and the larger η gives the
smoother approximation. η is initialized at 1.0 and learned with the gradients. We now denote the
differentiable regularization function as RDs

η (θ,Wb). Combining equations (2), (3), (6) and (7), we view the
multi-task learning of the weakly physics-informed solver and the coordinating simplicity-guided preselector
inherently as the semi-supervised multi-objective optimization formulated as follows:

θ̂, θ̂s, η̂ = argminθ,θs,ηL
(D,Ds)
mt (θ,θs,η);

L(D,Ds)
mt (θ,θs,η) =MT(LD

sup(θ),LDs
unsup(θ,θs)+RDs

η (θ,Wb)). (8)

The parameters of both networks are concurrently updated with the expectancy that the preselector network
distills the hidden PDE functionNξ , and informs physics back to the solver. MT is a function that reasonably
manipulates learning by multiple losses, such as Uncert [33] and PCGrad [34], which are shown to accelerate
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Algorithm 1.Multi-task learning for derivative preparation and initial PDE identification.

Goal: Discover the governing function N̂ξ̂ based on the solver and preselector parameters θ̂, θ̂s
Require: Pretrained θ by (2), initialized θs
1: Joint trainaθ, θ̂s, η̂← argminθ,θs,ηL

(D,Ds)
mt (θ,θs,η)

2: Assign Ij←Aj(Φ
Ds(θ,Ŵb̂))−T + 1

C as the feature importance for each jth basis candidate
3: Converge the solver θ̂← argminθLD

sup(θ)

4: Build the candidate library on the metadataM by ΦM(θ̂)←
[
Fθ̂(x

M, tM)
∂F

θ̂

∂xM
∂2F

θ̂

∂(xM)2
· · · xM

]
5: Find N̂ξ̂ on Pk(Φ

Mval(θ̂)) using λSTR-varied STRidge

6: return θ̂, θ̂s = (Ŵb̂, θ̂rs), η̂ and N̂ξ̂
a After the joint training until empirical plateau, the learned preselector’s parameters are regarded as θ̂s. Converging the preselector

could have been done, i.e. minθ̂r
s
LDs

unsup(θ, θ̂s), but did not to reduce the run time.

the PINN generalized performance [16]. Algorithm 1 describes a relaxed approach that numerically
minimizes the loss in equation (8) until detected plateau; then, converging the solver network independently.

3.3. Initial PDE identification
Depicted by of figure 1, we train STRidge [1] on top of the candidates and their polynomial features up to
k degree: Pk(ΦM(θ̂)), which is evaluated on metadataM. For example, assume that k= 2, the nonconstant
interaction-only polynomial features of u,ux and uxx are formed as

P2([u ux uxx]) = [u ux uxx uux uuxx uxuxx] . (9)

The metadataM= {(xMi , tMi )NM
i=1 } can be samples from a desired domain of interest, e.g. linearly

discretized samples within a bounded rectangle domain are generated with the equal spaces as follows:
∆x=mini,j;(i̸=j)

∣∣xi− xj
∣∣ and∆t=mini,j;(i̸=j)

∣∣ti− tj
∣∣. If x is in a higher dimension, the equal space is

computed separately for each spatial direction. In fact, naively equating
∀i ∈ {1,2, . . . ,Nf},(xMi , tMi ) = (xi, ti) is also viable for identifying the governing PDE as N̂ξ̂[Pk(Φ

Mval(θ̂))E ],
where ξ̂ and E are found by the following selection criterion:

ξSTR = argminξ

∥∥∥∥ ∂Fθ̂
∂tMval

− Pk(Φ
Mval(θ̂))ξ

∥∥∥∥
2

+λ0
∥∥ξ∥∥

0
;

λ0 = µλSTRε, E= { fi+1 | i ∈ N∥ξSTR∥0
∧ ξSTRfi+1

̸= 0},

ξ̂ =
[
ξSTRf1 · · · ξSTRf|E|

]⊺
, E =

[
ef1 · · · ef|E|

]
.

(10)

ε= ε(Pk(ΦM(θ̂))) is the significand of the condition number (written in the scientific notation) of the
polynomial candidate library.Mval is a 20% split of the fullM. For a tolerance tol, ξ is estimated by solving a
relaxed λSTR-regularized ridge regression problem on Pk(ΦM(θ̂)), whose column is normalized by its
L2-norm unless noted otherwise, with hard thresholding. To attain ξSTR, tol is iteratively refined with respect
to different values of λ0 ∝ λSTR using a variable dtol that initializes tol. µ> 0 is assigned data-dependently.
After applying STRidge, N̂ξ̂ is the linear combination of the effective polynomial candidates chosen by E .
N∥ξSTR∥0

denotes {0,1, . . . ,
∥∥ξSTR∥∥

0
− 1}. E is an indexed set, and ej is an elementary column vector whose

entries are all zero except for the nonzero jth polynomial candidate. The matrix E reduces the dimensionality
such that we focus solely on the effective candidates, which hopefully capture the idealΘ in equation (1). ξ̂
successively stores the nonzero coefficients in ξSTR. If the library is overcomplete under the evaluation onM,
there exists E such thatΘM ≈ Pk(ΦM(θ̂))E .

The pair values of (λ1,λSTR) are grid searched with BIC [10] as the guidance score. The pairs whose PDEs
are in agreement with the corresponding preselectors, according to definition 1, are expected.

Definition 1 (Agreement). If Pk is regarded as the candidate building function and every nonzero fthi+1 term
can be written as a polynomial of certain jth candidates whose jth is taken from the set of threshold-passing
basis candidate indices { j | Ij > 1

C} (see algorithm 1), we determine that the initial discovered PDE of a par-
ticular pair of (λ1,λSTR) is in the ‘agreement’ with the λ1-trained preselector network.

The likely models, from which we can actually choose a reasonable one as the initial discovered PDE

voluntarily, are conceived of being in their agreements and relatively sparse (small
∥∥ξSTR∥∥

0
=
∥∥∥ξ̂∥∥∥

0
= |E|)

while conveying sufficiently low BIC scores defined as follows:
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BIC(ξSTR, θ̂) =
∥∥ξSTR∥∥

0
logNM− 2 log L̂(ξSTR, θ̂);

log L̂(ξSTR, θ̂) =
−NM

2

(
1+ log2π+ log

RSS(ξSTR, θ̂)

NM

)
,

RSS(ξSTR, θ̂) =
NM∑
i=1

∣∣∣∣ ∂Fθ̂∂tMi
− Pk(Φ

M
i (θ̂))ξSTR

∣∣∣∣2 . (11)

log L̂(ξSTR, θ̂) is the maximized (natural) log-likelihood of the θ̂-produced model parameterized by ξSTR. RSS
denotes the real-valued residual sum of squares because the absolute value of each (complex-valued) residual
term is considered. The BIC formulation is primarily used in Statsmodels [35], which follows [36]. The
pseudocode for sections 3.2 and 3.3 is detailed in algorithm 1. Let us mention that our BIC terminology can
be treated as pseudo-BIC in the sense that the calculation compares to the estimated system evolution
∂Fθ̂

∂tM ≈ ut not u, which the simulated solution of the initial discovered PDE should closely approximate. With
that said, we can optionally calculate a real-valued RSS for a complex-valued PDE by the comparison to∥∥∥ ∂Fθ̂

∂tM

∥∥∥
2
instead.

Furthermore, assume the spatial metadata (maybe in a higher dimension) is in mesh form. In that case,
we can exploit the other noise-tolerant library representation or PDE discovery method, such as WF [5] or
CWF [6]. One extension of our generic initial PDE identification is by passing reshapable Fθ̂(x

M, tM) as
input to the mentioned algorithms.

Later in section 4.3, we shall see that the heuristics search for the agreed PDEs with the minimal BIC
score is questionable in terms of future applications, where there may be no expert to supervise an acceptable
range of (λ1,λSTR). Nevertheless, we observe that the BIC decay rate (per one increasing candidate), e.g.

∆BIC
∆∥ξSTR∥0

between different estimated PDEs from λSTR-varying STRidge with a fixed λ1, can assist as an

explicit information metric, which inspires us to design the automatic complexity selection (ACS) algorithm
of the optimal number of effective candidates (complexity) detailed in algorithm 3. Additionally, the
corresponding PDE is ensured to be traceable.

Pedagogically, suppose that the preferred initial PDE exemplifies Burgers’ PDE; we write the effective
candidate matrix concerning the training set of labeled subsamplesD as

ΦD
E (θ̂) = Pk(Φ

D(θ̂))E =
[
∂2Fθ̂
∂x2

Fθ̂(x, t)
∂Fθ̂
∂x

]
. (12)

3.4. dPINNs: denoising and finetuning using PINN
As illustrated by of figure 1, we introduce the dPINNs for achieving the precise recovery of PDE
coefficients ξ∗ under uncertainties. After algorithm 1 is performed, we take the weakly physics-constrained
solver Fθ̂ and the initial PDE N̂ξ̂ to build the dPINNs, minimizing the vigorous physics-informed loss

LD̃
sup(θ̂)+LD̃ ′

unsup(θ̂,N̂ξ̂) on the denoised dataset D̃ = {(x̃i, t̃i, ũi)
Nf

i=1}. The physics loss is generally given by

LD̃ ′

unsup(θ̂,N̂ξ̂) =
1

Nf

Nf∑
i=1

(
∂Fθ̂
∂ t̃i
−N̂ξ̂[(Φ

D̃ ′

E (θ̂))i]

)2

, (13)

where the unsupervised set D̃ ′ = {(x̃i, t̃i)
Nf

i=1} is viewed simply as the slice of D̃ without the supervision. Let
us now continue the Burgers’ example, we can derive the physics-constraint as

N̂ξ̂[(Φ
D̃ ′

E (θ̂))i] = Pk(Φ
D̃ ′

i (θ̂))E ξ̂ = ξ̂1
∂2Fθ̂
∂x̃2i

+ ξ̂2Fθ̂(x̃i, t̃i)
∂Fθ̂
∂x̃i

. (14)

To continually denoiseD during the dPINNs’ learning, we subtract the transformed noises, initially
precomputed by the DFT algorithm, from both (x, t) and u. The denoising mechanism is formulated as the
double affine transformations of the entire training dataset given by

(x̃, t̃) = (x, t)−β(x,t)⊙PΩ(x,t)
(S(x,t)); S(x,t) = (Sx,St),

ũ= u−βu⊙PΩu(Su),
(15)

7
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Algorithm 2. Denoising physics-informed neural networks’ (dPINNs) learning.

Goal: Achieve the optimal solver θ∗ and PDE coefficients ξ∗

Require: (x, t), u, θ̂a, N̂ξ̂ , initialized Ω(x,t), β
′
(x,t), Ωu, β

′
u

1: Compute S(x,t), and Su using denoising DFT defined in equation (16)
2: Assign β(x,t)← (

√
V(x)β ′

(x,t),
√

V(t)β ′
(x,t))▷ row vector

3: Assign βu←
√

V(u)β ′
u ▷single parameter

4: While not converge do
5: Denoise (x̃, t̃)← (x, t)−β(x,t)⊙PΩ(x,t)

(S(x,t))
6: Denoise ũ← u−βu⊙PΩu(Su)

7: Build D̃ ′←{(x̃i, t̃i)
Nf

i=1} and D̃ ← {(x̃i, t̃i, ũi)
Nf

i=1}
8: Compute loss LD̃

sup(θ̂)+LD̃ ′
unsup(θ̂,N̂ξ̂) on D̃ and D̃ ′

9: Gradient-based update θ̂, ξ̂, Ω(x,t), β
′
(x,t), Ωu and β

′
u

10: end while

11: Minimize LD̃
sup(θ̂)+LD̃ ′

unsup(θ̂,N̂ξ∗); N̂ξ∗ is represented by ξ∗← ((ΦD̃ ′
E (θ̂))⊺ΦD̃ ′

E (θ̂))−1(ΦD̃ ′
E (θ̂))⊺

∂F
θ̂

∂ t̃
▷ Redo line 4–10 with ξ∗ iteratively resolved between line 7 and 8 by LS instead of its gradient-based
update at line 9.

12: return (x∗, t∗)b, u∗, θ∗, ξ∗, Ω∗
(x,t), β

∗
(x,t), Ω

∗
u and β

∗
u

a θ̂ and N̂ξ̂ are attained from algorithm 1.
b The learned outputs are assigned as the optimal parameters superscripted with the asterisk (∗) notation.

where PΩ(x,t)
and PΩu are the projecting functions parameterized by Ω(x,t) and Ωu, capturing the unknown

noise distributions. β(x,t) and βu are updated proportional to the unbiased standard deviations

(
√
V(x),

√
V(t)) and

√
V(u), controlling the relevant comparable intensity of the noise corrections. The

denoising DFT algorithm, which considers power spectrum density (PSD), is meant to deduct small power
frequencies components. The starting noises Su and S(x,t) are obtained by limiting frequencies whose power
is less than the threshold ζ . To attain the low-PSD noise for the signal ψ ∈ {x, t,u}, we compute the following
quantities:

Sψ = ψ−DFT−1(DFTζ(ψ));

DFTζk (ψ) =

{
DFTk(ψ); if PSDk(ψ)> ζ

0; otherwise,

PSDk(ψ) =
1

Nf
∥DFTk(ψ)∥22 ,

P̃SDk(ψ) =
PSDk(ψ)−E(PSD(ψ))√

V(PSD(ψ))
,

ζ = E(PSD(ψ))+αmax
k

(P̃SDk(ψ))
√
V(PSD(ψ)). (16)

Here, k denotes an index in the frequency domain. ζ is defined according to the α portion of the maximal
normalized PSD. E and V calculates the sample mean and variance over k. We precompute S(x,t) and Su since
the gradients cannot flow to α. The denoising physics-informed learning is described in algorithm 2.
Succeeding the first optimization loop, to compensate the numerical error, least squares (LS) regression (see
line 11) is repeatedly employed on the denoised dataset D̃ ′ until the convergence, i.e. no changes of the
optimal unbiased ξ∗ are detected between the learning epochs.

4. Experiments and results

We experimented with five canonical PDEs, including three ordinary PDEs and two complex-valued PDEs,
to investigate the accuracy and robustness of our proposed method. We present the results of derivative
preparation and initial PDE discovery and discuss the regularization hyperparameter effects on finding
the appropriate initial PDE. Later, we show the tolerance of dPINNs against noise in both (x, t)&u for
each PDE as well as against the decreasing number of training samples (scarce data). Beyond the numerical
results, we visualize how the projection networks handle the increasing noise intensity in the exemplar of
discovering Burgers’ PDE.

8
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4.1. Canonical PDEs
4.1.1. Burgers’ PDE
The equation arises in sub-areas of applied mathematics, such as fluid mechanics and traffic flow. We
consider the following Burgers’ equation dataset simulated with Dirichlet boundary conditions, studied
in [9]

ut + uux− νuxx = 0; ν =
0.01

π
, x ∈ [−1,1], t ∈ [0,1]. (17)

Different from the previous works such as [1, 37], where the viscosity of fluid ν was set to 0.1, thus the
smooth fluid speed without a shock wave. Here, ν = 0.01

π is so small that the shock wave emerges. Spectral
methods and standard finite differences [30] are used to accurately simulate the PDE with this small
viscosity.

4.1.2. Korteweg–de Vries (KdV) PDE
The KdV equation [38] is a nonlinear dispersive PDE for describing the motion of unidirectional shallow
water surfaces. For a function u(x, t) the actual form of KdV we consider is expressed as

ut + 6uux + uxxx = 0; x ∈ [0,50], t ∈ [0,50]. (18)

KdV was known to have soliton solutions, representing two one-way moving waves with different
amplitudes. Such characteristics challenge discovery methods to distinguish and yield the sparsest governing
PDE that generalizes the situation. The PDE is also an excellent prototypical example to test discovering the
relatively high-order spatial derivative uxxx. For the PDE simulation, Scipy’s odeint function [39] is applied to
derivatives computed by the pseudo-spectral method.

4.1.3. Kuramoto–Sivashinsky (KS) PDE
The KS or flame equation is a chaotic nonlinear PDE with a spatial fourth-order derivative term, primarily to
model the diffusive instabilities in a laminar flow. The PDE reads

ut + uux + uxx + uxxxx = 0; x ∈ [0,100], t ∈ [0,100]. (19)

The solution was generated with an initial condition u(x,0) = cos( x
16 )(1+ sin( x

16 )), integrated up to the
wide temporal bound of [0,100] [1] using a spectral method in MATLAB [40]. Consequently, we got a
chaotic and complicated PDE solution. Raissi [37] very first noticed that it was challenging to fit a vanilla
neural network to the entire chaotic solution while minimizing the residual physics loss; for example,
minθ,θs(LD

sup(θ)+LDs
unsup(θ,θs)). A similar problem was independently found by Rudy et al [1]. When

encountering the whole chaotic domain of KS, the PDEs produced by STRidge could be inaccurate and
unstable with the complication of noise.

4.1.4. Quantum harmonic oscillator (QHO) PDE
The QHO is the Schrodinger equation with a parabolic potential 0.5x2. The PDE is given by

iut +
1

2
uxx−

x2

2
u= 0; x ∈ [−7.5,7.5], t ∈ [0,4]. (20)

We construct the basis candidate matrix that includes the parabolic potential. The dataset is temporally sliced
from [1].

4.1.5. Nonlinear Schrodinger (NLS) PDE
The NLS equation is used to study nonlinear wave propagation. The PDE and its true discretization read as

iut +
1

2
uxx + u∥u∥22 = 0; x ∈ [−5,5], t ∈

[
0,
π

2

]
. (21)

We include candidate terms depending on the magnitude of the solution, e.g. ∥u∥22, which may appear in the
correct identification of the dynamics of the complex-valued function. We experiment with the exact dataset
from [9].

9
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4.2. Experimental settings
The training data points (x, t)&u are randomly subsampled from all the generated discretized points in the
domain according to the size N f specified in table 6. All the discretized (noisy) data points are exploited as
the validation set for early stopping after detecting the rise(s) in the validation MSE during the pretraining
and converging of the solver network. Nr = (1,1,0.5,0.5,1)Nf for Burgers’, KdV, KS, QHO and NLS PDE,
respectively. The solver architecture comprises 6 hidden layers with 50 neurons each and Tanh activation
functions in the between. For the preselector,Wb are devised as a single hidden layer. At the same time, the
rest parameters θrs are implemented as a sequence of 3 hidden layers, each with 50 neurons whose outputs are
layer normalized [41], randomly dropped out [42] and Tanh activated, excluding Tanh from the final layer.
The dropout probability is 0.1 for KdV and KS, otherwise is 0. Hidden weights are initialized by uniform
Xavier [43] and biases are initialized to 0.01. σ(·) = 1

2 (tanh(·)+ 1) is defined for all the canonical models
except for Burgers’ PDE, σ(·) = 1

1+exp(−1(·)) , Sigmoid is employed to convey the flexibility in the design. λ1 is
varied for accomplishing the suitable value while λ2 is set to 0.1. The projection networks Ω(x,t) and Ωu are 2
hidden layers, each having 32 neurons with Tanh; hence, the final layer’s raw outputs of the networks PΩ(x,t)

and PΩu are activated by Tanh. β
′
(x,t) and β

′
u are initialized at 10

−3 for the ordinary PDEs and 10−5 for the
complex-valued PDEs (QHO and NLS).

For algorithm 1, full-batch stochastic LBFGS [44] and vanilla LBFGS [45], with 0.1 step sizes and the
strong Wolfe line search, are leveraged separately, to pretrain and converge the solver network. The
pretraining (second-order optimization) epoch is limited to 1 to prevent overfitting in the noisy (x, t)&u
case. MADGRAD [46] with gradient-deconflicting PCGrad [34] is applied to joint learn (line 1) for 1000
epochs in Burgers’ and KdV cases. The weighted average with the ratios
LD
sup(θ) : (LDs

unsup(θ,θs)+RDs
η (θ,Wb)) = 1 : 1 and 1 : 10−3 are put to optimize for 300 and 1500 epochs in KS

and the complex-valued PDEs. The learning rate for updating the pretrained θ is assigned with a low value of
10−7, while the higher rates from (10−2,10−2,10−3,10−1,10−1) are set for updating untrained θs. κ is set, in
the same dataset order, to (0.75,0.7,0.8,0.9,0.9) before the first gradient updates of the joint training. Then,
LBFGS [45] is mainly used for the dPINNs’ learning (algorithm 2). For every noisy KdV and KS
experimental case, the denoising-related parameters Ω(x,t), β

′
(x,t), Ωu and β ′

u are reinitialized with the

conceivably closer estimate θ̂ prior to executing the subroutine at line 11.
As for the input of STRidge, the candidate library is P2(·), collecting nonconstant interaction-only

real-valued polynomial features up to the 2nd degree of the estimated PDE solution and its partial derivatives
P2(·), computed with respect toM.

The precomputed denoising DFT is configured with α= 0.1 for all the canonical PDEs. DFT and DFT−1

(the inverse transform) are the one-dimensional fft and ifft functions from PyTorch [47] package. Our
nPIML framework is as well implemented dominantly using PyTorch package.

Step and of the proposed framework are run on a single Quadro RTX graphics processing unit
(GPU) with 49 152 MiB memory in less than an hour. Step is run on a CPU with the following
specification: 2.6GHz 6-Core Intel Core i7 with 32GB ram 2667MHz DDR4.

In the noisy experiments, we presume that a matrix, say z, gets perturbed, right after the time of its
subsampling, by the p% biased (no Bessel’s correction) standard deviation (std) of Gaussian noise Z
simulated as follows:

noise(z,p) =
p · std(z)
100

×Z; ∀i, j(Zij ∼N (0,1)). (22)

Suppose that 1% noise is exerted, subsampled u and (x, t) get polluted in turn with noise(u,1) and

( noise(x,1)√
2

, noise(t,1)√
2

).

The metric to measure how far an estimate ξest from the ground truth ξ is mean(δ)± std(δ) over all j
effective coefficients in ξest. If only the correct candidates are identified, δj = δj(ξ

est, ξ) is the %coefficient
error (%CE) defined as

δj =
∣∣∣ξestj − ξj

∣∣∣/∣∣ξj∣∣× 100%; j ∈ {1, . . . ,cols(Θ)}. (23)

In tables 6–8, ξest ∈ {ξ̂, ξ∗}. cols(Θ) represents the number of columns ofΘ.
Specific treatments for complex-valued PDEs: our complex neural networks are initialized based on the

prior work called deep complex networks [48]. Since the spatio-temporal points lay on a real
two-dimensional (2D) plane, the model starts from 1 (real) hidden layer with 200 neurons, followed by 5
complex linear layers, each consisting of 200 neurons that account for 100 real parameters and 100 imaginary
parameters. Note that the complex forward pass is essentially iteratively performing naive complex-valued
matrix multiplication and bias addition. The differentiation of complex-valued Fθ(x, t), respecting a
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Figure 2. Burgers: learned feature importance with varied λ1.

Table 1. Burgers regularization hyperparameter selection: concerning the coefficient selection criteria, STRidge’s λ0, controlling the
L0-penalty, is set to 104λSTRε, and dtol equals 2 for the three noise conditions. The assignment of (µ,λSTR,dtol) is purely for gathering
the likely different PDEs. Each PDE is accompanied by the ‘(BIC)’ score. Blue indicates the agreement. Boldmeans the lowest BIC score,
compared to the scores acquired by the same λ1. Among the agreed models, we check (✓) the sparse PDEs with

∥∥ξSTR∥∥
0
⩽ 4, which

demonstrate sufficiently low BIC score. Out of those, the PDE with⋆ is regarded as the initial guess.

λ1/λSTR 10−6 10−3 100

0.99 [uxx,uux,uuxxx,uxuxx] [uxx,uux] [uux]
(−8723.69) (−7636.39) (15 823.14)

10−1 [uxx,uux,uuxxx,uxuxx] [uxx,uux] [uux]
(−8456.28) (−7154.65)✓ (15 824.98)

10−2 [uxx,uux,uuxxx,uxuxx] [uxx,uux] [uux]
(−8294.55) (−7178.84)⋆ (15 824.29)

0 (supplement) [uxx,uux,uuxxx,uxuxx] [uxx,uux] [uux]
(−8437.81)✓ (−7243.32)✓ (15 827.68)

real-valued vector, e.g. x, can be computed distributively. Concretely, we apply AD to the real and imaginary
parts (denoted by ℜ(·) and ℑ(·)) with respect to x separately; then, we form the output complex-valued
matrix as

∂Fθ(x, t)
∂x

=
∂ℜ(Fθ(x, t))

∂x
+
∂ℑ(Fθ(x, t))

∂x
i; i2 =−1. (24)

Likewise,Wb of the preselector is treated as a single complex linear layer, including the bias, with 50 neurons.
θrs is modeled by 3 complex linear layers, each with total 50 neurons that are batch normalized [49] and
component-wise Relu activated.

Because the estimated PDE solution is complex-valued, we may include norm-based candidates, e.g.∥∥Fθ̂(xM, tM)
∥∥2
2
, as one of the bases that build all the nonconstant polynomial features (not

interaction-only) up to the 2nd degree. Once prepared, the candidate library can be directly input to
STRidge.

4.3. Effect of regularization hyperparameters on initial PDE identification
For each canonical PDE, we present the domain of interest from which the metadataM is generated for the
initial PDE extraction. We then concentrate on the multi-perspective assessment of the different discovered
PDEs by STRidge while varying the two major regularization hyperparameters: λ1 of the preselector network
and λSTR of STRidge algorithm. Before the finetuning process, we present how accurate the initial discovered
PDEs concerning the following three cases distinguished by the noise conditions: noiseless dataset, noiseless
(x, t) but noisy u, and noisy (x, t)&u in which the spatial-temporal (x, t) becomes mesh-free.

4.3.1. Initial discovered Burgers’ PDE
We trained the preselector network with varying λ1 to perceive the significance of each candidate. The
distributed feature importance values (Ij for each jth basis candidate) are presented in figure 2. Although
several choices of the expressive subset of threshold-passing candidates are contributed, identifying the
optimal set is still not obvious by merely adjusting λ1. Hence, STRidge was subsequently employed multiple
times with diverse levels of regularization intensity λSTR. For convenience, we simply set
∀i⩽ Nf +Nr,(xMi , tMi ) = (xi, ti) for all Burgers’ experimental cases that differed in the noise conditions. The
cross results, table 1, are assessed for obtaining the initial discovered PDE that agrees with the corresponding
preselector and sparse with a sufficiently low BIC score.

Assigning the λ1 = 0.99 is so high that the true candidate, i.e. u, is lacking from the threshold-passing
candidates. Accordingly, the resulting PDEs cannot match the particular importance scores. The preselector
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properly focuses on the true candidates when λ1 is set to 10−1 and 10−2. Notice that uxx consistently passes
the threshold with marginal values, conveying the small viscosity estimates. As seen in table 1, for λ1 > 0,
10−2 gave the best initial result, covering the sparse PDE with the lowest BIC among the agreed models. We
shall examine more to find out soon what BIC level herein should be considered sufficiently low.

Deciding on the value of λSTR requires an akin principle: the values that are too low or high are likely to
yield incorrect forms. For example, λSTR = 100 is immensely high, outputting the too sparse and
noninformative PDE with the single effective uux, delivering the high BIC scores. λSTR = 10−3 is more
suitable, suggesting the sparse models, which conform with the preselectors and offer the low BIC scores that
vastly improve from those given by λSTR = 100. Conditioned by λ1 > 0, ut = 0.003063uxx− 0.986174uux
contains the few terms and offers the minimal BIC among the acceptable PDEs; thus, taken as our initial
guess (⋆) to be finetuned. Remind that, when considering the models from diverse values of λ1, although
their functions differ solely in the PDE coefficient values, they cannot be compared by BIC because the

change in θ̂ affects Fθ̂(·), i.e.
∂Fθ̂

∂tM varies (see equation (11)), hence the incomparable RSS without an explicit
static referenced time derivative. Nevertheless, we straightforwardly prefer the one with the lower BIC score.
By the disagreements, the sparsity-promoting preselectors, trained with λ1 > 0, all entail that λSTR = 10−6

gives overly parameterized models with the minor improvements per the increased independent candidates.
If we were to independently have the mere consideration on λ1 = 0 or technically diminutive to a certain
value, none of the basis candidates would probably get deselected, and the resulting PDEs would be all in
their agreements. The justification, whether including uuxxx and uxuxx worth the reduction in BIC, would
turn ambiguous, though the PDE outcome by (λ1,λSTR) = (0,10−3): ut = 0.003063uxx− 0.985882uux
captures the ground on a par with our PDE guess (⋆). If the preselector were not at all constructed, the
concern would still persist. For the noisy cases, the %CE (see equation (23)) of the initial PDE estimates are
listed in the nPIML:IPI row of table 6.

We have comprehensively decided on the initial PDE solely based on the agreement and BIC derived
from the simulation result. However, the experiment on λ1 = 0 gives a sense that the agreed PDE that
minimize BIC respecting a small λ1 < 10−2 can have an arbitrary complexity, especially if there is no human
in the loop to supervise the choices of (λ1,λSTR), which influences the perception of sufficiently low BIC.
Since the conducted heuristics need to be more extensive, and we have yet to impose an explicit selection
metric, let us seek a useful general metric to tackle real-world problems by analyzing the ‘BIC decay rate’ with
respect to the increasing number of effective candidates, ∆BIC

∆∥ξ∥
0

. Unlike the previous work [12], which

underwent expensive numerical integration to a found PDE to obtain AIC based upon comparison to the

PDE solution on full domain grid, our BIC is of the model that predicts the system evolution
∂Fθ̂

∂t estimated
by the solver network instead, avoiding simulation of various false PDE forms which arise ubiquitously.

Towards such a pursuit, STRidge alone is inadequate to create the Pareto front (see figure 3) because, for
a λ1, not every complexity less than a maxλSTR(

∥∥ξSTR∥∥
0
) is considered. Also, we are not guaranteed to obtain

the optimal PDE for a unique output complexity. Therefore, we employ additional algorithms to estimate the
best subset of candidates naturally for each complexity, e.g. FROLS (forward regression with orthogonal least
squares) [50, 51] and L0BnB (sparse regression where the maximum number of nonzero candidates are

determined beforehand) [52]. Specifically, FROLS and L0BnB take P2(ΦM(θ̂)) to predict
∂Fθ̂

∂t with a
constraint that the number of effective candidates is less than maxλSTR(

∥∥ξSTR∥∥
0
). The ridge hyperparameter

of L0BnB is set according to table 10. We union the solutions produced by λSTR-varying STRidge, FROLS and
L0BnB. Next, backward elimination [27] coupled with calculating the most predictive candidates (both
consider based on MSE score) for every decreased complexity are applied iteratively to each unique solution
until we are left with a single effective candidate while tracking all the BIC scores to update the best subset for
each complexity. In doing so, we extend RFE (with refitted ordinary linear regression to
assign the MSE score) and SelectKBest functions from sklearn.feature_selection [53]. As
illustrated in figure 3, the PDE that results in the transition minimizing the BIC decay rate is within the
group of PDEs on which the preselector and regressors (STRidge, FROLS or L0BnB) can agree. This is
observable for both the polynomial library and WF [5] in the three noise conditions. The %CEs of the
coefficients recovered by extending the initial PDE identification with WF or CWF [6] (nPIML:IPI+
WF/CWF) are given in table 6. The evidence convinces us to investigate and devise an algorithm for PDE
selection based on the BIC decay rate.

To study the Pareto front in high noise situations, we try adding noise directly to the estimated
full-domain PDE solution by the solver Fθ̂ attained by algorithm 1 without joint training (line 1) on the
noiseless dataset, prior to computing polynomial library and WF. We keep increasing the noise intensity until
before the falsely discovered PDE at the correct complexity occurs. Compared to figure 3, similar trends are
seen on the left of figure 4, but the %CEs are quite high: 61.08± 3.62 (1%/Poly.) and 18.07± 17.65
(6%/Weak.). With an ensemble of three WFs with different 10 000 domain centers, algorithm 3 yields the
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Figure 3. Burgers: Pareto front between relative BIC and complexity. A relative BIC measures the increased value from the
minimum BIC across every considered complexity. Dashed lines indicate the transition detected by algorithm 3. The PDEs
formable using the threshold-passing candidates of the preselector network trained with λ1 = 10−2 has two types: ones that
STRidge agrees (denoted by□) in the first place and the others on which FROLS or L0BnB agree (△).

Figure 4. Burgers: Pareto front in high noise situations.
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Figure 5. KdV: learned feature importance with varied λ1.

Table 2. KdV regularization hyperparameter selection: STRidge’s λ0 is set to 102λSTRε, and dtol equals 1 for the three noise conditions.
Blue indicates the agreement. Boldmeans the lowest BIC score, compared to the scores acquired by the same λ1.

λ1/λSTR 10−5 10−3 10−1

2(10−4) [ux,uxxx,uux,uuxxx,uxuxx] [uxxx,uux] [ux]
(−651 496.23) (−593 260.84) (−493 869.28)

2(10−5) [ux,uxxx,uux,uuxxx,uxuxx] [uxxx,uux] [ux]
(−651 650.73) (−593 259.27)✓ (−493 885.29)

2(10−6) [ux,uxxx,uux,uuxxx,uxuxx] [uxxx,uux] [ux]
(−651 782.07) (−593 389.01)⋆ (−493 868.73)

0 (supplement) [ux,uxxx,uux,uuxxx,uxuxx] [uxxx,uux] [ux]
(−651 733.37) (−593 275.19)✓ (−493 851.71)

true PDE form of 2-complexity up to 6% noise level, instructing that the metric is indeed standalone and
operable although the preselector is ablated or trained with an improper λ1. On the right of figure 4, since
the improvement is underserved due to the high noise, it turns unworthy of stepping to the 2-complexity
PDE. This notably tells that detecting the extravagance of increasing complexity is crucial for selecting
1-complexity PDE, which we elaborate in appendix B.1. In appendix B, we confirm the usability of the BIC
decay rate in detecting the true complexity of various PDEs.

4.3.2. Initial discovered KdV PDE
We inspect how the preselector weights each basis candidate in figure 5. Trained with λ1 = 2(10−5) or
2(10−6), the preselector can capture the true candidates while the relatively high value of λ1 = 2(10−4) solely
let ux pass the threshold. u and uxxx barely pass the threshold if λ1 = 2(10−5), nonetheless their
effectivenesses become vivid when λ1 ⩽ 2(10−6).

STRidge was leveraged multiple times on the candidate library built onM. For KdV, we regarded the
metadata as the linear discretization of the entire spatio-temporal domain; NM = 64128, facilitating the
disambiguation of the different wave amplitudes. The found PDEs for the several pairs of (λ1,λSTR) are listed
in table 2. By pondering the PDEs that harmonize with λ1 > 0, we neglect the selection of the PDEs with the
minimal BIC (for a particular λ1) because they neither agree with the L0-penalized feature importance nor
be sparse as expected. The reduced BIC per an increasing effective term of transition from λSTR = 10−3 to
λSTR = 10−5 is much less when compared with moving from λSTR = 10−1 to λSTR = 10−3, signifying the
inefficiency of including the unnecessary terms. Remark that setting λSTR = 10−1 gives the PDEs, each
describing a one-way traveling wave which can be considered as the relaxed form of KdV PDE, still not well
fit the overall character of the dataset. Based on the mentioned justification, we thus prefer λSTR = 10−3, and
choose the agreed PDE with the better BIC, taking the form of ut =−0.989065uxxx− 5.961087uux as our
initial guess (⋆). The selected PDE is noticed as a more precise to the ground truth than the PDE based
λ1 = 0, which is ut =−0.988350uxxx− 5.959614uux. Also, just naively, the BIC cannot elucidate the
overfitting hurdle without the auxiliary knowledge gained by varying λ1 > 0. For the noisy KdV cases, the
initial results %CE of the algorithm 1 are as well shown in the nPIML:IPI row of in table 6.

In figure 6, we plot the KdV Pareto front created via the aid of the best-subset regressors: FROLS and
L0BnB analogous to what is explained in section 4.3.1. Visually, we are inclined to stop after the transition to
the agreed PDE between the preselector and STRidge at an elbow, where the BIC decay rate is minimized.
Especially in the WF case, the reduced BICs become relatively small after having the actual candidates whose
%CE is reported in the nPIML: IPI+WF row of table 6. In the case of the extension with CWF, the %CE is as
well calculated. Algorithm 3 numerically verifies our intuition, not including extra candidates to the
2-complexity PDE.

In a realistic circumstance where basis candidates rendering a library for steps and are incomplete,
we urge an exploration at step , growing from a small set of basis candidates to larger sets. For example, we
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Figure 6. KdV: Pareto front between relative BIC and complexity. The preselector network is trained with either λ1 = 2(10−5)
(noisy cases) or 2(10−6) (noiseless case).

may start with the set without uxxx and then gradually add the higher-order derivatives as demonstrated in
figure 7. The area between the incomplete C= 3 and overcomplete C= 4 plots is big, like the considerable
drop in BIC depicted in figure 6. If we enlarge the bases up to [u,ux,uxx,uxxx,uxxxx], we still attain the
identical (optimal, guaranteed by brute-force searches) effective candidates. However, the naive exploration
path of solely adding the spatial derivative order may not be enough (e.g. lacking other necessary operations)
to reach the complete library in other problems. Such incompleteness impacts the subsequent dPINNs’
learning in a bad manner. For example, the final physics loss would increase likewise to what happens in
figure 7 owing to the wrong PDE finetuned. Training merely the PINN component ascertains the statement.
In the overcomplete cases, the final losses for learning the PDE solution (supervised from data) and the
discovered physics are around 10−6 and 5(10−7), respectively. But in the incomplete case, the losses escalate
to 2(10−5) and 10−6. To prevent the deficiency in future studies, we see a prospect in employing best-subset
regression on a collection of basis candidates whose complexity grows by an evolutionary algorithm as
formerly advocated by [28, 29].

4.3.3. Initial discovered KS PDE
Our early attempt was performing algorithm 1 with train/validation sets. The training samples were
abundant as Nf = 80,000. Nr = 0 was chosen to avert the GPU memory overflow because of the
computation up to the fifth-order uxxxxx. Unfortunately, suggested by the plots in figure 8, we have quickly
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Figure 7. KdV: Pareto front when the candidate libraryΦM(θ̂) is intentionally turned incomplete. The preselector is kept fixed
with λ1 = 0, the same network as what is listed in table 2, to disable the guiding agreement.

Figure 8. KS: training relative L2 error of the learned (from Nf = 80000) solver θ̂ against temporally varying sub-regions of the
KS training set bounded by [0,100]× [0,44], revealing a local optimum around the stability domain at the beginning of the
evolution.

realized that the relative L2 error of the solver network starts diverging, especially if noise exists when
entering the highly chaotic region of KS, admonishing the evidential burden of training PINN upon the
full-field domain [37]. The issue leads to unreliable derivation estimation, hence non-sparse and cluttered
discoveries of the governing function by STRidge.

We bypass the complication by selectively focusing on the samples from a more stable sub-region at the
beginning of the evolution, where the solver can accurately approximate as indicated by the relative L2 error
plots in figure 8. We assumed that the unknown PDE governs persistently throughout the evolution;
nevertheless, the presumption does not universally hold, since specific coefficients of the chaotic behavior
can be distinct over time [54]. Based on the encountered evidences, as a result, the first 21 504 (1024× 21)
discretized points within [0,100]× [0,8], were instead used with randomly generated nonoverlapping 10 752
unsupervised points for the (re)training in the noiseless experiment. The temporally-wise increased number
of training samples to be the first 30 000 polluted discretized points, where t⩽ 11.6, were used with
randomly generated disjoint 15 000 unsupervised points for both the noisy experiments. The validation sets
were commonly left unaffected. Before the initial PDE identification, we retrained the networks using
algorithm 1 once from scratch on these altered training sets for better stability.

We investigate the learned feature importance of the preselector for ranking each potential atomic
candidate, helping us choose the right PDE as presented in figure 9. It is intriguing to discern that uxxxx is one
of the essential terms for every choice of λ1, despite its order being 4, implying the possibility of including the
high-order derivative.

We list the possible PDEs provided by STRidge for the various set of regularization hyperparameters in
table 3. The metadata was specified as the 21 000 samples (NM) within the [0,100]× [0,8] boundary
generated by a Latin hypercube strategy [55]. It alludes to us that the λSTR = 10−5 founded PDEs cannot
correspond to any specified λ1 > 0 feature importance because of the inclusion of uxxx, which may be
inessential. Conversely, if we were to solely contemplate on the resulting PDEs associated with λ1 = 0, we
would suspect that some terms are missing from [uxx,uxxxx,uux], as the big PDE model comprising
[uuxxx,uuxxxxx, . . . ,uxxxuxxxx] whose coefficient magnitudes were all comparable in size, e.g. of order> 10−1,
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Figure 9. KS: learned feature importance with varied λ1.

Table 3. KS regularization hyperparameter selection: STRidge’s µ is set to (2(102),5(103),5(103)), and dtol equals (1,1,50) for the three
noise conditions. For the noisy (x, t)&u case, each polynomial candidate is normalized by its L1-norm to get the better three-term PDE in
terms of the BIC score. Blue indicates the agreement. Boldmeans the lowest BIC score, compared to the scores acquired by the same λ1.

λ1/λSTR 10−5 10−3 10−1

2(10−2) [uxx,uxxxx,uux,uuxxx,uuxxxxx,uxuxx,uxxuxxx,uxxuxxxxx] [uxx,uxxxx,uux] [uux]
(−153 326.24) (−141 117.36) (−67 989.30)

2(10−3) [uxx,uxxxx,uux,uuxxx,uuxxxxx,uxuxx,uxxuxxx,uxxuxxxxx] [uxx,uxxxx,uux] [uux]
(−153 661.00) (−141 032.21)⋆ (−67 956.02)

2(10−4) [uxx,uxxxx,uux,uuxxx,uuxxxxx,uxuxx,uxxuxxx,uxxuxxxxx] [uxx,uxxxx,uux] [uux]
(−151 328.93) (−138 842.33)✓ (−68 022.47)

0 (supplement) a[uxx,uxxxx,uux,uuxxx,uuxxxxx,uxuxxxx,uxxuxxx,uxxuxxxxx,uxxxuxxxx] [uxx,uxxxx,uux] [uux]
(−146 610.75) (−135 102.20)✓ (−67 942.84)

a To avoid minor details of the cluttered discoverie, STRidge gets recursively reiterated with small magnitude coefficient removal until

∀j,
∣∣∣ξ̂j∣∣∣> 10−1.

demonstrated the lowest BIC score. The dilemma signifies that the unaided BIC, whose value varies
dominantly by the changing log-likelihood term, cannot righteously balance the model complexity and
accuracy, partly because no parsimonious governing PDE is involved behind the criterion assumption. In
fact, the well-matched BIC is achievable by the simpler model built on the three correct candidates in
λ1 = 2(10−3). We mark the correct PDE expression ut =−0.989019uxx− 0.962360uxxxx− 0.966931uux
found by λ1 = 0 as inferior to the selected model (⋆) in terms of discovery precision. λSTR = 10−1 offers us
the sparse PDEs, still, their BIC scores are much higher along with the clear BIC worthy enhancements
observed when comparing against λSTR = 10−3, thus designated as the condition giving the underfitted
models. We take the PDE with the lowest BIC ut =−0.989305uxx− 0.970189uxxxx− 0.978123uux as our
starting PDE (⋆), after assessing the agreed models for each λ1 > 0 row. For the noisy cases, the initial
discovered KS %CE are listed in table 6 (see the nPIML:IPI row). On the subsequent learning of figure 1,
the first (repolluted, if noisy) 21 504 data points were employed to finetune dPINNs.

Generally, it is helpful to beware that including the higher-order derivatives in the basis candidates means
enlarging the library size, which may have an ill effect on the discovery results. For the noisy (x, t)&u KS
example, if we include up to uxxxxxx then generate the 20-degree polynomials (C= 7,k= 20), the PDE with
three terms, produced by λSTR-varied STRidge, is not Pareto-optimal:
ut = 0.524544uxx− 1.120505uux− 0.626087uuxxx (BIC=−93 841.66) instead of the previously found
ut =−0.845746uxx− 0.818840uxxxx− 0.913990uux (BIC=−104 867.55). Nonetheless, this specific issue
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Figure 10. KS: Pareto front between relative BIC and complexity. The preselector network is trained with λ1 = 2(10−3).

can be solved by brute-force search over all the possible PDEs with three terms to obtain the best PDE that
shows the minimal BIC/MSE.

Figure 10 reveals that stepping to the discovered PDE of the actual form still makes a satisfactory (best in
KS example) BIC improvement per one candidate over the optimal 2-complexity PDE built on [uux,uuxxx].
After that, we immediately get stagnant progress (undoubtedly for the WF-based library), which algorithm 3
does not tolerate. The %CEs of the found coefficients by the extension with WF or CWF are listed in table 6.

Figure 11 visualizes the incomplete library’s effect on the Pareto front, which implies the optimal
complexity and also the associated candidates we can easily trace back. The area gap between the consecutive
plots of the increasing number of bases gets smaller and saturates when all the necessary bases are presented.
For example, the C= 6 (up to uxxxxx) plot is slightly better than the C= 5 (up to uxxxx) plot, but the optimal
PDE pointed by algorithm 3 remains unchanged. If we were to finetune dPINNs with one of the incomplete
libraries, we would have failed to converge dPINNs and eventually had a higher physics loss. Therefore, the
initial PDE identification step is vital for a PDE discovery approach that operates sequentially like ours.

4.3.4. Initial discovered QHO PDE
As per the specific treatments for QHO mentioned in section 4.2, algorithm 1 turns applicable for the
complex-valued PDEs. The preselector was trained with varied λ1. Each basis candidate importance at the
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Figure 11. KS: Pareto front when the candidate libraryΦM(θ̂) is intentionally turned incomplete. The used preselectors are the
same as those listed in table 3.

Figure 12. QHO: learned feature importance with varied λ1.

different levels is shown in figure 12. All three correct candidates surpass the threshold when λ1 = 1.5(10−1)
or 1.5(10−2) whereas λ1 = 100 compels the too strong regularization.

For QHO, the metadata for STRidge was the linearly discretized points from the full-field
spatio-temporal domain, i.e, NM = 82,432 and ∀i, tMi ⩽ 4. The cross results for the regularization
hyperparameter selection are listed in table 4. If the λSTR intensity is loosen from 10−1 to 10−3 the
considerable shoots in the BIC improvement are apparently gained. However, regularizing too mildly, e.g.
λSTR = 10−5, does not provide any left necessary candidates, exhibiting the small BIC reductions with the
more unsound terms that are unstable across varying λ1. Ultimately, ut = (−0.000463+ 0.498906i)uxx+
(−0.002272− 0.999284i)0.5x2u (⋆) is accepted for the denoising and finetuning stage owing to its minimal
BIC score among the agreed PDEs. In the cases where noise exists, the %CE of the initial discovered
complex-valued PDEs are shown in table 6 (see the nPIML:IPI row).

To testify that the BIC decay rate is reliable for identifying (complex-valued) QHO, we show the Pareto
front for the three noise conditions in figure 13(a). λSTR-varying STRidge dictates the limit in complexity
then, as a straightforward implementation, a brute-force (exhaustive) search solves the PDE for each
complexity. Choosing the 2-complexity PDE is reasonable visually because we see no beneficial improvement
in the more complicated PDEs. Algorithm 3 also numerically verify the claim.

4.3.5. Initial discovered NLS PDE
The feature importance measures are displayed in figure 14. The correct candidates are safely secured, passing
the threshold and becoming effective for all the choices of λ1 = 100, 10−1 or 10−2. Despite that, λ1 = 10−2 is
relatively low such that the inclusion of ux might have complicated the hyperparameter selection procedure.

We limited the whole domain arbitrarily at t< 1.25 for bounding the interested region upon which the
metadata was linearly discretized, i.e. in total NM = 40960. Still, we positively ensured that the essential
dynamics were covered. The found PDEs are assimilated in table 5, indexing diverse set of (λ1,λSTR) for the
regularization hyperparameter selection. The admittance of uxx by decreasing λSTR from 10−2 to 10−5

19



Mach. Learn.: Sci. Technol. 4 (2023) 015009 P Thanasutives et al

Table 4. QHO regularization hyperparameter selection: STRidge’s λ0 is set to 102λSTRε, and dtol equals 10 for the three noise conditions.
Blue indicates the agreement. Boldmeans the lowest BIC score, compared to the scores acquired by the same λ1.

λ1/
aλSTR

b10−5 10−3 10−1

100 [ux,uxx,uux,uuxx,0.5x
2u] [uxx,0.5x

2u] [u]
(−356 020.01) (−355 726.94) (144 126.16)

1.5(10−1) [ux,uxx,uux,0.5x
2u] [uxx,0.5x

2u] [u]
(−325 329.72) (−325 110.45)✓ (144 190.29)

1.5(10−2) [ux,uxx,uux,0.5x
2u] [uxx,0.5x

2u] [u]
(−325 526.78) (−325 307.53)⋆ (144 195.08)

a We enumerate λSTR from (10−3,10−2,10−1) for the noisy (x, t)&u case.
b STRidge is refitted once to show only the term that

∣∣∣ξ̂j∣∣∣> 1.4(10−2).

Figure 13. Pareto front between relative BIC and complexity for identifying complex-valued PDEs.

apparently upgrades the BIC scores. Further dropping λSTR down to 10−7 can push the BIC scores down
slightly with the increased terms that eventually end up disagreeing with the preselectors. Like QHO example
in section 4.3.4, the agreed sparse PDE that exhibits the minimal BIC gets accepted to be denoised and
finetuned. For NLS, the initial discovered PDE reads ut = (−0.000863+ 0.499928i)uxx +(−0.000973+
0.999259i)u∥u∥22 (⋆). In the noisy experiments, the %CE of the initial discovered complex-valued PDEs are
provided in table 6 (see the nPIML:IPI row).
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Figure 14. NLS: learned feature importance with varied λ1.

Table 5. NLS regularization hyperparameter selection: STRidge’s λ0 is set to 105λSTRε, and dtol equals 100 for the three noise conditions.
Blue indicates the agreement. Boldmeans the lowest BIC score, compared to the scores acquired by the same λ1.

λ1/λSTR
a10−7 10−5 10−2

100 [u,∥u∥22 ,ux,uxx,u
2,u∥u∥22 ,uux,∥u∥

2
2 ux] [uxx,u∥u∥22] [u∥u∥22]

(−108 572.98) (−107 799.25)✓ (166 786.21)
10−1 [ux,uxx,u

2,u∥u∥22 ,uux,uuxx,u
2
x] [uxx,u∥u∥22] [u∥u∥22]

(−108 582.11) (−107 847.00)⋆ (166 790.61)
10−2 b[ux,uxx,u

2,u∥u∥22 ,uux,uuxx,u
2
x] [uxx,u∥u∥22] [u∥u∥22]

(−108 508.42) (−107 766.91)✓ (166 790.63)

a STRidge is refitted once to show only the term that
∣∣∣ξ̂j∣∣∣> 1.4(10−3).

b (0.000294− 0.000829i)uxxx that partly causes the disagreement is withdrawn from the list since

|0.000294− 0.000829i| ⩽ 1.4(10−3).

The Pareto fronts shown in figures 13(a) and (b) (for QHO and NLS) are very close to each other; hence
the equal-complexity PDEs chosen. Howbeit, it is important to comment that the faultless identification of
the PDE forms is made possible by the overcomplete assumption, which includes the basis candidate 0.5x2 in
QHO and ∥u∥22 in NLS example. Otherwise, impacted by the incompleteness, we would have obtained a
suboptimal PDE as demonstrated in figures 7 and 11.

4.4. Finetuning PDE coefficients by dPINNs
Based on the results in table 6, nPIML establishes superior results over nPIML without the denoising DFT
and projection networks for the noisy cases, especially when both (x, t) and u are contaminated. For the clean
dataset, the denoising mechanism seems to not over perturb backwardly through converging β(x,t),βu→ 0,
maintaining the effectiveness of the dPINNs’ learning by algorithm 2, on a par to the nPIML without the
denoising that exactly matches the noiseless hypothesis. Indeed, nPIML can outperform nPIML without the

denoisers since the shifting to the more propitious finite set, e.g. {(x∗i , t∗i ,u∗i )
Nf

i=1}, is still technically probable.
In Burgers’ example, nPIML surpasses vanilla PINN for all experimental cases regardless of the denoising
modules, implying the superiority and benefits of the precomputed initialization followed by finetuning θ̂
and ξ̂. Moreover, if the genuine PDE is known beforehand, training PINN from scratch eventually leads to
the good close-formed discovery accuracy on a par with CWF, better than PDE-FIND (STRidge), DLrSR and
WF. The accuracy enhancement points out the usefulness of AD and physics-informed learning. Still, in KS
example, IPI+CWF sets an impressive baseline error that is better than the dPINNs, which finetunes the
4th-order derivative directly and thus risks suffering from local optima of the coefficients. CWF offers the
precise approximation of found coefficients, better than WF, for the mesh data with fine resolution but
struggles to uncover the genuine governing PDE in the scarce subsampled mesh data. This observation
naturally allows for incorporating our dPINNs’ learning with the (convolutional) WF to get the best from
both methods in future investigations.

4.5. Robustness against scarce data
Table 7 reveals the tolerance against the decreasing number of training samples in Burgers’ example. The
precise discovered PDEs are obtainable by finetuning the coefficients even though only the 500 training data
points are available. However, it is challenging to recover Burgers’ PDE if the noise is added or dPINNs are
trained with just the 100 training samples, implied by the faulty discoveries by algorithm 1. Fortunately, the
results show that the denoising affine transformation by the projection networks is feasible even under the
noisy and moderately limited number of labeled samples, e.g. 1000. It is worth pointing out that data bias
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Table 6. Summary of the robust discovery results by nPIML: the noise is 1% of standard deviation. Generally, the adopted λ1s for the
noisy experiments are identical to the noiseless condition unless noted otherwise. Underline and bold indicate the best error among the
mesh-based and mesh-free methods.

Dataset Method
# Train
samples (N f ) Noiseless u+ Noiseu

u+ Noiseu &
(x, t)+ Noise(x, t)

Burgers PDE-FIND
(STRidge) [1]

256× 100a 19.2070± 19.0686 Failed
(−0.0698uux)

Not applicableb

DLrSR [18] 256× 100 19.2070± 19.0686 Failed
(−0.0698uux)

Not applicable

WFc [5] 256× 100 18.7103± 17.7589 18.5517± 17.6983 Not applicable
CWF [6] 256× 100 0.3135± 0.2825 0.3316± 0.1370 Not applicable
CWF (subsampled) 128× 50d 0.5283± 0.4245 0.1476± 0.0220 Not applicable
PINNe [9] 3000 0.3256± 0.1921 0.9212± 0.8589 4.0893± 2.9622
nPIML:IPIf 3000 2.5730± 1.1904 7.0093± 2.6069 55.2051± 15.8919
nPIML:IPI+WF [5] 3000 18.5244± 17.6550 19.2048± 18.1213 24.9787± 24.9340
nPIML:IPI+CWF 3000 0.7741± 0.6189 0.7253± 0.7113 7.8921± 5.0705
nPIML w/o denoiseg 3000 0.1264± 0.0605 0.4271± 0.2451 2.9920± 2.2222
nPIML 3000 0.0557± 0.0170 0.3360± 0.1251 0.8546± 0.4806

KdV PDE-FIND
(STRidge)

128× 501 0.5194± 0.1733 Failed
(−5.4128uux)

Not applicable

DLrSR 128× 501 0.5194± 0.1733 Failed
(−5.3521uux)

Not applicable

WF 128× 501 1.5526± 0.9140 1.5529± 0.8999 Not applicable
CWF 128× 501 <(0.0001± 0.0001) 0.0203± 0.0027 Not applicable
CWF (subsampled) 26× 101 Failed

(−5.4090uux)
Failed
(−5.4412uux)

Not applicable

nPIML:IPI 2000 0.8710± 0.2224 2.9887± 1.1612h 3.7460± 1.4158h

nPIML:IPI+WF 2000 0.9660± 1.5963 1.8076± 2.0034 1.4701± 1.7390
nPIML:IPI+CWF 2000 0.2347± 0.0693 0.1177± 0.1143 0.9487± 0.4943
nPIML w/o denoise 2000 0.6413± 0.3904 1.2547± 0.8369 2.9378± 1.6140
nPIML 2000 0.0890± 0.0568 0.2845± 0.2463 0.4344± 0.2696

KS PDE-FIND
(STRidge)

1024× 251 0.7557± 0.5967 52.2843± 1.4005 Not applicable

DLrSR 1024× 251 0.7571± 0.5966 Failedi Not applicable
WF 1024× 251 0.1521± 0.0598 0.1487± 0.0658 Not applicable
CWF 1024× 251 0.0004± 0.0004 0.0128± 0.0038 Not applicable
CWF (subsampled) 1024× 21 Failed

(−1.2218uux)
Failed
(−0.9uxx− uux)

Not applicable

nPIML:IPI ⩽30 000 2.0794± 0.7842 10.7558± 3.3449 14.0475± 4.0048
nPIML:IPI+WF ⩽30 000 0.7265± 0.5199 0.3557± 0.3068 2.1058± 1.7677
nPIML:IPI+CWF ⩽30 000 0.1913± 0.1347 0.5944± 0.5621 1.2546± 1.488
nPIML w/o denoise ⩽30 000 1.7417± 1.1171 8.8925± 5.2704 9.2365± 6.5974
nPIML ⩽30 000 0.4775± 0.2751 2.9320± 1.4401 3.6493± 3.968

QHO PDE-FIND
(STRidge)

512× 161 0.2458± 0.0101 9.3850± 6.7242 Not applicable

DLrSR 512× 161 0.2850± 0.0090 9.3711± 6.7143 Not applicable
nPIML:IPI 30 000 0.2379± 0.0003 0.3163± 0.0705 0.4197± 0.0121
nPIML w/o denoise 30 000 0.0377± 0.0211 0.2380± 0.1463 0.3278± 0.1694
nPIML 30 000 0.0278± 0.0193 0.1235± 0.0580 0.2669± 0.1639

NLS PDE-FIND
(STRidge)

256× 201 0.3469± 0.2888 2.8485± 2.6764 Not applicable

DLrSR 256× 201 0.3294± 0.2801 2.8542± 2.6778 Not applicable

(Continued.)
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Table 6. (Continued.)

Dataset Method
# Train
samples (N f ) Noiseless u+ Noiseu

u+ Noiseu &
(x, t)+ Noise(x, t)

nPIML:IPI 2500 0.1478± 0.0255 0.5686± 0.2517 2.3726± 1.5939
nPIML w/o denoise 2500 0.0491± 0.0060 0.0953± 0.0114 0.2205± 0.0877
nPIML 2500 0.0421± 0.0172 0.0571± 0.01327 0.1652± 0.0532

a All the discretized points are shown in the mesh representation: # in x × t.
b Because a mesh is required for taking polynomial derivatives used in PDE-FIND.
c An instance of WF, having 10 000 integration domain centers, is used with STRidge whose (λ0,λSTR,dtol) = (10−5,10−2,5).
d We subsample every 2nd point (5th point for KdV) in both x and t. For KS, we take the first 21 504 (1024× 21) discretized points as

described in section 4.3.3.
e ξ̂ is initialized at [exp(−7.0),1.0]⊺ before training PINN.
f The results until of figure 1, initial PDE identification, with polynomial library.
g The results from of figure 1, dPINNs, but without the denoising DFT module and projection networks.
h λ1 is assigned to 2(10−5) instead of 2(10−6).
i DLrSR with the original and unvarying λ0 discovers the following mismatched PDE:

ut =−0.60uux − 0.39uxx − 0.10uuxxx − 0.49uxxxx.

Table 7. Discovered Burgers’ PDE on the scarce data. Bold indicates the best error.

Finetuned PDE %CE

# Train
samples Noise nPIML:IPI %CE w/o denoise w/ denoise

3000a Nob 2.5730± 1.1904 0.1264± 0.0605 0.0557± 0.0170
Yesc 55.2051± 15.8919 2.9920± 2.2222 0.8546± 0.4806

1000 No 3.8530± 1.6829 1.0953± 1.0526 0.8105± 0.7565
Yes 26.5837± 2.6611 8.3633± 8.2076 1.6114± 1.1907

500 No 6.2883± 2.6029 1.9302± 1.7908 1.4888± 1.2651
Yes Failedd Not applicable Not applicable

100 No Failede Not applicable Not applicable
Yes Failedf Not applicable Not applicable

a Taken from table 6.
b Noiseless.
c u+ Noiseu & (x, t)+ Noise(x, t).
d ut =−0.703435uux − 0.000041uxuxx.
e ut =−0.509967uux.
f ut =−0.621560uux.

towards diverse training sets leads to diversity in initial discovery results when learning from a few samples.
In addition, the involving parameter and model initializations affect PINN approximated outputs as
discussed in [17] and consequently the PDEs derived from those outputs.

4.6. Denoising mechanism against high noise
4.6.1. Denoising visualization
We sought to apprehend how the projection networks respond to high noise visually by letting dPINNs
expose the strongly contaminated dataset, where u and (x, t) are polluted with noise(u,5) and noise((x, t),5).
Specifically, we finetuned the dPINNs pretrained by θ̂, taken from the 1%Noise+(x, t)&u case of Burgers’
PDE. The initialized PDE was resolved by LS based on the intentionally uplifted 5% noisy (x, t), expressing
the form as follows: ut = 0.000606uxx− 0.403049uux. For such high noise, we find it is useful that
PΩ(x,t)

(x, t) and PΩu(u) should not be only activated by the final Tanh but also unbiased standardized and
then scaled down to be 0.01 times the values to denoise gradually from small to larger noise magnitude since
denoising the considerable amount at the beginning of the dPINNs’ learning can ultimately cause the
divergence. α and (β ′

(x,t),β
′
u) are initialized at 0.1 and (10−3,10−3). We display how the projection networks

denoise closely around t= 0.46,0.97 in figure 15. By the proximate examination near the dynamically
changing region, where there are only a few supervised samples, the naive PDE estimation:
ut = 0.012378uxx−0.948156uux neglecting the noise effect is observed when the denoising components are
ablated. In comparison, the projection networks can shift the polluted samples towards the direction that
drives the approximated solution by dPINNs to better captures the exact characteristics of Burgers’ PDE
when the denoising components are utilized. For example, the noisy samples get redirected (mostly) to the
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Figure 15. Close visualization of how the preselector networks react to the high noise at x ∈ [−0.16,0.16], around the abrupt
transition caused by the shock waves.

Table 8. Numerical results of finetuning dPINNs on highly noisy KS data. Bold indicates the best error.

Finetuned PDE %CE

Noise level w/o denoise w/ denoise

1%a 9.2365± 6.5974 3.6493± 3.9688
3% 27.0814± 20.0158 11.5509± 9.7542
5% 45.8996± 31.3289 20.5851± 24.1741
10% 56.8900± 40.8643 52.3366± 38.7182
a Taken from table 6.

right in figure 15(a) and left in figure 15(b). With the denoising process, the optimized PDE carries the better
form of ut = 0.008550uxx− 0.972390uux.

4.6.2. Finetuning against high noise
Since restoring a decent approximation of the hidden KS PDE from highly noisy data can be sensitive and
challenging. We, therefore, set up more experiments, similar to section 4.6.1, finetuning the dPINNs
initialized with θ̂ taken from the 1%Noise+(x, t)&u case, but single ξ̂ uniformly generated such that ∀i, ξ̂i
∼ (−10−6)U(0,1). The intensity of the noise that contaminates (x, t)&u is explicitly increased to 3%, 5% and
10%. α and (β ′

(x,t),β
′
u) are initialized at 0.1 and (10−2,10−2). β ′

(x,t) and β
′
u are clamped within [−1.0,1.0]

during the finetuning process. The quantitative results in table 8 emphasize the superiority of asserting the
denoising mechanism to minimize the discovery error numerically under the much-corrupted datasets.
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5. Conclusion

We have presented the interpretable and nPIML framework for distilling the nonlinear PDE governing a
physical system in an analytical expression. The proposed method mainly tackles the problems with the
suboptimal derivatives, sensitivity of regularization hyperparameters, and polluted datasets. The weakly
physics-informed solver network is the primary building block for derivative computation. Giving rise to the
automatic PDE selection algorithm, multi-perspective assessment of the diverse sets of regularization
hyperparameters is feasible through the physics-learning preselector network and the sparse regression.
Finally, dPINNs are introduced for finetuning the objective PDE coefficients on the affine-transformed
noise-reduced dataset given by the projection networks. The numerical results show that the proposed
method is accurate and robust to the scarcity of labeled samples and noise on five classic canonical PDEs.

Nonetheless, the proposed framework exhibits some limitations. For instance, there is no explicit
denoising mechanism at the early derivative preparation and sparse regression stages; thus, particular noise
of an unknown distribution may fake those initial processes and let the entire framework fail. The
predicament that underlying physics remains mysterious initially causes the projection networks to be
inoperable, as the affine transformation can yield the unwanted ũ≈ 0⃗, and solely assigning an appropriate
threshold for denoising DFT is not either trivial or readily beneficial. Towards future improvements,
researchers may conduct extensive studies on grounded topics such as the effect of parameter initialization
on the discovery stability or a border class of inferable PDEs that is not restricted by the linear assumption.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
github.com/nPIML-team/nPIML.

Appendix A. Choice ofλ2

Our experiments in section 4.3 have a fixed value of λ2 = 0.1. The decision is primarily made to deal with the
sensitivity with respect to λ1 and λ2, which raises due to how equation (6) is formulated. Since λ1 controls
both the sparsity of the feature importance and regularization on high-order derivatives, it is intuitive to vary
λ1 and keep λ2 invariant with a value that lets the λ1-varying preselectors deliver different distributions of
learned feature importance.

In fact, one can adopt the alternative opposite option. Here, we run the couple of solver and preselector
networks trained with λ1 = 0 (hence, no regularization has been enforced yet) through algorithm 1 again,
but this time we vary λ2 instead and fix λ1 = 0.99,0.1,0.01 at a time. The results are plotted in figure 16,
which reveals the pattern of the learned feature importance analogous to figure 2. For example,
λ1 = 0.1,λ2 = 5,0.5,0.1 or λ1 = 0.01,λ2 = 100,50,10 represent the pattern of enforcing too mild, just right
and too strong regularization respectively.

Appendix B. Automatic PDE selection

Given a decreasing sequence of raw (not relative) BIC scores B (containing C elements in total) and the
corresponding increasing sequence of complexity Ξ, let us define the BIC decay rate from an index j to k as
follows:

IBICjk (B,Ξ) =
∆jk(B)
∆jk(Ξ)

=
BICk−BICj∥∥ξk∥∥0−∥∥ξj∥∥0 < 0; k> j⩾ 1. (25)

The ACS in algorithm 3 is based on minimizing the BIC decay rate (line 5). Suppose we consider stepping
from an index l to k̄; we compute the magnitude of the decreased BIC per one increasing candidate and see
whether it is, at least, greater than IP (slightly increasing by ϵ) of the maximum between BIC magnitude at l
and the latest improvement IL. If yes, we step to k̄; otherwise we stop at l. In the detailed implementation, k̄ is
the index to which the transition that minimizes the current BIC decay point, and l is the latest index where
we stay. At the first execution when l does not exist, we set l= j̄= k̄− 1. It is worth noting that we have not
confirmed any theoretical guarantee that ACS will always determine the actual function of every physical
system. ACS is simply one feasible algorithm inspired by the observation in our experiments that the
minimization of the BIC decay rate gives the lower bound of the true complexity. Thus, future work on the
theoretical (e.g. a design of the selection algorithm) or numerical results are encouraged.
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Figure 16. Burgers: varying λ2 with fixed λ1.

Figure 17. Pareto fronts plotted with the transition to the optimal complexity (dashed line style) detected by algorithm 3 for PDEs
of different actual complexity.

Figure 18. 3D reaction-diffusion system (Gray–Scott equation): Pareto fronts are affected by the different spatial resolutions.
From left to right, the spatial points in each direction are 128, 64 and 32.

Table 9. Numerical results of the coefficients discovered by algorithm 3.

Dataset Noise level Selected PDE %CE

Nonlinear diffusion PDE (one true candidate) 7% ut : 17.1717
Navier–Stokes PDE 2% ωt : 15.5900± 15.5292
2D reaction-diffusion PDE 10% ut : 3.1177± 1.0276, vt : 3.3251± 1.2490
3D reaction-diffusion PDE (high resolution) 0.10% ut : 0.0490± 0.0720, vt : 0.0071± 0.0072
3D reaction-diffusion PDE (medium resolution) 0.04% ut : 0.0859± 0.0974, vt : 0.0584± 0.0338
3D reaction-diffusion PDE (low resolution) 0.00% Failed (see figure 18(c))

We conduct independent experiments, extending the prior results mostly exemplified in [56, 57], on the
following four different PDEs and present the outcomes of ACS in detecting the actual complexity as shown
in figures 17 and 18. Table 9 lists the corresponding %CE for each experiment.

Similar to section 4.3.1, we leverage the best-subset regressors (FROLS and L0BnB) with our backward
elimination strategy to achieve the BIC associated with the best subset at each complexity. Table 10 lists the
ridge hyperparameter of L0BnB for each example. Note that, for appendix B.2, since the library size is large
(300 000 rows), we use FROLS and BESS (best-subset selection with a given complexity) algorithm [58, 59]
instead of L0BnB because it works faster with the big data. Indeed, more diverse solvers are welcome to be
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Algorithm 3. Automatic complexity selection (ACS) based on minimization of BIC decay rate.

Goal: Select the optimal complexity in Ξi (sliced)

Require: Bi = (BICj)
C
j=i, Ξi =

(∥∥∥ξj∥∥∥
0

)C
j=i

, IP > 0, ϵ, IL

1: procedure ACS(Bi,Ξi,IP, ϵ,IL)a
2: if i= C then
3: return

∥∥ξi∥∥0
4: end if
5: j̄, k̄← argminj,k IBICjk (Bi,Ξi); k= j+ 1, i⩽ j< C
6: l← j̄
7: if IL > 0 then
8: l← i
9: end if

10: ϕ←−IBICl̄k (Bi,Ξi) =
∆k̄l(Bi)

∆l̄k(Ξi)
> 0

11: ifϕ > IPmax(|BICl| ,IL) then
12: return ACS(Bk̄,Ξk̄,IP + ϵ,ϵ,ϕ)
13: end if
14: return

∥∥ξl∥∥0
15: end procedure

a For every experiment, we initialize (IP, ϵ,IL) = (0.09,0.01,0) and call ACS (B1 = B,Ξ1 = Ξ,IP, ϵ,IL) to

deliver the optimal complexity. We do not find problematic sensitivity to the initialization of IP and ε. We

achieve the same correct selections by initializing (IP, ϵ,IL) = (0.095,0.005,0).

Table 10. Ridge regularization hyperparameter of L0BnB [52] used to analyze each example. A smaller value achieves a shorter run-time
limit. For QHO and NLS, the best-subset solver is brute-force search. For Navier–Stokes PDE, BESS without L2-regularization [58, 59] is
used instead of L0BnB, achieving faster recovery.

Burgers KdV KS Nonlinear diffusion 2D reaction diffusion 3D reaction diffusion

10−3 10−3 10−2 10−3 10−1 10−2

aggregated. For example, we union the models given by library-ensemble [60] STRidge and SR3 [61]
respectively in appendices B.3 and B.4. We determine the maximum complexity as a constant. If it is
computationally possible, we can ultimately brute-force search for the best subset of any complexity upon all
the candidates once effective by any solver. Gaussian noise, according to equation (22), is added solely to
every independent generated PDE solution up to the limit. For appendices B.1, B.3 and B.4, the library
representation is overcomplete and constructed as an instance by the WF [5] with 10 000 integration domain
centers and the derivative (approximated by finite difference method) order not greater than 2. An
overcomplete polynomial-based library is leveraged for appendix B.2.

B.1. Nonlinear diffusion PDE
Dissimilar to the other examples, the PDE raises the challenge of discovering just one mixed term between
function and derivative. Scipy’s initial value problem (ivp) solver with spectral differentiation is applied to
simulate the PDE solution. The complete simulation details can be found at PySINDy URL: https://github.
com/dynamicslab/pysindy

ut = uuxx; x ∈ [0,5], t ∈ [0,1]. (26)

As shown in figure 17(a), ACS stops at the 1-complexity model because we check
ϕchk← ϕ/max(|BICl| ,IL) = 0.0415< IP = 0.09 immediately at the first procedure execution. The noise
limit is 7% before the best 1-complexity model with respect to the perturbed data changes its form to a
wrong one.

B.2. Navier–Stokes PDE
The PDE represents a 2D vorticity equation, whose solution simulates fluid flowing around a circular
cylinder at Reynolds number 100, as follows:

ωt =−uωx− vωy + 0.01ωxx + 0.01ωyy;

(x,y) ∈ [0,9]× [0,4], t ∈ [0,30],
(27)

where ω denotes the vorticity. The coordinates of the velocity field, u and v, are treated as known terms. The
PDE solution, which has a cylinder of unit diameter, is obtained by the immersed boundary projection
method [62, 63] with 3rd-order Runge–Kutta time stepping. We retrieve the Pareto front from the
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Figure 19. Navier–Stokes PDE: comparison between BIC, AIC and HQC.

polynomial library developed in [1]. Accordingly, to compute a derivative candidate, we take polynomial
differentiation at each subsampled point and then aggregate the output value for the entire sub-domain,
where the spatial region past the cylinder bounded by (x,y) ∈ [2,8.5]× [0.3,3.7] is kept.

ACS travels along the Pareto front drawn in figure 17(b) passing through 1→2, 2→3 and 3→4
complexity transitions with the latest valid ϕchk = 0.1597 improvement. Remark that the subsequent
transition to the 5-complexity model (4→5) gives only ϕchk = 0.0323, less than IP + 3ϵ= 0.12. Here, the
noise limit is 2% higher than the 1% noise used in [1]. Thus, with the identical library, the best-subset solver
is better than a single sparse regressor, like STRidge, at searching the actual governing PDE under the higher
noise situation because every complexity within a broader range is taken into account.

Exhibiting regarding this Navier–Stokes example that the nearly identical Pareto fronts are obtained for
the other information criteria closely formulated to BIC, e.g. AIC and HQC (Hannan–Quinn information
criterion) [64], we plot their difference to BIC in raw values as shown in figure 19. Given that metadataM is
unvaried and independent of solver network parameters θ̂, specifically in appendix B, we adopt the
formulation of AIC and HQC following [35, 36]:

AIC(ξ) = 2
∥∥ξ∥∥

0
− 2 log L̂(ξ),

HQC(ξ) = 2
∥∥ξ∥∥

0
log(logNM)− 2 log L̂(ξ).

(28)

Therefore, the constant slopes of their linear differences are annotated in figure 19. These differences are so
relatively minor that algorithm 3 delivers precisely the same optimal PDE for the three information criteria.
The ordering BIC>HQC>AIC remains true when NM satisfies 2 log(logNM)> 2, or we have NM ⩾ 16
samples, which results in HQC>AIC. The condition BIC>HQC is satisfied if logNM > 2 log(logNM),
which gives

√
NM > logNM > 0, always true underNM > 1. Thereupon, the ordering is usual in the regime

of big data. Concerning a future extension of the ACS algorithm to another criterion, we recommend setting
a workable (IP, ϵ) that suits its raw value range and preferably generalizes to various (simulated) examples.

B.3. 2D reaction-diffusion PDE
The PDE governs a system simulating double spiral waves on a periodic domain and consists of seven terms,
which is greater than other canonical PDEs

ut = u− u3 + v3− uv2 + u2v+ 0.1uxx + 0.1uyy,

vt = v− u3− v3− uv2− u2v+ 0.1vxx + 0.1vyy;

x,y ∈ [−10,10], t ∈ [0,10].

(29)

We follow the dataset creation process from [1], which uses MATLAB’s odeint to simulate the PDE solution
with 256 points in each direction. The specification of WF ensures the completeness and follows the example
given by [56, 57] at PySINDy URL.

ACS is performed twice to both ut and vt for studying the Pareto front in figure 17(c), where the subset at
each complexity is guaranteed to be at its optimum over the set of every single unique effective candidate that
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Table 11. Summary of the main notations and their description.

Notation Description

AT (Thresholded) preselector network’s feature importance
D,Ds Labeled set and unlabeled multiset (repetitions allowed) containing all unlabeled

spatio-temporal points (x, t)
D̃,D̃ ′ Denoised datasets with and without referenced ũ
Fθ,Fθs F refers to a neural network’s forward pass. θ,θs denote parameters of the solver and preselector

networks.
FW b ,Fθrs θs consists of two sub-parameters:Wb and θrs .
Fθ̂,Fθ̂s The hat notation indicates trained parameters resulted from algorithm 1.

LD
sup,LDs

unsup Supervised and unsupervised losses computed respectively onD andDs

L(D,Ds)
mt Multi-task learning loss utilizes bothD andDs.
M,Mval Metadata input for STRidge and validation set split fromM
Nξ,N̂ξ̂ True and estimated governing function parameterized by ξ and ξ̂ respectively
Nf,Nf +Nr,NM Number of elements inD,Ds andM
p Gaussian noise level
Pk Function to create k-degree polynomial library
PΩu ,PΩ(x,t)

Projecting functions parameterized by Ωu and Ω(x,t) for denoising on both u and (x, t)
RDs
η Regularization function encouraging sparse preselector network’s feature importance and

lower-order derivatives
Sψ Low-PSD noise for ψ ∈ {x, t,u}
u,ut,ux,uxx, . . . (Noisy) labeled PDE solution and its temporal and spatial derivatives
ũ Denoised u
Z Gaussian noise
βu,β(x,t) Parameters controlling outputs of PΩu and PΩ(x,t)

ΦDs ,ΦM Φ refers to library of candidates. Superscript indices dataset on which Φ is evaluated.

ΦD
E ,Φ

D̃ ′
E E indicates that Φ includes only effective candidates.

Θ Matrix whose columns are the true terms of governing PDE only
λ0,λSTR Hyperparameters for L0-norm penalty of STRidge algorithm
λ1,λ2 Hyperparameters control sparsity of preselector network’s feature importance and number of

effective derivative order
η Trade-off parameter for smooth L0-norm approximation
ξSTR, ξ̂, ξ ξSTR is an estimated PDE coefficient (column) vector by STRidge algorithm. ξ̂ only stores

nonzero coefficients in ξSTR. ξ usually means a nonspecific estimate of PDE coefficients.
ζ Threshold hyperparameter for denoising DFT algorithm (used in algorithm 2)
δ Absolute error function

exists along the Pareto front. When the actual PDE form is fully filled, the BIC scores drop considerably and
stay steady with tiny improvement, even though several variables contributing to the predictions have been
included before. As a result, one execution of ACS is enough to know the actual complexity, moving directly
to the transition where the BIC decay rate is minimized.

B.4. Three-dimensional (3D) reaction-diffusion PDE
Following [65], we tackle the reaction-diffusion system, called Gray–Scott equation, in 3D spatial grid data

ut = 0.014− 0.014u− uv2 + 0.02uxx + 0.02uyy + 0.02uzz,

vt =−0.067v+ uv2 + 0.01vxx + 0.01vyy + 0.01vzz;

x,y,z ∈ [−1.25,1.25], t ∈ [0,10].

(30)

The data creation process (mainly by Scipy’s ivp solver in the Fourier space) and specification of the complete
WF are also easily found at PySINDy URL. For this system, we are interested in whether the data resolution,
defined by the number of points used in each spatial direction, affects the Pareto front, the essential input to
ACS algorithm.

As noticed in figures 18(a) and (b), the inclusion of the last missing candidate corresponds to the
significant decrease in BIC. Contrary to figure 18(c), the biggest drop, followed by the intolerable small
decreases, happens earlier in the Pareto front, resulting in a falsely discovered PDE system even under the
noiseless circumstance. The characteristics of the Pareto fronts are similar to each other if the data resolution
is enough, e.g. having 128× 128× 128 or 64× 64× 64 discretized points. More noise tolerance is also
observed in the higher resolution case. Conclusively, the sparse spatial-temporal data, indifferent from noise,
poorly affect the discovery quality.
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