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Abstract

In this paper we present a periodic Chemostat model of two species competing for a single
nutrient available in limiting supply. The nutrient input is varied periodically using a Fourier
series function to take into account the changing patterns as seasons vary. We show both
analytically and numerically that varying the nutrient input using a Fourier Series function
results in a better model to describe coexistence of species in natural environments.
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1 Introduction

The system being discussed here models a Chemostat, which is an important piece of laboratory
apparatus that occupies a central place in ecological studies. It is designed for production and
functional study of micro-organisms. Species, no matter how close they are to each other, naturally
do not compete with each other as long as all the desired resources such as water, light, heat,
temperature, and food are in excess. Once the supply of any one necessary resource falls below
a certain level, then competition begins. Competition can be between individuals of the same
species or different species. In reality species cannot survive without a certain degree of interaction
either within themselves or with other species and the environment. The type of these interactions
usually vary depending on the evolutionary context and environmental circumstances in which they
occur.When studying the interrelationships of organisms and their environments it’s difficult to
trace the mathematics, but the chemostat makes the mathematics easily traceable ( [1], [2]). It
is a model of a simple lake and is also used to model waste water treatment. Commercially, the
chemostat plays a fundamental role in certain fermentation processes, particularly in commercial
production of genetically altered organisms [3]. Chemostat models have found practical applications
in Microbiology since they offer a good environment to model the physiological development of
Micro-organisms and investigate the effect of changing parameters on microbial performance and
cell development ([4], [5], [6]).

When considering the chemostat model in its simplest form, there are two constants that are kept
under the control of the experimenter, the concentration of the input nutrient and the overflow rate.
Naturally one excepts that these will vary with time. The variations are brought about by periodic
environments. One can chose to vary the washout rate [7], the nutrient input concentration [8] or
better still one can actually vary both parameters [9]. Experimentally, these variations have proved
to be of great effect in an experiment done by Herbert et al in [10]. In some cases the periodic
functions have been varied at a commensurate periods ([11] and [12]) and in others cases the
parameters have been made to vary at different periods. The later case has proven to mimic nature
more closely since ecologically a population may be of inherent period variations and this causes
seasonal effects. Unlike the commonly used sine function, the Fourier series ensures fluctuations
within the season are well captured and captures extended periods of time when the nutrient is
higher than average, same as when lower than average. This is what happens in nature. For
example, in a simple lake, during the dry season nutrients are low for some of the competing
species. However, there are days during this dry season when it rains and serves to replenish these
nutrients. Similarly, during the wet season, there are periods (sometimes several days) when it does
not rain. This causes intra season variations that are best modelled using a Fourier Series function
instead of the commonly used Sine Function [8], [9].

2 The Model

The chemostat model being analyzed here consists of two species that are competing for a single,
essential and growth limiting nutrient varied periodically in time. It is described as follows:

Ṡ(t) =

(
S0 +

b

ω

n∑
j=1

(−1)j−1

2j − 1
cos((2j − 1)t)− S(t)

)
D0 −

µ1c1x1(t)S(t)

k1 + S(t)
− µ2c2x2(t)S(t)

k2 + S(t)

ẋ1 = x1(t)

(
µ1S(t)

k1 + S(t)
−D1

)
(2.1)

ẋ2 = x2(t)

(
µ2S(t)

k2 + S(t)
−D2

)
.
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S(0) > 0, x1(0) ≥ 0, x2(0) ≥ 0 for 0 ≤ t < ∞
where,

S0(t) is the input concentration at time.
S(t) is the concentration of the substrate at time t.
xi(t) is the concentration of the ith species at time t.
D0 is the dilution rate
Di is the death rate for species i.
µi is the maximum specific growth rate for the ith species
ki is the Michaelis-Menten constant for the ith species
ci is the constant of proportionality and the content of the nutrient in the ith species.

The nutrient input given by a Fourier series function

S0(t) =

(
S0 +

b

ω

n∑
j=1

(−1)j−1

2j − 1
cos(2j − 1)t

)
models intra season variations effectively as shown in

the figure below. The last two equations of 2.1 can be rewritten in integral form as

Fig. 1. Nutrient input described by fourier series function.

xi(t) = xi(0) exp

∫ (
µiS(t)

ki + S(t)
−Di

)
dt. (2.2)

2.1 Boundedness and Positivity of the Solution

It should be noted that for xi(0) ≥ 0, xi(t) ≥ 0 for 0 ≤ t ≤ ∞ which is a major requirement
of Chemostat models. This statement ensures non-negativity of the species. Non-negativity and
boundedness of both nutrients and competing species is generally a prerequisite of any chemostat
model since no species can take negative values and no species can grow infinitely.

Theorem 2.1. The system has a positive solution of the form v(t) = S(t) + x1(t) + x2(t) where
(S(t), x1(t), x2(t)) ∈ R3

+ is positive set of vector space. Further, v(t) = S(t)+x1(t)+x2(t) < ∞ for
0 ≤ t < ∞.
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Proof: We shall start by showing that S(t) > 0. We prove by contradiction and so we assume that
S(t) < 0 for all t ≥ 0. The first part of equation 2.1 can be written as

Ṡ(t) = S0(t)D0 − S(t)D0 −
2∑

i=1

µicixi(t)S(t)

ki + S(t)
, 1 ≤ i ≤ 2.

Therefore, it follows that since S0(t) =

(
S0 +

b

ω

n∑
j=1

(−1)j−1

2j − 1
cos(2j − 1)t− S(t)

)
≥ 0, andD0 ≥ 0,

then

Ṡ(t) ≥ −

(
S(t)D0 +

2∑
1

µicixi(t)S(t)

ki + S(t)

)
, 1 ≤ i ≤ 2,

or

Ṡ(t) ≤ S(t)

(
D0 +

2∑
1

µicixi(t)

ki + S(t)

)
.

Since S(t) is assumed to be negative then
Ṡ(t)

S(t)
≥

(
D0(t) +

1

s(t)

2∑
1

µicixi(t)

ki + S(t)

)
.

Integrating this equation from 0 to T0 yields

S(t) ≥ S(0) exp

∫ T0

0

(
D0 +

1

S(ξ)

2∑
1

µicixi(t)

ki + S(t)

)
S(t)dξ. (2.3)

The quantity on the right hand of equation 2.3is positive which this contradicts the assumption
that S(t) < 0. This implies that S(t) > 0 for all t ≥ 0.

The integral representation of the second part of 2.1 is given by

x1(t) = x1(0) exp
∫ T0

0

(
µ1S(ξ)

k1 + S(ξ)
−D1

)
d(ξ).

The right hand side of the equation implies that x1(t) ≥ 0 for all t provided that
S(ξ) ̸= −k1 for x1(0) ≥ 0. In any case, both S(t) and k1 are positive quantities thus k1 + s(t) ̸= 0.
The proof for x2(t) will follow analogously. This means that the solution S(t), x1(t) and x2(t) are
positive for all t ≥ 0

To prove boundedness, we let v(t) = S(t)+x1(t)+x2(t) where s(t), x1(t),and x2(t) ∈ R3
+ is positive

set of vector space, and assume that v(t) is also a continuous and ω−periodic function.

Using 2.1 we find that:

V̇ (t) = S0(t)D0 − (S(t)D0 + x1(t)D1 + x2(t)D2)

Therefore it follows that :

V̇ (t) = S0(t)D0 − (S(t)D0 + x1(t)D1 + x2(t)D2) ≤ S0(t)D0

From the fundamental theorem of calculus, it means that:

V (t) ≤
∫ t

0
S0(ξ)D0d(ξ) < ∞, ∀t ≥ 0

19



Ireri et al.; ARJOM, 16(8): 16-27, 2020; Article no.ARJOM.58037

Since V (t) < ∞, 0 ≤ t < ∞, it follows that, individually, S(t) < ∞, xi(t) < ∞, 1 ≤ i ≤ 2, 0 ≤ t < ∞,
meaning that the solution is bounded. This completes the proof.

2.2 Explicit Solutions

Theorem 2.2. Let S(t), xi(t) for i = 1, 2 be solutions of 2.1. Then:

S(t) = S0 +Ae−Dt +

n∑
j=1

B cos((2j − 1)t)− θ) + c1g1(t) + c2g2(t) (2.4)

xi(t) = xi(0) exp

∫ t

0

(
(µi −Di)−

kiµi

ki + S(t)

)
dξ, (2.5)

where

A = S(0)− S0 +

n∑
j=1

βD2

D2 + ((2j − 1))2
+ c1x1(0) + c2x2(0)

gi(t) =

n∑
j=1

(D −Di)

∫ t

0

xi(ξ)e
−D(t−ξ)dξ − xi(t)dξ

B =
βD√

D2 + ((2j − 1))2

θ = tan−1

(
(2j − 1)

D

)
.

Proof

The first part of 2.1 is given as

Ṡ(t) =

(
S0 +

n∑
j=1

β cos((2j − 1)t)− S(t)

)
D− µ1c1x1(t)S(t)

k1 + S(t)
− µ2c2x2(t)S(t)

k2 + S(t)
, where for simplicity,

we have written β in place of
b

ω

(−1)j−1

2j − 1
in the first equation in 2.1.

This translates to

Ṡ(t) +DS(t) =

(
S0 +

n∑
j=1

β cos((2j − 1)t)

)
D −

2∑
i=1

µicixi(t)S(t)

ki + S(t)
(2.6)

but from the second equation of model 2.1 we have:

ẋi(t) = xi(t)

(
µiS(t)

ki + S(t)
−Di

)
multiplying this equation by ci on both sides yields:

µicixi(t)S(t)

ki + S(t)
= ẋi(t)ci +Dicixi(t)

Replacing this term in 2.6 yields:
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Ṡ(t) +DS(t =

(
S0 + β

n∑
j=1

cos((2j − 1)t)

)
D −

2∑
i=1

(ẋi(t)ci +Dicixi(t)) (2.7)

By Product Rule of differentiation, equation 2.7 is equivalent to

d

dt

[
S(t)eDt

]
=

(
S0 + β

n∑
j=1

cos((2j − 1)t)

)
DeDt −

2∑
i=1

(ẋi(t)ci +Dicixi(t)) e
Dt,

meaning

S(t)eDt =
∫ (

S0 + β
n∑

j=1

cos((2j − 1)t)

)
DeDt −

2∑
i=1

∫
cie

Dt (ẋi(t) +Dixi(t)) dt,

or

S(t)eDt =
∫ t

0

(
S0 + β

n∑
j=1

cos((2j − 1)ξ)

)
DeDξdξ −

2∑
i=1

∫ t

0

cie
Dt (ẋi(ξ) +Dixi(ξ)) dξ.

Integrating and dividing both sides by eDt yields

S(t) = S(0)e−Dt +
∫ t

0

(
S0 + β

n∑
j=1

cos((2j − 1)ξ)

)
DeDξ

eDt
dξ −

2∑
i=1

∫ t

0

ci (ẋi(ξ) +Dixi(ξ))
eDξ

eDt
dξ,

which is equivalent to

S(t) = S(0)e
−Dt

+

∫ t

0

S
0
+ β

n∑
j=1

cos((2j − 1)ξ)

De
−D(t−ξ)

dξ −
2∑

i=1

∫ t

0
ci (ẋi(ξ) + Dixi(ξ)) e

−D(t−ξ)
dξ. (2.8)

We integrate 2.8 term by term by the use of the integration techniques such as integration by parts
and the integral formula cited in [13] to obtain

S(t) = S(o)e
−Dt

+ S
0 − S

0
e
−Dt

+

n∑
j=1

βD

(
1

D2 + ((2j − 1))2
(D cos((2j − 1)t) + ((2j − 1)) sin((2j − 1)t)

)
+

De−Dt

D2 + ((2j − 1))2

 2∑
i=1

ci(xi(t) − e
−D(t−ξ)) − D

∫ t

0
xi(ξ)e

−D(t−ξ)
dξ

−
2∑

i=1

ciDi

∫ t

0
xi(ξ)e

−D(t−ξ)
dξ. (2.9)

The term
n∑

j=1

βD
1

D2 + ((2j − 1))2
(D cos((2j − 1)t) + ((2j − 1)) sin((2j − 1)t)) in 2.9 can be rewritten as

n∑
j=1

βD2

D2 + ((2j − 1))2

(
cos((2j − 1)t) +

((2j − 1))

D
sin((2j − 1)t)

)
,

which is equivalent to

n∑
j=1

βD√
D2 + ((2j − 1))2

(
D√

D2 + ((2j − 1))2
cos((2j − 1)t) +

((2j − 1))√
D2 + ((2j − 1))2

sin((2j − 1)t)

)
.

(2.10)
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From elementary algebra, we have

sin θ =
((2j − 1))√

D2 + ((2j − 1))2

cos θ =
D√

D2 + ((2j − 1))2

tan θ =
(2j − 1)

D

θ = tan−1 (2j − 1)

D

Using the trigonometry identity cos(u − v) = cosucosv + sinu sin v, equation 2.10 can further be
rewritten as

n∑
j=1

βD√
D2 + ((2j − 1))2

(cos((2j − 1)t)− θ) . (2.11)

Inserting 2.11 in 2.9 gives

S(t) = S0 +Ae−Dt +

n∑
j=1

B(cos((2j − 1)t)− θ) + c1g1(t) + c2g2(t).

To show that

xi(t) = xi(0)exp

∫ t

0

(µi −Di)−
kiµi

ki + S(t)
dξ. (2.12)

We note that the last two equations of 2.1 can be represented in integral form as

xi(t) = xi exp
∫ ( µiS(t)

ki + S(t)
−Di

)
dt, 1 ≤ i ≤ 2.

Inserting limits from 0 to t yields

xi(t) = xi(0) exp
∫ t

0

(
µiS(ξ)

ki + S(ξ)
−D1

)
dξ.

which is equivalent to

xi(t) = xi(0)exp
∫ t

0

µiS(ξ)−Diki −DiS(ξ)

k + S(ξ)
dξ.

If we add and subtract the term kiµi to the integral part we obtain

xi(t) = xi(0) exp
∫ t

0

µiS(ξ)−Diki −DiS(ξ) + kiµi − kiµi

k + S(ξ)
dξ,

or

xi(t) = xi(0) exp
∫ t

0

(S(ξ) + ki) (µi −Di)− kiµi

ki + S(ξ)
dξ,
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which is equivalent to

xi(t) = xi(0) exp
∫ t

0
(µi −Di)−

kiµi

ki + S(t)
dξ,

which completes the proof.

The break even concentration for a given number D > 0 is given by

λi =
kiD

µi −D
.

Species have distinct break-even concentrations and without loss of generality can be enumerated by
indices such that λ1 < λ2 < ...λn. This parameter is important because it determines the survival
of ith species. If this parameter is small, the corresponding the ith species will continue to survive
till competition decides its fate. If it were not for the seasonal effects, then it is factual to say that
the species with the lowest λ will always win.

Theorem 2.3. If we let ηi =
µi −Di

kiµi
− 1√

(ki + So)2 −B2
< 0, 1 ≤ i ≤ 2 then limt→∞xi(t) = 0

as t → infty,
where

B =
βD√

D2 + ((2j − 1))2
.

Proof:

For limt→∞xi(t) = 0,

It follows from 2.5 that

lim
t→∞

∫ t

0

(µi −Di)−
kiµi

ki + S(t)
dξ = −∞. (2.13)

We substitute the term S(t) with the new value of S(t) given in 2.4 as:

S(t) = S0 +Ae−Dt +

n∑
j=1

B cos((2j − 1)t)− θ) + c1g1(t) + c2g2(t).

Also note that if limt→∞xi(t) = 0,

the term Ae−Dt and c1g1(t) + c2g2(t) will tend to zero, and this abridges the new term of S(t) as

S(t) = S0 +

n∑
j=1

B cos((2j − 1)t)− θ).

Equation 2.13 can thus be written as

lim
t→∞

∫ t

0

(µi −Di)−
kiµi

ki + S0 +

n∑
j=1

B cos((2j − 1)t)− θ)

 dξ = −∞.
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The integrand of this equation is a periodic function of period
2π

ω
, which means for t ≥ t0, we can

change the limit to run form t0 to to +
2π

ω
and further rewrite 2.13 as

∫ t0+
2π

ω

to

(µi −Di)−
kiµi

(ki + S0) +

n∑
j=1

B cos((2j − 1)t)− θ)

 dξ. (2.14)

This integration can be simplified by letting n = 1 to attain:

ηi =
∫ t0+

2π

ω
to

(
(µi −Di)−

kiµi

(k1 + S0) +B cos(ωξ − θ)

)
dξ,

which is equivalent to

ηi = (µi −Di)
2π

ω
− kiµi

ω

∫ t0+
2π

2
−θ

t0−θ

1

(ki + S0) +B cos ξ
dξ. (2.15)

Using an integral formula provided in the integral table in [13] as

∫ 1

a+ b cosx
dx =

2√
a2 − b2

tan−1
(a− b)tan(

x

2
)

√
a2 − b2

,

and letting a = (ki + S0) and b = B, equation 2.15 can be written as

ηi = (µi −Di)
2π

ω
− kiµi

ω

 2√
(ki + So)2 −B2

tan−1
((ki + S0)−B) tan(

ξ

2
)√

(ki + S0)2 −B2

 |t0 ,

which simplifies to

ηi = (µi −Di)
2π

ω
− kiµi

ω

2√
(ki + S0)2 −B2

× π.

This is equivalent to

ηi =
2π

ω
kiµi

(
µi −Di

kiµi
− 1√

(ki + So)2 −B2

)

but since ηi < 0,

then, it follows that ηi =
µi −Di

kiµi
− 1√

(ki + So)2 −B2
< 0.

This completes the proof.

Lemma 2.4. ηi < 0 iff µi ≤ Di. In addition, if 0 < η1 < c2, then, limt→∞ xi(t) = 0 and
lim supt→x2(t)>0 and due to the periodicity term in the nutrient input the species x1 and x2 may
coexist.
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3 Numerical Results

We now turn to numerical simulations to verify the theorems we have presented so far.

Fig. 3. is a graphical representation of system 2.1 with the Fourier Series describing periodic
nutrient input. As a demonstration of the appropriateness of the Fourier Series function in modeling
the Chemostat over the commonly used Sine function, we plot them side by side using the same
parameters. The Figure on the right is a representation of model 2.1 while that on the left is a
representation of 3.1.

Ṡ(t) = (S0 − b sin(ωt)− S(t))D0 −
µ1c1x1(t)S(t)

K1 + S(t)
− µ2c2x2(t)S(t)

K2 + S(t)

ẋ1(t) = x1(t)

(
µ1S(t)

K1 + S(t)
−D1

)
(3.1)

ẋ2(t) = x2(t)

(
µ2S(t)

K2 + S(t)
−D2

)
.

Table 1. Parameter values used to graph fig. 3.

S0 x0
1 x0

2 c1 c2 D0 D1 D2

6 5 5 0.236842117 0.904813608 1 1.26689 1

µ1 µ2 k1 k2 b ω

2.1 1.6578 2 2.0001 1.9108280 0.1

Fig. 2. Graph of periodic nutrient
input varied using sine function

Fig. 3. Graph of periodic nutrient
input varied using Fourier series
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Clearly, the figure demonstrates that in addition to fluctuations of the nutrient, the species also
undergo frequent fluctuations as is evident in nature. While the fluctuations are frequent, the
amplitude of the fluctuations is small, meaning the nutrients do not deviate too far from their
equilibrium point.

4 Conclusion

When using the sine function the amplitudes of the nutrient and species are much larger than would
normally be expected in natural environments. Larger variations run the risk of destabilizing the
equilibrium point and causing coexistence to be difficult to maintain. Notably, nutrient variations
predicted by the system with the sine function are about twice those predicted by the system
with Fourier series function. The fluctuations for the spices predicted by the system with the sine
function are almost ten times more than those predicted by the system without Fourier series.

Clearly system 2.1 gives a robustly more appropriate model of the observed natural environment.
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