Asian Research Journal of Mathematics

16(8): 1-15, 2020; Article no.ARJOM.57193 *ISSN: 2456-477X*

Boundary Value Method for Direct Solution of Sixth-Order Boundary Value Problems

Olaiya Olumide O.^{1*}, Azeez Rasaq A.² and Modebei Mark I.¹

¹Department of Mathematics Programme, National Mathematical Centre, Abuja, Nigeria. ²Department of Mathematics, University of Abuja, Abuja, Nigeria.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/ARJOM/2020/v16i830203 <u>Editor(s):</u> (1) Dr. Ruben Dario Ortiz Ortiz, Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Fisica y Matematicas, Mexico. <u>Reviewers:</u> (1) E. O. Omole, Joseph Ayo Babalola University, Nigeria. (2) Gilbert Makanda, Central University of Technology, South Africa. (3) Abdu Masanawa Sagir, Federal University, Dutsin-Ma, Nigeria. Complete Peer review History: <u>http://www.sdiarticle4.com/review-history/57193</u>

Original Research Article

Received: 20 March 2020 Accepted: 27 May 2020 Published: 09 June 2020

Abstract

In this work, 7th order continuous block methods called the Boundary Value Method (BVM) for the numerical approximation of sixth-order boundary Value Problem (BVPs) is proposed. These methods are derived using the Chebyshev polynomial as basis functions. The BVM comprises the main methods and additional methods, put together to form a block method and thus solved simultaneously to obtain an approximate solution for sixth-order BVPs. This method do not require a starting value as it is self-starting. The BVM is found to be consistent and its convergence was discussed. Numerical examples are shown to illustrate the applicability of the method. To show the efficiency of this method, the approximated solution derived from the methods is compared to the exact solutions of the problem and thus maximum errors are recorded and compared to those in other method from literature.

Keywords: Sixth order boundary value problems; chebyshev polynomials; block methods.

AMS Subject Classification: 65L05, 65L06, 65L10, 65L12.

*Corresponding author: E-mail: gmarc.ify@gmail.com, olaiyaolumide.o@gmail.com;

1 Introduction

In this work, problem of the form

$$y^{(vi)}(x) = f(x, y(x), y'(x), \dots, y^{(v)})(x), \quad x \in [a, b]$$
(1)

subject to the boundary conditions:

$$y(a) = a_0, \quad y(b) = a_1, \\ y'(a) = a_0, \quad y'(b) = b_1, \\ y''(a) = c_0, \quad y''(b) = c_1,$$

$$(2)$$

are considered. Where f is Lipschitz on [a, b], to ensure existence and uniqueness of the solution $y \in C^n[a, b], a_j, b_j, c_j$ (j = 0, 1) are finite real arbitrary constants.

Sixth-order Boundary Value Problems (BVPs) arise in astrophysics. Consider A-type stars which are believed to be surrounded by narrow convecting layers bounded by stable layers [1]. When an infinite horizontal layer of fluid is heated from below and is subjected to the action of rotation, instability sets in. The governing ordinary differential equation is of sixth order and this instability is of ordinary convection [2,3]. These problems may be considered as boundary value problems [4]. The existence and uniqueness results have been studied extensively in [3]. Twizell [4] provided finite difference solution to general sixth-order BVPs. Other numerical methods emplyed for the solution of sixth order BVPs include but not limited to; homotopy perturbation methods [5,1], Modified Decomposition Method [6], Adomian Decomposition Method with Greens function [7], Variational approach and Sinc-Galerkin methods [8], Chebyshev Collocation-path [9]. Recently, the Cubic B-Spline method [10], was applied to solution of sixth-order BVPs.

Linear Multistep Method (LMM) for the direct solution of higher order ordinary differential equation using Chebyshev series approximate solution with interpolation and collocation approach to derived continuous (LMM) have been of interest in recent times, see [11-15]. Continuous (LMM) have greater advantages over the discrete method in that they give better error estimate, provide a simplified form of coefficient for further analytical work at different points and guarantee easy approximation of solution at all interior points of the integration interval, [12]. Continuous linear multistep method (LMM) is used via block technique, to formulate Finite Difference Methods (FDMs) using polynomials as basis functions, thus using multistep interpolation and collocation, continuous FDMs are derived which are assembled and solved simultaneously to obtain approximations $y_i \approx y(x_i)$, for i = 1, ..., N - 1 to the solution of (1) at points $x_i i = 1, ..., N - 1$. Another main advantage of this technique among others metioned earlier is that, the block method to be derived is self starting. This means that it does not reqire any starting value from any external method or guess value.

2 Derivation of the Methods

The exact solution y(x) of (1) is approximated by form

$$p(x) = y(x) \simeq \sum_{i=0}^{r+s-1} \rho_i T_i(x)$$
(3)

with the sixth derivative given by as

$$p^{(vi)}(x) = y^{(vi)}(x) \simeq \sum_{i=0}^{r+s-1} \rho_i T_i^{(vi)}(x)$$
(4)

Where $x \in [a, b]$, ρ_i 's are coefficient to be determined, $T_i(x)$ are Chebyshev polynomial of degree r + s - c

1, *r* is the number of interpolation points that satisfies $6 < r \le k$, *s* is the number of collocation points satisfying $0 < s \le k + 1$, and *k* is the step number. Here the following conditions are imposed;

$$\begin{cases} Y(x_{n+j}) = y_{n+j}, & j = 0, 1, ..., r - 1 \\ Y^{(vi)}(x_{n+j}) = f_{n+j}, & j = 0, 1, ..., s - 1, & \text{where} \quad f_{n+j} = y_{n+j}^{(vi)} \end{cases}$$
(5)

Here, $y_{n+j} = y(x_{n+j})$, $f_{n+j} = f(x_{n+j}, y_{n+j})$. Thus, we define the *k*-step linear multistep method as

$$Y(x) = \sum_{i=0}^{r-1} \alpha_i(t) y_{n+i} + h^6 \sum_{i=0}^{s-1} \beta_i(t) f_{n+i}$$
(6)

with the following derivatives

$$\begin{cases} Y'(x) = \frac{1}{h} (\sum_{i=0}^{r-1} \alpha'_i(x) y_{n+i} + h^6 \sum_{i=0}^{s-1} \beta'_i(x) f_{n+i}) \\ \vdots \\ Y^{(v)}(x) = \frac{1}{h^5} (\sum_{i=0}^{r-1} \alpha_i^{(5)}(x) y_{n+i} + h^6 \sum_{i=0}^{s-1} \beta_i^{(5)}(x) f_{n+i}) \end{cases}$$
(7)

where $\alpha_i(t)$ and $\beta_i(t)$ are continuous coefficients having derivatives $\alpha_i^j(t)$ and $\beta_i^j(t)$, j = 1(1)5. Let the solution of (1) be sought on the partition

$$\pi_N: a = x_0 < x_1 < x_2 < \dots < x_n < x_{n+1} < \dots < x_N = b$$

of the integration interval [a, b] with a constant step size h, given by $h = \frac{b-a}{N}$: Interpolating (3) at x_{n+i} ; i = 0,1,2, ..., r-1 and collocating (4) at x_{n+s} ; s = 0,1,2, ..., s-1 leads to the following systems of equations:

$$\sum_{i=0}^{r+s-1} \rho_i T_i(x) = y_{n+i} \tag{8}$$

$$\sum_{i=0}^{r+s-1} \rho_i T_i^{(\mu)}(x) = f_{n+i} \tag{9}$$

where ρ_i 's are coefficients of the Chebyshev polynomials. Thus we define the following interpolation and collocation in a single matrix as follows

$$A = \begin{pmatrix} T_0(x_n) & T_1(x_n) & \cdots & \cdots & T_{r+s-1}(x_n) \\ T_0(x_{n+1}) & T_1(x_{n+1}) & \cdots & \cdots & T_{r+s-1}(x_{n+1}) \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ T_0(x_{n+r-1}) & T_1(x_{n+r-1}) & \cdots & \cdots & T_{r+s-1}(x_{n+r-1}) \\ T_0^{(vi)}(x_n) & T_1^{(vi)}(x_n) & \cdots & \cdots & T_{r+s-1}(x_n) \\ T_0^{(vi)}(x_{n+1}) & T_1^{(vi)}(x_{n+1}) & \cdots & \cdots & T_{r+s-1}(x_{n+1}) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ T_0^{(vi)}(x_{n+s-1}) & T_1^{(vi)}(x_{n+s-1}) & \cdots & \cdots & T_{r+s-1}^{(vi)}(x_{n+s-1}) \end{pmatrix}^T$$

$$\underline{b} = \begin{pmatrix} \rho_0 & \rho_1 & \cdots & \rho_{r+s-1} \end{pmatrix}^T$$

$$\underline{c} = \begin{pmatrix} y_n & y_{n+1} & \cdots & \ddots & y_{n+r-1} & f_n & f_n & \cdots & \ddots & f_{n+s-1} \end{pmatrix}^T$$

So that

$$A\underline{b} = \underline{c}$$

$$\underline{w} = \begin{pmatrix} T_0(x) & T_1(x) & \cdot & \cdot & T_{r+s-1}(x) \end{pmatrix}^T$$
(10)

Hence we state the following theorem

Theorem 1 [14]. Let (5) be satisfied, the continuous k-step LMM (6), and (7) are respectively derived from the equation

$$Y(x) = \underline{c}^T (A^{-1})^T \underline{w} \tag{11}$$

Proof. Given the continuous scheme

$$Y(x) = \sum_{i=0}^{r+s-1} \rho_i T_i(x)$$
(12)

where $x \in [a, b]$, ρ_i 's are unknown coefficients, $T_i(x)$'s are the Chebyshev polynomial basis functions of degree r + s - 1. We can clearly write (12) as

$$Y(x) = \rho_0 T_0(x) + \rho_1 T_1(x) + \rho_2 T_2(x) + \dots + \rho_{r+s-2} T_{r+s-2}(x) + \rho_{r+s-1} T_{r+s-1}(x)$$
(13)

Then (13) can be written compactly in vector form as

$$Y(x) = b^T w \tag{14}$$

From (10), by left inverse cancelation law we have

$$\underline{b} = A^{-1}\underline{c} \tag{15}$$

Hence, by (15) we have

$$Y(x) = \underline{c}^T (A^{-1})^T \underline{w} \tag{16}$$

as required.

It is note worthy that the continuous methods (6) is equivalent to (16) and will be used to produce the main and additional methods which gives a total of 36 equations and are combined to provide all approximations on the entire interval for the solution of (1).

2.1 Specification

Now, applying Theorem (1), with k = 6, r = 6, s = 7, the six-step linear multistep method is of the form

$$Y(x) = \sum_{i=0}^{5} \alpha_i y_{n+i} + h^6 \sum_{i=0}^{6} \beta_i f_{n+i}$$
⁽¹⁷⁾

with the following derivatives

$$Y^{(j)}(x) = \frac{1}{h^j} \left(\sum_{i=0}^5 \alpha_i y_{n+i} + h^6 \sum_{i=0}^6 \beta_i f_{n+i} \right), \quad j = 1(1)5$$
(18)

Evaluating (17) and (18) at the point $x = x_{n+6}$, the coefficients of the main methods are as shown in Table 1.

	α_0	α1	α2	α_3	α_4	α_5	β_0	β_1	β_2	β_3	β_4	β_5	β_6
y_{n+6}							1	41	2189	4153	2189	41	1
hy'_{n+6}	-1 -137	6 27	-15	20 127	-15 -117	6 87	30240 809	5040 20249	10080 122809	7560 2155337	$10080 \\ 1322381$	5040 15203	$30240 \\ -133$
$h^2 y''_{n+6}$	$60 \\ -15$	2 65	33 -307	3	$\frac{4}{-461}$	10 29	6652800 20479	1108800 289127	246400 16484849	$\frac{1663200}{33409303}$	2217600 25205759	369600 1606223	950400 59
$h^3 y'''_{n+6}$	$-\frac{4}{-17}$	3 95	$^{6}_{-107}$	62 121	$\frac{12}{-137}$	3 31	59875200 73	9979200 4037	19958400 227791	$14968800 \\ 54581$	19958400 471839	9979200 58501	171072 287
$h^4 v^{(iv)}$	4	4	2	2	4	4	$241920 \\ -4703$	$\tfrac{120960}{4411}$	241920 24517	20160 39817	241920 8319	120960 35857	34560 16981
$h^5 v^{(v)}$	-3	16	-34	36	-19	4	$1814400 \\ -457$	$\frac{100800}{2741}$	$40320 \\ -4267$	$\frac{18144}{18841}$	4480 53863	$\frac{33600}{44161}$	259200 5257
<i>n y</i> n+6	-1	5	-10	10	-5	1	40320	30240	120960	15120	120960	30240	17280

Table 1. Coefficients of main formulae for $y_{n+6'}^{(i)}$, i = 0(1)5

The additional methods are obtained by evaluating (18) at the point $x = x_j$, j = 0(1)5. The coefficients of the additional methods are as shown in Tables 2-6.

-	α_0	α ₁	α_2	α3	α_4	α_5	β_0	β_1	β_2	β3	β_4	β ₅	β_6
hy'_0	-137			10	-5	1	43	-67	-4177	-2593	-851	13	-23
hy'_1	$\frac{60}{-1}$	5 -13	-5	3	$\frac{4}{1}$	$\frac{5}{-1}$	$ \begin{array}{r} 199584 \\ -197 \end{array} $	$2970 \\ 3601$	41580 33107	62370 3929	332640 37	41580 61	$498960 \\ -17$
hy'_2	5 1	$\frac{12}{-1}$	$^{2}_{-1}$	-1	$\frac{3}{-1}$	20 1	4989600 -101	$ \begin{array}{r} 1663200 \\ -281 \end{array} $	$ \begin{array}{r} 1663200 \\ -58309 \end{array} $	$356400 \\ -37133$	$\frac{151200}{311}$	1663200 43	4989600 223
hy'_3	$\frac{20}{-1}$	2 1	3	1 1	$\frac{4}{1}$	$\frac{30}{-1}$	19958400 7	665280 25	6652800 46909	4989600 4153	6652800 1249	475200 277	19958400 -223
hy'_4	30 1	$\frac{4}{-1}$	-1	3	2 13	20 1	570240 -2	$133056 \\ -263$	6652800 -2591	$453600 \\ -24979$	$6652800 \\ -1741$	3326400 13	19958400 17
hy'_5	$\frac{20}{-1}$	3 5	$^{1}_{-10}$	-2	12	5 137	155925 2	831600 529	237600 653	$1247400 \\ 49319$	831600 559	$ 831600 \\ -179 $	4989600 23
	5	4	3	5	-5	60	99792	332640	15120	498960	23760	332640	498960

Table 2. Coefficients of main formulae for y'_{j} , j = 0(1)5

Table 3. Coefficients of main formulae for y''_{j} , j = 0(1)5

	α_0	α1	α_2	α3	α_4	α_5	β_0	β_1	β_2	β_3	β_4	β_5	β_6
$h^2 y''_0$	15	-77	107		67	-5	-67	650899	4476217	1286639	57881	-7649	6527
$h^2 y''_1$	4 5	$^{6}_{-5}$	$^{6}_{-1}$	-13 7	$\frac{12}{-1}$	6 1	748440 2851	4989600 -83773	9979200 -229219	$7484400 \\ -252347$	$4989600 \\ -7129$	4989600 2423	2993760 -103
$h^2 y''_2$	$\frac{6}{-1}$	4 4	$\frac{3}{-5}$	$\frac{6}{4}$	$\frac{2}{-1}$	12	$ \begin{array}{r} 14968800 \\ -379 \end{array} $	9979200 11069	4989600 179219	$14968800 \\ 15613$	4989600 689	9979200 -283	2993760 283
$h^2 y''_3$	12	$\frac{3}{-1}$	2 4	$\frac{3}{-5}$	12 4	$^{0}_{-1}$	11975040 283	9979200 -323	$19958400 \\ 24119$	$14968800 \\ 65969$	$19958400 \\ 24119$	9979200 -323	5987520 283
$h^2 y''_4$	$0 \\ 1$	$\frac{12}{-1}$	3 7	$\frac{2}{-1}$	$\frac{3}{-5}$	12 5	59875200 59	$4989600 \\ -881$	$ \begin{array}{r} 19958400 \\ -22531 \end{array} $	$7484400 \\ -20926$	$19958400 \\ -90983$	4989600 269	5987520 -103
$h^2 y''_5$	$\frac{12}{-5}$	2 61	6	$\frac{3}{107}$	-4^{-77}	$\frac{6}{15}$	29937600 -41	1247400 70073	$\frac{1247400}{1791667}$	467775 6600103	9979200 1347487	$623700 \\ -16123$	2993760 6527
. 0	6	12	-13	6	6	4	5987520	9979200	9979200	14968800	9979200	9979200	2993760

Table 4. Coefficients of main formulae for y'''_{j} , j = 0(1)5

	α_0	α1	α_2	α3	α_4	α_5	β ₀	β1	B ₂	β ₃	β_4	ßs	ß
$h^{3}y'''_{0}$	-17	71	-59	49	-41	7	-395	-54319	-248561	-22541	-4513	29	-13
$h^{3}y'''_{1}$	4 -7	4 25	$\frac{2}{-17}$	$\frac{2}{11}$	2 -7	$\frac{1}{4}$	48384 -5	120960 871	241920 -17519		241920 409	24192 -25	80640 31
$h^{3}y'''_{2}$	$\frac{4}{-1}$	$\frac{4}{-1}$	2 5	$\frac{2}{-7}$	4 7	$\overline{4}$ -1	48384 11	120960 25	241920 15527	20160 731	$241920 \\ -409$	24192 25	241920 -31
$h^{3}y'''_{3}$	4 1	$\frac{4}{-7}$	$\frac{2}{7}$	$\frac{2}{-5}$	$\frac{1}{4}$	4 1		24192 -121	$241920 \\ -2707$	$\frac{12096}{-4153}$	241920 401	$24192 \\ -25$	241920 31
$h^{3}y'''_{4}$	$\frac{4}{-1}$	4 7	-11^{2}	2 17	-25	$\frac{4}{7}$	80640 11	120960 121	48384 13543	$\begin{array}{c} 60480\\ 4651 \end{array}$	241920 -2393	24192 121	241920 -31
$h^{3}y'''_{5}$	$\frac{4}{-7}$	$\overline{\frac{4}{41}}$	$^{2}_{-49}$	2 59	$-\frac{4}{-71}$	$\overline{\frac{4}{17}}$		120960 184	241920 91529	$60480 \\ 61799$	241920 109457	120960 851	241920 13
	4	4	2	2	4	4	241920	120960	241920	60480	241920	120960	80640

	α_0	α1	α2	α_3	α_4	α_5	β_0	β_1	β_2	β_3	β_4	β_5	β_6
$h^4 v_0^{(iv)}$							118687	11679	16201	49577	-1751	1951	-4883
$h^4 v_1^{(iv)}$	3	-14	26	-24	11	-2	$ \begin{array}{r} 1814400 \\ -5003 \end{array} $	$\frac{11200}{10279}$	$13440 \\ 66761$	90720 1823	40320 2173	$\begin{array}{r}100800\\-481\end{array}$	1814400 817
$h^4 v_2^{(iv)}$	2	-9	16	-14	6	-1	1814400 757	$151200 \\ -4247$	$120960 \\ -16901$	9072 -239	$120960 \\ -11$	151200 113	$ \begin{array}{r} 1814400 \\ -113 \end{array} $
$h^4 y_2^{(iv)}$	1	-4	6	-4	1	0	$\overline{ 1814400}_{-113}$	302400 43	$120960 \\ -619$	$18144 \\ -6239$	24192 -619	302400 43	$1814400 \\ -113$
$h^4 v_{\cdot}^{(iv)}$	0	1	-4	6	-4	1	$1814400 \\ -53$	50400 2573	40320 26213	45360 48641	40320 9367	$50400 \\ -1787$	1814400 817
$h^4 v_{\tau}^{(iv)}$	-1	6	-14	16	-9	2	$1814400 \\ 937$	302400 1979	120960 54709	90720 58951	120960 119297	302400 12739	$1814400 \\ -4883$
10 95	-2	11	-24	26	-14	3	1814400	151200	120960	45360	120960	151200	1814400

Table 5. Coefficients of main formulae for $y_j^{(i\nu)}$, j = 0(1)5

Table 6. Coefficients of main formulae for $y_i^{(v)}$, j = 0(1)5

							0	0	0	0	0	0	0
	α_0	α_1	α_2	α_3	α_4	α_5	β ₀	β_1	μ_2	μ_3	β_4	μ ₅	μ_6
$h^{5}y_{0}^{(v)}$							-2453	-8783	-5519	-301	6107	-499	275
$h^5 v_1^{(v)}$	-1	5	-10	10	-5	1	8064 197	6048 -11359	24192 -120517	432 -1159	24192 9887	6048 661	$ \begin{array}{r} 24192 \\ -13 \end{array} $
$h^5 y_{-}^{(v)}$	-1	5	-10	10	-5	1	$\frac{17280}{-347}$	30240 241	$120960 \\ -26539$	$15120 \\ -1741$	120960 673	$\frac{30240}{-383}$	4480 191
$h^5 y_2^{(v)}$	-1	5	-10	10	-5	1	120960 13	$\frac{6048}{-5}$	120960 35099	5040 4153	$17280 \\ -8831$	30240 421	$120960 \\ -191$
$h^5 y^{(v)}$	-1	5	-10	10	-5	1	$8064 \\ -187$	864 629	120960 21557	15120 13529	120960 52807	$30240 \\ -137$	120960 13
$h^{5}v_{-}^{(v)}$	-1	5	-10	10	-5	1	120960 71	$30240 \\ -83$	120960 1033	$\frac{15120}{631}$	120960 29357	4320 2321	$4480 \\ -275$
. y ₅	-1	5	-10	10	-5	1	24192	6048	3456	1008	24192	6048	24192

The formulae in (17) and (18) together form the block method we refer to as the Boundary Value Method (BVM) applied for solution of BVPs, the formulae in (17) and (18) for n = 0(6)N - 6 are considered at the same time where N is the number of subintervals of the interval [a, b].

2.2 Analysis of the methods

In this section, the local truncation error, order, consistency and convergence of theBVM are discussed.

2.2.1 Local truncation error and order

The methods derived in (17) and (18) are associated with the linear differential operator $\mathcal{L}[y(x); h]$ defined by

$$\mathcal{L}[y(x); h] = y(x+jh) - \sum_{i=0}^{5} h^{i} \alpha y(x+jh) - h^{6} \sum_{i=0}^{6} \beta f(x+jh)$$
(19)

and

$$\mathcal{L}[y(x); h] = y^{(l)}(x+jh) - \frac{1}{h^j} \left(\sum_{i=0}^5 \alpha y(x+jh) + h^6 \sum_{i=0}^6 \beta f(x+jh) \right)$$
(20)

Expanding (19) (also (20)) in Taylor series, we obtain the following linear combination of the constants C_i 's of the form

$$\mathcal{L}[y(x); h] = C_0 y(x) + C_1 h y'(x) + C_2 h^2 y''(x) + \dots + C_p h^q y^{(p)}(x) + O(h^{(p+1)})$$
(21)

So that, the LMM (17) is of order p if

$$C_0 = C_1 = C_2 = \dots = C_{p+5} = 0$$
, and $C_{p+6} \neq 0$

in which

$$\mathcal{L}[y(x); h] = C_{p+6}h^{p+6}y^{(p+6)}(x) + O(h^{p+7})$$
(22)

In this case, C_{p+6} is the principal error constant, see [16]. The local truncation error associated with the main methods (17);

$$\begin{split} \nu_0 &= -\frac{y^{(14)}(x)h^{14}}{57600} + O(h^{15}, \ h\nu'_0 = \frac{2687y^{(13)}(x)h^{13}}{60540480} + O(h^{14}), \ h^2\nu''_0 = -\frac{179y^{(13)}(x)h^{13}}{950400} + O(h^{14}), \ h^3\nu''_0 = \frac{97y^{(13)}(x)h^{13}}{950920} + O(h^{14}), \ h^4\nu_0^{(i\nu)} = \frac{199y^{(13)}(x)h^{13}}{86400} + O(h^{14}), \ h^5\nu_0^{(\nu)} = -\frac{3389y^{(13)}(x)h^{13}}{362880} + O(h^{14}). \end{split}$$

The local truncation error associated with the additional methods (18) are are obtained in the same way. Thus, the methods (17) and (18) are consistent (with p > 1).

2.3 Convergence analysis

L

The convergence of the method is investigated using the a Toeplitz seven-band matrix. Consider the system

$$\begin{cases} i. \quad A_{N-k_1}Y = h^6 B_{N-k_1}F + \tau, \\ ii. \quad A_{N-k_1}e = h^6 B_{N-k_1}\delta F + \tau + g, \end{cases}$$
(23)

where

are all $(N - k_1) \times (N - k_1)$ matrices. τ is the vector containing all local errors while g_e contains the errors at the boundary.

$$g_{e} = -\begin{bmatrix} \sum_{i=0}^{k_{1}-1} (\alpha_{i}e_{i} - h^{6}\beta_{i}\delta F_{i}) \\ \sum_{i=0}^{k_{1}-2} (\alpha_{i}e_{i+1} - h^{6}\beta_{i}\delta F_{i+1}) \\ \vdots \\ \sum_{i=0}^{k_{1}-k_{1}} (\alpha_{i}e_{k_{1}-1} - h^{6}\beta_{i}\delta F_{k_{1}-1}) \\ \vdots \\ \sum_{i=1}^{k_{2}-1} (\alpha_{i+k_{1}+1}e_{N-k_{1}+i-1} - h^{6}\beta_{i+k_{1}+1}\delta F_{N-k_{1}+i-1}) \\ \sum_{i=1}^{k_{2}} (\alpha_{i+k_{1}}e_{N-k_{1}+i-1} - h^{6}\beta_{i+k_{1}}\delta F_{N-k_{1}+i-1}) \end{bmatrix}$$

$$(25)$$

By the Boundary value method [11], fix the values k = 3, $k_1 = 3$. Specifically,

2.3.1 Determinant of A_{N-3}

Following Hoskins and Ponzo [9], the determinant of A_{N-3} is given by the following theorem

Lemma 2 [17]. If $N \ge 3$, then determinant of the sixth order difference operator matrix A_{N-3} is given by

det
$$A_{N-3} = \frac{(N-2)(N-1)^2 N^3 (N+1)^2 (N+2)}{8640}$$

2.3.2 The inverse of A_{N-3}

Lemma 3 [17]. Let A_{N-3} be an even order difference operator matrix (26) then from [17], the elements on the diagonal and below are given by

$$\begin{aligned} \alpha_{ij} &= -\frac{(N-2-i)(N-1-i)(N-i)}{240(N-2)(N-1)N(N+1)(N+2)} [(i+1)(i+2)(j+2)(j+1)j(j-1)(j-2)(N+1)(N+2) \\ &- 2i(i+2)(j+3)(j+2)(j+1)j(j-1)(N-2)(N+2) \\ &+ i(i+1)(j+4)(j+3)(j+2)(j+1)j(N-1)(N-2)], \quad i \ge j \end{aligned}$$

$$(29)$$

Since A_{N-3}^{-1} is a symmetric matrix, hence on interchanging *i* and *j* in the previous equation, the terms for α_{ij} for $i \leq j$ can be obtained. The results obtained so far are summarized in the next lemma.

Lemma 4 [17]. The symmetric matrix A_{N-3} is irreducible and monotone and if $A_{N-3}^{-1} = [\alpha_{ij}]$, then $A_{N-k_1}^{-1}$ is symmetric, satisfying $A^{-1} > 0$ where

$$\begin{aligned} \alpha_{ij} &= -\frac{(N-2-j)(N-1-j)(N-j)}{240(N-2)(N-1)N(N+1)(N+2)} [(j+1)(j+2)(i+2)(i+1)i(i-1)(i-2)(N+1)(N+2) \\ &\quad -2j(j+2)(i+3)(i+2)(i+1)i(i-1)(N-2)(N+2) \\ &\quad +j(j+1)(i+4)(i+3)(i+2)(i+1)i(N-1)(N-2)], \quad i \le j \end{aligned}$$
(30)

In particular, for N = 10

$$A_{N-3}^{-1} = \frac{1}{660} \begin{bmatrix} 252 & 504 & 630 & 600 & 450 & 252 & 84\\ 504 & 1232 & 1680 & 1680 & 1300 & 744 & 252\\ 630 & 1680 & 2555 & 2730 & 2205 & 1300 & 450\\ 600 & 1680 & 2730 & 3180 & 2730 & 1680 & 600\\ 450 & 1300 & 2205 & 2730 & 2555 & 1680 & 630\\ 252 & 744 & 1300 & 1680 & 1680 & 1232 & 504\\ 84 & 252 & 450 & 600 & 630 & 504 & 252 \end{bmatrix}$$
(31)

2.3.3 The infinity-norm of A_{N-3}^{-1}

The inverse can be used in verifying the formulas (32) and (33) which will be established next. Define $R_i = \sum_{j=1}^{N-3} \alpha_{ij}$, then

$$|| A^{-1} ||_{\infty} = \max_i |R_i|.$$

It follows that

$$R_{i} = \frac{1}{720}(i+1)(i+2)(i-N)(i-N+2)(i-N+1)i$$
(32)

This gives

$$\frac{dR_i}{di} = \frac{1}{720} (2 \ i - N + 2) [3 \ i^4 - 6 \ i^3 (N - 3) + 3 \ i^2 (N - 3)^2 -6 \ i^3 + 6 \ i (N - 3)^2 - 13 \ i^2 + 22 \ i (N - 3) + 2 \ (N - 3)^2 + 16 \ i + 10 \ (N - 3) + 12] = 0$$
(33)

Consider R_i as a function of real variable *i*. Then R_i is symmetric in the interval [1, N - 3] and it can be easily shown that R_i has its maximum for i = (N - 2)/2 for even values of *N* while R_i has its maximum for i = (N - 3)/2 for odd *N*. Now $d^2R_i/di^2 < 0$ for this value of *i* since A_{N-3} is a positive definite matrix. The infinity norm of A_{N-3}^{-1} must be bounded to an integral value of *i*. Thus,

$$\|A_{N-3}^{-1}\|_{\infty} \le R_{(N-2)/2}.$$

Substituting i = (N - 2)/2 in (32) to find $R_{(N-2)/2}$. This gives

$$\|A_{N-3}^{-1}\|_{\infty} \le R_{(N-2)/2} = \frac{1}{46080} (N+2)^2 N^2 (N-2)^2, \quad forevenN$$

= $\frac{1}{46080} (N-3)(N-1)^2 (N+1)^2 (N+3) foroddN$ (34)

Lemma 5 [17]. The infinity norm of A_{N-3}^{-1} is given by

$$\|A_{N-3}^{-1}\|_{\infty} \le R_{(N-2)/2} = \frac{1}{\infty} \le R_{(N-2)/2} = \frac{1}{46080} h^{-6} (b-a-5h)(b-a-3h)^2 (b-a-h)^2 (b-a+h)$$

$$= O(h^{-6})$$
(35)

for odd N.

Proof. The proof follows easily, using

$$t_i = a + ih$$
, $i = 0, 1, \dots, N + 2$, $t_0 = a$, $t_{N+2} = b$, $h = (b - a)/(N + 2)$

and (35)

Lemma 6 [17]. The matrix A_{N-3} is nonsingular, provided that $LP \ge 0$ where

$$P = (1/46080) h^{-6}(b - a - 5h)(b - a - 3h)^2(b - a - h)^2(b - a + h) = O(h^{-6})$$

and L is the Lipschitz constant of f.

2.3.4 Error bound

The error equation is (23i.). Let L be the Lipschitz constant of f. Since for sufficiently large N, the matrix A_{N-3} is always nonsingular, then it can be shown that

$$\| e \|_{\infty} \leq \frac{\| A_{N-3}^{-1} \|_{\infty} \| \tau \|_{\infty}}{1 - h^{6} \| A_{N-3}^{-1} \|_{\infty} L \| B_{N-3} \|'},$$

where $\| \tau \|_{\infty} = \frac{3389}{362880} h^{13} M_{11}$, $M_{11} = \max_{x} |y^{(13)}(x)|$, $\| B_{N-3} \| = -1$,

Thus,

$$\| e \|_{\infty} \leq \frac{(3389 \, M_{11} h^{-6} + 362880 \, G h^{-13} + 362880 \, E h^{-18}) \, P h^{13}}{362880(1 + LP)}$$

= $J h^{13}$,

where the constant

$$J = \frac{1}{362880(1+LP)} (3389 \, M_{11}Ph^{-6} + 362880 \, PGh^{-13} + 362880 \, PEh^{-18})$$

The summarization of the details above are presented in the next theorem.

Theorem 7 [17]. Let y(x) be the exact solution of the continuous boundary value problem (1.1) and let y_i , i = 0, 1, ..., N - 3, satisfy the discrete boundary value problem (1i). Further, if $e_i = |y(t_i) - y_i|$, then $|| E ||_{\infty} = O(h^{13})$.

3 Numerical Examples

In this part, we implement our derived method using numerical examples to show the high level of accuracy and efficiency of this method.

Example 1. Consider the following nonlinear BVP discussed in [18] of the form

$$y^{(vl)}(x) = e^{-x}y^{2}(x). \quad x \in [0,1],$$

$$y(0) = y''(0) = y^{(iv)}(0) = 1$$

$$y(1) = y''(1) = y^{(iv)}(1) = e$$
(36)

which has an exact solution of $y(x) = e^x$.

Table 7. Comparison of maxium absolute error for different values of h

h	1/8	1/16	1/32	1/64
BVM	6.94×10^{-14}	3.34×10^{-16}	1.39×10^{-16}	4.25×10^{-17}
Khan and Khandelwal [18]	2.25×10^{-7}	2.19×10^{-8}	1.94×10^{-9}	1.35×10^{-9}

It can be seen that the BVM with different step sizes performs better than the method in [18]

Example 2. Consider the boundary value problem, discussed in [10,19].

$$y^{(vi)} + xy = (-24 + 11x + x^{3})e^{x}, \quad x \in [0,1]$$

$$y(0) = y(1) = 0$$

$$y''(0) = 0, \quad y''(1) = -4e,$$

$$y^{(iv)}(0) = -8, \quad y^{(iv)}(1) = -16e.$$

(37)

The analytical solution of the above problem is $y(x) = x(1-x)e^x$.

Table 8. Absolute error with h = 0.1 obtained for example 2

Fig. 1. Showing the exact solution in comparison with numerical solution

Fig. 2. Graph comparing the absolute errors for BVM and Cubic B-Spline in [10]

Table 9. Comparison of maximum absolute errors for example 2

h	1/8	1/16	1/32	1/64
BVM	1.25×10^{-11}	4.72×10^{-14}	9.66×10^{-17}	1.94×10^{-17}
Khan and Sultana [19]	2.25×10^{-7}	2.19×10^{-8}	1.94×10^{-9}	1.35×10^{-9}

Similarly as in example 1, the BVM with different step sizes performs better than the method in [19]

Fig. 1 shows that the numerical solutions compares favourably with the exact solution for h=0.1. Fig. 2 shows the comparison of absolute error obtained for example 2 with the BVM and the method in [10]. This evidently shows that the BVm performs better that those compared with.

Example 3. Consider the boundary value problem, discussed in [10,20]

$$\begin{cases} y^{(vi)}(x) - y(x) = -6 e^{x} \\ y(0) = 1, \quad y(1) = 0, \\ y'(0) = 0, \quad y'(1) = -e, \\ y''(0) = -1, \quad y''(1) = -2e. \end{cases}$$

The analytical solution of the above problem is $y(x) = (1 - x)e^x$.

Fig. 3. Graph of exact and numerical solutions for h = 0.1

x	Error for BVM $h = 0.1$.	Error for Cubic B-Spline [10]
0.1	1.23×10^{-15}	1.18×10^{-5}
0.2	1.01×10^{-15}	4.29×10^{-5}
0.3	1.27×10^{-15}	8.53×10^{-5}
0.4	1.36×10^{-15}	1.28×10^{-4}
0.5	1.11×10^{-15}	1.59×10^{-4}
0.6	4.27×10^{-15}	1.67×10^{-4}
0.7	5.51×10^{-15}	1.45×10^{-4}
0.8	7.28×10^{-15}	9.47×10^{-5}
0.9	1.29×10^{-15}	4.09×10^{-5}

Table 10. Absolute error with h = 0.1 obtained for Example 3

Table 10. showing the	comparison of absolute er	ror for BVM and Cubic B-S	plne in [10] for $h = 0.1$
0	1		

Fig. 4. Graph of error obtained for BVM and Cubic B-spline [10] for h = 0.1

Table 11. Comparison of maximum absolute errors for example 3

h	1/8	1/16	1/32	
BVM	2.974×10^{-15}	2.570×10^{-17}	2.3855×10^{-17}	
Pooja and Talat Sixth-order [21]	1.74×10^{-11}	8.11×10^{-13}	9.77×10^{-12}	
Siddiqi and Akram [20]	1.37×10^{-6}	1.08×10^{-7}	2.25×10^{-8}	

Considering different step sizes, the maximum errors obtained for Examples 1-3 shows clearly that the BVM compare favourably with the methods in the cited papers.

Fig. 3 shows that the numerical solutions compares favourably with the exact solution for h=0.1. Fig. 4 shows the comparison of absolute error obtained for Example 3 with the BVM and the method in [10]. This evidently shows that the BVM performs better that those compared with.

4 Conclusion

The Boundary Value Method proposed in this work was applied to solve sixth-order linear and nonlinear boundary value problems. This method has been shown to be efficient in terms of its applicability and as well as maximum the global errors obtained in the examples presented. The comparison of this method with other existing ones shows that it has compares favourably and its thus recommended for solution of general sixth order BVPs.

Competing Interests

Authors have declared that no competing interests exist.

References

- [1] Noor MA, Mohyud-Din ST. Homotopy perturbation method for solving sixth-order boundary value problems, Computers and Mathematics with Applications. 2008;55:2953-2972.
- [2] Toomore J, Zahn JP, Latour J, Spiegel EA. Stellar convection theory II: Single-mode study of the secong convection zone in A-type stars", Astrophys. J. 1976;207:545-563.
- [3] Agarwal RP. Boundary value problems for higher order differential equations, World scientific, Singapore; 1986.
- [4] Twizell EH. Numerical methods for sixth-order boundary value problems", in: Numerical Mathematics, Singapore, 1988, in: International Series of Numer. Math., vol. 86, Birkhauser, Basel. 1988;495-506.
- [5] He JH. Homotopy perturbation method for solving boundary value problems, Phys. Lett. Avol. 2006;350:87-88.
- [6] Wazwaz AM. The numerical solution of sixth order boundary value problems by the modified decomposition method, Appl. Math. Comput. 2001;118:311-325.
- [7] Al-Hayani W. Adomian decomposition method with Greens function for sixth-order boundary value problems. Computers and Mathematics with Applications. 2011;61:1567-1575.
- [8] He JH. Variational approach to the sixth order boundary value problems, Appl. Math. Comput. 2003;143:235-236.
- [9] Qasem M, Al-Mdallal I. Muhammed Syam. The Chebyshev collocation-path following method for solving sixth-order Sturm-Liouville problems. Applied Mathematics and Computation. 2014;232: 391-398.
- [10] Khalid A, Naeem MN, Agarwal P, Ghaffar A, Ullah Z, Jain S. Numerical approximation for the solution of linear sixth order boundary value problems by cubic B-spline", Springer Advances in Difference Equations. 2019:492. Available:https://doi.org/10.1186/s13662-019-2385-9
- [11] Kolawole Fasasi1 M, Olaide Adesanya A, Momoh AA, Modebei MI. A new block numerical Integrator for the solving y''= f(x, y, y')'', Inter J. Pure and Appl. Math. 2014;92(3):421-432.
- [12] Awoyemi DO. A P-stable linear multistep method for solving general third order ordinary differential equations, Intern. J. Comput. Math. 2003;80(8):987-993.
- [13] Brugnano L, Trigiante D. Convergence and stability of boundary value methods for ordinary differential equations. Journal of Computational and Applied Mathematicsvol. 1996;66:97-109.
- [14] Jator SN. Numerical integrators for fourth order initial and boundary value problems. Inter. J. Pure and Appl. Math. 2008;47(4):563-576.
- [15] Jator SN, Li J. An algorithm for second order initial and boundary value problems with an automatic error estimate based on a third derivative method. Numerical Algorithms. 2012;59:333-346.

- [16] Lambert JD. Computational methods in ordinary differential equations, New York, John; 1973.
- [17] Hoskins WD, Ponzo PJ. Some properties of a class of band matrices. Mathematics of Computation. 1972;26:118.
- [18] Khan A, Khandelwal P. Solution of non-linear sixth-order two point boundary-value problems Using parametric septic splines. Inter. J. Nonlinear Sc. 2011;12(2):184-195.
- [19] Khan A, Sultana T. Parametric quintic spline solution for sixth order two point boundary value problems". Published by Faculty of Sciences and Mathematics, University of Nis, Serbia Filomatvol. 2012;26(6):1233-1245.
- [20] Siddiqi SS, Akram G. Septic spline solutions of sixth-order boundary value problems. Journal of Computational and Applied Mathematics. 2008;215:288–301.
- [21] Khandelwal P, Sultana T. Parametric septic splines approach for the solution of linear sixth-order two-point boundary value problems. Applied Mathematics and Computation. 2019;6856-6867.

© 2020 Olaiya et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) http://www.sdiarticle4.com/review-history/57193