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Abstract

This work presents a computational study on the linear stability analysis of a genetic network with time
delay. The network is modeled as a continuous system and takes the form of a nonlinear delay differential
integral equation coupled to an ordinary differential equation. Analysis of the stable equilibria shows the
existence of a critical time delay beyond which limit cycle oscillations are born in a Hopf bifurcation. We
confirm our results by discretizing the continuous model into an N -dimensional system and showing that
the associated critical time delays for the discrete system approach the critical time delay for the continuous
system as N becomes large.
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1 Introduction

Cells are formed of thousands of proteins and genes interacting in harmony to carry out the basic functions of
life [1]. Understanding this network of interactions is an important part of biology and, more recently, applied
mathematics. From a theoretical viewpoint, the network represents how proteins affect the expression levels of
other proteins [2]. In the case when the network involves only a few genes and proteins, its dynamic properties
can be studied directly in the laboratory by experimental techniques [3, 4]. However, if the network is formed of
hundreds or thousands of different genes and proteins, then dissecting its dynamic behavior might be difficult and
nonintuitive [5, 6]. For this purpose, several computational techniques have been developed recently that help us
understand some of the basic properties of these gene regulatory networks (for an extensive review see [7, 8, 9]).
Some of the most common modeling techniques involve the use of graphs [10, 11], Boolean networks [12, 13, 14],
Bayesian networks [15], Petri nets [16, 17], reverse engineering methods [18], and coupled differential equations
(linear [19], nonlinear [20, 21, 22], partial [23], stochastic [24, 25, 26], and delayed [27, 28, 29, 30, 31, 32, 33]).

Biologically, transcription and translation are the main processes by which a cell expresses the instructions
encoded in its genes. Transcription is the first step in gene expression and it includes the replication of a gene
into messenger RNA (mRNA). The second step is the translation process, where the information in the mRNA
is translated into a protein. From these two processes, mRNA and protein concentrations arise naturally as the
main intracellular regulatory agents for gene expression [1, 2].

There are several mechanisms that the cell uses to regulate levels of mRNA and protein concentrations. One
important mechanism is the cell’s ability to adjust and control the degradation rates of mRNA and proteins
by increasing or decreasing the concentration of enzymes that degrade these. Another important example is the
cell’s ability to regulate the transcription rate of a specific gene. This is usually accomplished by a special
type of proteins called transcription factors, which either promote or repress mRNA production by binding
directly to the gene. In this work, we consider a network of transcription factors where the expression of a gene
is regulated by several proteins. Fig. 1 shows a basic mRNA-protein feedback mechanism which arises when
the protein product returns to the nucleus as a transcription factor and slows down the transcription of its own
mRNA by binding to the gene’s promoter site [3, 34].

Fig. 1. (a) Feedback inhibition mechanism. The gene is copied onto mRNA, which then
attaches to a ribosome and a protein is produced. The protein then diffuses back into the
nucleus where it represses the transcription of its own gene. (b) Compact notation for the

mRNA-protein feedback loop for a single gene network system. Here the arrow (↑) represents
activation and the perpendicular symbol (⊥) represents repression.

Previous findings [34, 35] show that there are time delays associated with the feedback mechanism presented
in Fig. 1. These delays arise naturally as transcriptional delays (time it takes the gene to get copied into
mRNA) and translational delays (time it takes the ribosome to translate mRNA into protein). Furthermore,
recent studies [29, 34, 35] have shown that if we ignore translational delays (thus considering only transcriptional
delays) we would still have an accurate dynamic model. As explained in [29] and [34], the ordinary differential
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equations (ODEs) associated to this system are given as follows:

dM

dt
= −µM M(t) + H (P (t− T )) (1)

dP

dt
= αP M(t)− µP P (t) (2)

where the time dependent variables are mRNA concentration, M(t), its associated protein concentration, P (t),
the constants µM and µP are the degradation rates of the mRNA and protein, αP is the rate of production of
new protein molecules per mRNA molecule, and H(P (t− T )) is a Hill function representing the rate of delayed
production of new mRNA molecules. We assume that H(P (t−T )) is a decreasing function of the concentration
of protein present at a previous time P (t− T ), where T represents the transcriptional time delay.

The rest of the paper is organized as follows. Section 2 gives the main biological and geometrical background
followed by the mathematical equations for both models: a discrete model characterized by a system of N + 1
ODEs coupled to N + 1 delay differential equations (DDEs); and a continuous model described by a partial
differential equation (PDE) coupled to a delay differential-integral equation (DDIE). In Section 3 we present
the associated linear stability analyses for both models and in Section 4 we characterize their steady state
solutions. Linear analysis reveals the existence of a critical delay where steady states become unstable. Closed
form expressions for the critical delay Tcr and associated frequency ω are then found. In Section 5 we confirm
our results for the exponential weighting case by discretizing the continuous system into a (2N + 2)-dimensional
system and showing that the discrete critical delays approach the continuous Tcr as N becomes large. Finally,
in Section 6 we discuss our findings.

2 Mathematical Model

In this section we generalize the single gene model given by Equations (1) and (2). Fig. 2 shows a network of
N+1 genes where each mRNA, Mi, produces a protein, Pi. We assume that each of these transcription factor,
Pi, regulates mRNA production by repressing all other Mj ’s in the network. The latter set up only affects the
ODE associated to production of mRNA and thus translates the associated one-dimensional system given by
Fig. 1 into the following (2N+2)-dimensional system

Ṁi = −µM Mi + αM

N∑
j=0

H (Pj(t− T )) (3)

Ṗi = αP Mi − µP Pi (4)

where i = 0, 1, . . . , N , and where we assume the same delay, T , and the same degradation rates for all mRNA-
protein feedback loops.

We now transform the discrete model into a continuous model. We start by replacing the discrete concentrations
of mRNA, Mi, and protein, Pi, by the concentration densities M(x) and P (x) respectively. This may be
accomplished by tagging a given gene with a variable x ∈ [0, 1] as depicted in Fig. 3. The two are related by
the following approximations

Mi =

∫ xi+h

xi

M(x̄) dx̄ ≈ M(xi)h (small h) (5)

Pi =

∫ xi+h

xi

P (x̄) dx̄ ≈ P (xi)h (small h) (6)

where we have omitted the time dependence notation for convenience and where we assume x0 = 0 and xN = L
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Fig. 2. Geometric representation of the N+1 coupled system. The protein of the ith gene (pi)
represses its own mRNA production (mi) and the mRNA production of all other N genes.

(see Fig.2). Notice that Equations (5) and (6) yield

N∑
j=0

H (Pj(t− T )) ≈ 1

h

N∑
j=0

H (Pj(t− T )) ≈ 1

h

∫ L

0

H (Pd(x̄)) dx̄ (7)

where the second approximation is obtained by taking the limit as h→ 0 and where Pd(x̄) = P (x̄, t− T ). Next
we divide (3)-(4) by h and use the approximations (5)-(7) to obtain the following continuous version

Ṁ(x) = −µmM(x) + α̃m

∫ L

0

H(pd(x̄)) dx̄ (8)

Ṗ (x) = αpM(x)− µp P (x) (9)

where α̃m = αm
h2 and where its geometric representation is given by Fig. 3.

Fig. 3. Geometric representation of the continuous model. We extend the discrete
concentrations of mRNA, Mi, and protein, Pi, by the concentration densities M(x) and P (x)
respectively. This may be accomplished by tagging a given gene with a variable x ∈ [0, 1] and

thus extending the discretized geometry presented in Fig. 2 to a continuum over both variables.

In this study we will consider a rescaled version of Equations (8) and (9), which we obtain by using the following
set of rescaled variables

m =
M

α̃m
, p =

P

α̃mαp
, p0 =

P0

α̃mαp
(10)
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thus yielding the following rescaled continuous system

ṁ = −µm+

∫ 1

0

K(x− x̄)H(pd(x̄)) dx̄ (11)

ṗ = m− µ p (12)

where m = m(x, t), p = p(x, t), and pd(x̄) = p(x̄, t − T ), and where we assume µp = µm = µ for simplicity.
In addition, we have included a weighting function, K(x − x̄), that generalizes system (8)-(9) by taking into
account the “weight” or influence that a given gene has over other nearby genes. We consider two special cases
of this weight function: uniform and exponential weighting. We explain both of these in the following subsections.

An important remark about the continuous model is that it is not a continuum over space, but rather the
continuity is over the genes and their mRNA and protein products. Biologically, genes are discrete since they
are organized separately along the DNA. Thus the discrete model is more realistic. Mathematically, on the other
hand, we may approximate the discrete system by assuming a “gene continuum” between the genes and their
mRNA and protein products. Thus, although we have sacrificed biological realism for mathematical tractability,
we are now able to transform the multidimensional DDE system (3)-(4) into a more compact mathematical model
of two coupled DDIEs given by (11) and (12). The latter approach is not an uncommon technique, since it has
been used before on studies of predator-prey models [36], cancer resistance [37], epidemiology and population
dynamics [38], all of which are inherently discrete biological systems but which have been conveniently extended
to continuous models for their analysis [39, 40].

2.1 Uniform weighting

This case is characterized by the choice K(x− x̄) = 1. Here each ribosome produces a given quantity of protein
which is shared equally amongst all gene sites (see Fig. 4). For the rate of production of mRNA H(pd(x̄)) we
choose the following Hill function [29, 34]:

H(pd(x̄)) =
1

1 +
(
pd(x̄)
p0(x̄)

)n (13)

where pd(x̄) = p(x̄, t − T ) is the delayed protein concentration at location x̄, and where p0(x̄) is a reference
concentration of protein at x̄, and n is a parameter [34]. The resulting system is of the form

ṁ = −µm+

∫ 1

0

1

1 +
(
pd(x̄)
p0(x̄)

)n dx̄ (14)

ṗ = m− µ p (15)

Fig. 4. Feedback inhibition mechanism with different repression densities. (a) Uniform
weighting where each protein represses equally all mRNA gene sites. (b) Exponential weighting
where each protein represses nearby gene sites with a greater extent than more distant ones.
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2.2 Exponential weighting

This case is characterized by the choice K(x − x̄) = e−|x−x̄|. Here each protein product is shared unequally,
with nearby gene sites being repressed to a greater extent than more distant ones. For mathematical simplicity
we choose the rate of production of mRNA H(pd(x̄)) to be given by a linear function of pd:

H(pd(x̄)) = 1− pd(x̄) (16)

The resulting system is of the form:

ṁ = −µm+

∫ 1

0

e−|x−x̄|(1− pd(x̄)) dx̄ (17)

ṗ = m− µ p (18)

3 Linear Stability Analysis

In this section we study the steady states of the system (11) and (12). Setting ṗ=ṁ=0 we see that at steady
state m∗=µp∗ and p∗d=p

∗, where a * represents the steady state solution.

3.1 Uniform weighting

At steady state, Equations (14),(15) give

µ2p∗(x) =

∫ 1

0

1

1 +
(
p∗(x̄)
p0(x̄)

)n dx̄ (19)

Since the RHS of Equation (19) is independent of x, we see that p∗(x)=p∗ is a constant. Because of the difficulty
in evaluating the integral in Equation (19) for a general function p0(x̄), numerical integration is required in
order to obtain an approximate value for p∗. In order to illustrate the process we choose a tractable function
p0(x̄) = 1 + x̄, together with n = 3 and µ = 0.2, in which case Equation (19) gives p∗ = 2.9876.

3.2 Exponential weighting

At steady state, Equations (17),(18) give

µ2p∗(x) =

∫ 1

0

e−|x−x̄|H(p∗(x̄)) dx̄ (20)

which may be written in the form:

µ2p∗(x) = e−x
∫ x

0

ex̄H(p∗(x̄)) dx̄ + ex
∫ 1

x

e−x̄H(p∗(x̄)) dx̄ (21)

Differentiating Equation (21) twice [41] we obtain the equivalent second order ODE for the steady state solution
p∗=p∗(x):

d2p∗

dx2
− p∗ = − 2

µ2
H(p∗) (22)

where the boundary conditions are given by

p∗(0) =
1

µ2

∫ 1

0

e−x̄H(p∗(x̄)) dx̄ (23)

p∗(1) =
1

eµ2

∫ 1

0

ex̄H(p∗(x̄)) dx̄. (24)
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For the choice of H(p(x̄)) given by (16), Equation (22) becomes

d2p∗

dx2
− γ p∗ = 1− γ (25)

where

γ = 1 +
2

µ2
> 0 (26)

Thus

p∗(x) = c1 sinh
√
γ x + c2 cosh

√
γ x +

2

µ2γ
(27)

where c1 and c2 are determined by substituting Equation (27) into (23) and (24):

c1 =
(

1− e
√
γ
)
K (28)

c2 =
(

1 + e
√
γ
)
K (29)

where

K =
1−√γ −

(
1 +
√
γ
)
e
√
γ

γ
[(
µ2
√
γ + µ2 + 1

)
e2
√
γ + µ2

√
γ − µ2 − 1

] (30)

For example, in the case that µ = 0.2, we obtain

p∗(x) = 0.12040 sinh
√

51x − 0.12059 cosh
√

51x +
50

51
(31)

4 Stability of Steady States

To study the stability of the steady state solution (m∗(x), p∗(x)), we set p(x, t) = p∗(x) + η(x, t) and m(x, t) =
m∗(x) + ξ(x, t) and linearize the resulting Equations in η(x, t) and ξ(x, t).

4.1 Uniform weighting

Here the steady state solution p∗ is constant in x. Equations (14),(15) give

ξ̇ = − µξ −
∫ 1

0

K1(x̄) ηd(x̄) dx̄ (32)

η̇ = ξ − µη (33)

where

K1(x̄) =
nβ

(1 + β)2 p∗
, where β = β(x̄) =

(
p∗

p0(x̄)

)n
. (34)

To study the stability of the origin we assume solutions of the form

ξ(x, t) = A(x) eλt , η(x, t) = B(x) eλt (35)

and substitute them into Equations (32) and (33). Solving for B(x) yields the following integral Equation

r B(x) =

∫ 1

0

K1(x̄)B(x̄) dx̄ (36)

where
r = −eλT (λ+ µ)2 (37)
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To solve Equation (36), we note that the RHS is independent of x, which tells us that B(x)=B is constant.
Eliminating B from Equation (36), we obtain

r =

∫ 1

0

K1(x̄) dx̄ (38)

Here K1(x̄) is given by Equation (34), so that r is known. We are left with the problem of determining λ from
Equation (37) when r is known. This problem is common to both the present case of uniform weighting as
well as to the case of exponential weighting. To avoid repeating the treatment, we handle this problem in the
Appendix. There are two important situations: (i) when T = 0, in which case λ determines the stability of
the system with no delay, and (ii) when T = Tcr, where the delay Tcr corresponds to pure imaginary λ and
corresponds to a change in stability.

(i) When T = 0, Equation (64) in the Appendix gives

λ = −µ±

√
−
∫ 1

0

K1(x̄) dx̄ (39)

which shows that the system with no delay is stable since K1(x̄)>0 from (34).

(ii) When T = Tcr, Equations (69),(68) in the Appendix give

Tcr =
1

ω
arctan

( 2ωµ

ω2 − µ2

)
(40)

ω =

√
−µ2 +

∫ 1

0

K1(x̄) dx̄ (41)

We continue the example given in the previous section, namely, p0(x̄) = 1 + x̄, n = 3 and µ = 0.2, which
yielded the steady state p∗ = 2.9876. By substituting Equation (34) into (41) we obtain ω = 0.24977 which we
substitute into (40) to obtain the critical delay Tcr = 5.40638, where the steady state becomes unstable.

4.2 Exponential weighting

In this case the steady state p∗(x) satisfies the ODE (22). To study its stability, we linearize Equations (17) and
(18), which give

ξt = −µ ξ −
∫ 1

0

e−|x−x̄| ηd(x̄) dx̄ (42)

ηt = ξ − µ η (43)

If ξ(x, t)=φ(x)eλt and η(x, t)=ψ(x)eλt then Equations (42) and (43) become

−eλT (λ+ µ)φ(x) =

∫ 1

0

e−|x−x̄| ψ(x̄) dx̄ (44)

(λ+ µ)ψ(x) = φ(x) (45)

Substituting Equation (45) into (44) gives

r ψ(x) =

∫ 1

0

e−|x−x̄| ψ(x̄) dx̄ (46)

where r is given by Equation (61). Next we transform the integral Equation (46) to the following equivalent
second order ODE [41]-[46]

d2ψ

dx2
+

(
2

r
− 1

)
ψ = 0 (47)
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which will have solutions of the form

ψ(x) = c1 sin(ρ x) + c2 cos(ρ x) (48)

where c1 and c2 are constants and ρ =
√

2
r
− 1. The endpoint boundary conditions of the second order ODE

(47) are obtained from Equation (46) as follows

ψ(0) =
ρ2 + 1

2

∫ 1

0

e−x̄ψ(x̄) dx̄ (49)

ψ(1) =
ρ2 + 1

2e

∫ 1

0

ex̄ψ(x̄) dx̄. (50)

Substituting Equation (48) into (49) and (50) gives a system of Equations on the constants c1 and c2 which
yields the following condition on ρ for nontrivial solutions∣∣∣∣ ρ sin ρ− cos ρ− e − sin ρ− ρ cos ρ+ e ρ

e ρ sin ρ− e cos ρ− 1 −e sin ρ− e ρ cos ρ+ ρ

∣∣∣∣ = 0 (51)

or equivalently (
ρ2 − 1

)
sin ρ− 2 ρ cos ρ = 0. (52)

Equation (52) has an infinite number of roots, the first three of which are ρ = 1.30654, 3.67319, 6.58462, . . .
which give the following corresponding values for r = 2/(1 + ρ2) = 0.73881, 0.13800, 0.04509, . . .. Now that we
know r, we may use the results in the Appendix to determine stability of the steady state.

(i) When T = 0, Equation (64) in the Appendix gives λ = −µ±
√
−r which, in view of the fact that all the

values of r are positive, shows that the system with no delay is stable.

(ii) When T = Tcr, Equations (68) and (69) in the Appendix give expressions for ω and Tcr. Since we are
interested in the smallest value for Tcr, we take r = 0.73881, which gives, for µ = 0.2, the values ω = 0.83595
and Tcr = 0.56184.

5 Numerical Analysis

To check our previous results, we replace the continuous variables ξ(x, t) and η(x, t) in Equations (42),(43) by
a discrete set of N+1 variables ξi(t) and ηi(t). This corresponds to a model of N+1 coupled gene units, and
replaces the integral in Equation (42) by a sum of N+1 terms. As we now demonstrate, analysis of this system
shows that Tcr → 0.56184 as N goes to infinity, for µ = 0.2, in agreement with the foregoing analysis. We start
by discretizing the continuous system, Equations (42),(43), into an (2N+2)-dimensional system given by

ξ̇i = −µ ξi −
1

N + 1

N∑
j=0

e−|i−j|/N ηj(t− T ) (53)

η̇i = ξi − µ ηi (54)

where i = 0, 1, . . . , N . Next we assume solutions of the form

ξi = φi e
λt (55)

ηi = ψi e
λt (56)

and substitute them into (53),(54) to obtain

−eλT (λ+ µ)φi =
1

N + 1

N∑
j=0

e−|i−j|/N ψj (57)

(λ+ µ)ψi = φi (58)
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eliminating φi we obtain

c ψi =

N∑
j=0

e−|i−j|/N ψj (59)

where c = (N+1)r and r is given by (61). For nontrivial solutions, the system (59) of N+1 algebraic Equations,
must satisfy det(K − cI) = 0 where K is the (N+1)×(N+1) matrix K=[Kij ]=[exp(−|i− j|/N)] and c is its
associated eigenvalue. Since K is a symmetric matrix, all of its eigenvalues are real and thus c is a real number.
Numerical evaluation of these eigenvalues c shows that they are all positive. The stability results for the steady
state are summarized as follows:

(i) When T = 0, we see from Equation (64) in the Appendix with r = c/(N + 1) that the steady state in
the system with no delay is stable.

(ii) When T = Tcr, we choose the smallest value of c for a given truncation size N , and use Equations (68)
and (69) in the Appendix to obtain values for ω and Tcr where we take r = c/(N + 1). Table 1 shows results
for µ = 0.2 for various values of N.

Table 1. Numerical Results for µ = 0.2

N c ω Tcr
1 1.3678 0.8024 0.6089
2 2.0612 0.8044 0.6059
3 2.7844 0.8100 0.5977
5 4.2494 0.8175 0.5870
7 5.7215 0.8216 0.5813
10 7.9338 0.8253 0.5761
15 11.6246 0.8285 0.5718
30 22.7034 0.8320 0.5671
50 37.4783 0.8336 0.5649
100 74.4173 0.8348 0.5634
200 148.2960 0.8353 0.5627
300 222.1740 0.8355 0.5623

6 Conclusions

In this paper we investigated the steady state solutions of a continuous gene regulatory network model. The
model takes the form of an ordinary differential equation coupled to a delay differential-integral equation having
time, t, and gene location, x, as independent variables. The study was divided into two cases: uniform weighting
and exponential weighting. For the uniform weighting case we showed that the steady state is not only constant
in time but in space as well. This allowed us to solve the associated eigenvalue problem and prove that the system
is stable when there is no delay. Subsequently, we showed that the system becomes unstable for a critical delay
and found closed form expressions for the critical delay and associated frequency. For the exponential weighting
case, we found that the steady state solution depends on gene location. This was accomplished by transforming
the steady state integral equation into a second order differential equation. By solving the differential equation
we found a closed form expression for the x-dependent steady state. Stability analysis then revealed that the
nondelayed system is stable and expressions for the critical delay and associated frequency were found.

We confirmed our results by means of a numerical approximation where the continuous system was discretized,
which resulted in a (2N+2)-dimensional system with delay. Numerical evaluations for differentN were performed
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and good agreement was found with the continuous counterpart as N became large. This work thus provides
an algorithm to construct a system of two equations (an ODE coupled to a DDIE) which preserves the same
dynamic features as a multidimensional ODE system of a large gene network. In particular, we have shown that
a Hopf bifurcation is conserved in both systems by calculating the critical values of the delay and showing that
T discretecr → T continuouscr . It is hoped that our approach will be useful to researchers in the field of gene networks,
by helping avoid cumbersome numerical routines for large systems of ODEs.
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Appendix

In Equations (36) and (46) we have the following eigenvalue problem

r f(x) =

∫ 1

0

K(x, x̄)f(x̄)dx̄ (60)

where K(x, x̄) is a symmetric integral kernel, f(x) is the eigenfunction, and r is the associated eigenvalue given
by

r = − eλT (λ+ µ)2 (61)

Note that r is real since the RHS of (60) contains a symmetric kernel and thus is a self-adjoint operator of the
form

L(·) =

∫ 1

0

K(x, x̄)(·) dx̄ (62)

which has real eigenvalues.

Now given r we wish to determine λ in two special situations: (i) when T = 0, and (ii) when T = Tcr and
λ is pure imaginary, corresponding to a change in stability.

(i) When T = 0, Equation (61) becomes

r = − (λ+ µ)2 (63)

and gives
λ = −µ±

√
−r (64)

If r > 0 then the Re(λ) = −µ < 0 (for positive µ), and we have stability of the system with no delay.

(ii) When T = Tcr and λ = iω, Equation (61) becomes

r = − eiωTcr (iω + µ)2 (65)

which gives the two real equations

r = 2µω sin (ωTcr) +
(
ω2 − µ2) cos (ωTcr) (66)

0 =
(
ω2 − µ2) sin (ωTcr)− 2µω cos (ωTcr) (67)

Solving Equations (66) and (67) for sin (ωTcr) and cos (ωTcr), and using the identity sin2 (ωTcr)+cos2 (ωTcr)=1
we obtain

ω =
√
r − µ2 (68)

Dividing the expressions for sinωTcr and cosωTcr and solving for Tcr we also obtain

Tcr =
1

ω
arctan

(
2µω

ω2 − µ2

)
(69)
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