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Abstract 
 

A non–linear deterministic mathematical model is formulated and analysed to study the controllability of 
lassa fever incorporating separation of infected individuals and treatment measures. The model assumes 
that humans susceptible acquired the Infection via interaction with the infected rodent populations at a 
constant rate and also the model assumes that treatment is only given to separated human population. The 
existence, uniqueness and positivity of the model’s solution have been carried out and the results shows 
that the solution exist and is unique. Again, the disease – free equilibrium state was obtained and 
analysed. We obtained an important threshold parameter called the effective reproduction number ℛ��� 
using the next generation method. If Reff < 1 the disease-free equilibrium exists and is locally and globally 
asymptotically stable, implying  that Lassa fever can be controlled and eradicated within the population in 
a finite time and if the  ℛ��� > 1, the disease invade and become endemic in the population.  

Short Research Article 
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1 Introduction 
 
Lassa Fever (LF), technically known as Lassa Hemorrhagic Fever (LHF) is a deadly infectious illness to 
man caused by a Lassa Virus (LASV) or Lassa Hemorrhagic Fever Virus (LASHFV) from a carrier 
"multimam-mate rat" (Genus name Mastomys natalensis) [1]. These kind of rat (multimam-mate rat) are 
found in abundant in the sub-saharan part of Africa and infected rodent with the virus serves as a reservoir or 
host to the lassa virus (LASV) and transport it within the region in West Africa and some areas beyond. 
According to many researchers [1,2,3,4,5], Lassa fever is an acute viral infection associated with a wide 
spectrum of disease manifestations, which range from mild to hemorrhagic fever characterized by 
multiorgan failure. 
 
Lassa fever virus is mainly a zoonosis (a disease that is animal-borne or transmitted to humans from 
animals), specifically an African rat, also called the natal multimammate rodent (Mastomys natalensis) 
serves as a host or reservoir of the virus. Once the rat has become a carrier, it will excrete the virus 
throughout the rest of its lifetime through feces and urine creating ample opportunity for exposure [2,6,7,8]. 
The multimammate rat can quickly produce a large number of offspring, tends to colonize human 
settlements increasing the risk of rodent-human contact, and is found throughout the west, central and 
eastern parts of the African continent [2,9,10,11]. The virus is probably transmitted by contact with the 
faeces or urine of animals accessing grain stores in residences Werner et al. [3]. Transmission or Infection of 
Lassa virus to humans typically occurs by direct or indirect exposure to animal excrement through the 
respiratory or gastrointestinal tracts or eating contaminated food, touching soiled objects, or exposure to 
open cuts or sores [12,13,14,15,16]. Inhalation of tiny particles of infectious material (aerosol) is believed to 
be the most significant means of exposure. It is possible to acquire the infection through broken skin or 
mucous membranes that are directly exposed to infectious material Because Mastomys rodents often live in 
and around homes and scavenge on leftover human food items or poorly stored food. Mastomys rodents are 
sometimes consumed as a food source and infection may occur when rodents are caught and prepared. Direct 
contact with infected rodents is not the only way in which people are infected; person-to-person transmission 
may occur after exposure to virus in the blood, tissue, secretions, or excretions of a Lassa virus-infected 
\individual, presenting a disease risk for healthcare workers (called nosocomial transmission) where proper 
personal protective equipment (PPE) is not available or not used [17,18,19]. Lassa virus may be spread in 
contaminated medical equipment, such as reused needles. Also, during sexual intercourse, the virus can be 
transmitted because the virus is present in urine for between three and nine weeks after infection, and it can 
be transmitted in semen for up to three months after becoming infected [4] and "Lassa fever" [5,19]. Casual 
contact (including skin- to-skin contact without exchange of body fluids) does not spread Lassa virus. 
Finally, No study has proven presence of lassa virus in the breast milk, but the high level of viremia suggests 
it may be possible, [6]. Above all, individuals who are at a higher risk of contracting the infection are those 
who live in rural areas where Mastromys are discovered, and where sanitation is not prevalent [20,21].    
                                                                                             
Lassa fever is endemic in parts of west Africa including Sierra Leone, Liberia, Guinea and Nigeria; however, 
other neighboring countries are also at risk, as the animal vector for Lassa virus, the "multimammate rat" 
(Mastomys natalensis) is distributed throughout the region. In 2009, the first case from Mali was reported in 
a traveler living in southern Mali; Ghana reported its first cases in late 2011. Separation cases have also been 
reported in Côte d’Ivoire and Burkina Faso and there is serologic evidence of Lassa virus infection in Togo 
and Benin. The number of Lassa virus infections per year in west Africa is estimated at 100,000 to 300,000, 
with approximately 5,000 deaths. Unfortunately, such estimates are crude, because surveillance for cases of 
the disease is not uniformly performed. In some areas of Sierra Leone and Liberia, it is known that 10%-
16% of people admitted to hospitals every year have Lassa fever, which indicates the serious impact of the 
disease on the population of this region. In this paper, a non – linear deterministic mathematical model of 
Lassa fever shall be formulated to study the impact of Transmission Dynamics on Lassa Fever Incorporating 
separation and Treatment as a Control Measures. We wish to show that our results both analytical and 
numerical with the control measures can reduce the spread of Lassa fever to an optimal level in infinite time.  
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1.1 The specific objective of the study  
 
The specific objective of these study are to: 
 

1. To formulate and analyse a mathematical model on the controllability of lassa fever incorporating 
isolation and treatment measures in terms of the reproduction number. 

2.  To determine the stability of the equilibrium points. 
3. To understand how separation and treatment can reduce mortality rate among the infected individuals. 
4. To contribute on how separation can reduce the force of infection rate among the unaffected 

individuals.  
 

1.2 Model formulation and analysis 

 
1.2.1 Assumptions of the model 

 
i. The total human and rodent populations are given by �� = �� + �� + �� + �� + �� and �� = �� +

�� respectively (Table 1). 
ii. We assumed that treatment is only given to separate human population. 
iii. Recruitment into the susceptible population is either by birth or immigration. 
iv. Members of the infected human population can as well move to the susceptible human population via 

treatment. 
v. Infection is acquired via interaction unlike the direct contact in the existing model.    

 
Table 1. State variables and parameters of the model 

 

Variables/parameters Description 

�� 

�� 

Susceptible human at  time � 

Exposed human at time � 

��  

��  

Infected human at  time � 

separated human at  time � 

��  Treated human at  time � 

�� Susceptible rodent at  time � 

�� Infected rodent at  time � 

π� Recruitment rate into the susceptible human 

π�  Recruitment rate into the susceptible rodent 

μ
�

 Natural death rate in human 

μ
�

 

�� 

 

�� 

Natural death rate in rodent 

Effective contact between infected human and susceptible human 

Effective contact between infected rats and either susceptible human 
or susceptible rodent 

� Progression rate to active Lassa fever 

� Separation rate 

� Treatment rate 

� Recovery rate 

� Human disease induced death 

� Probability of getting Lassa fever 

N� Total population of human 

N� Total population of rodent 

� Force of infection 
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Fig. 1. Schematic diagram of our model 
 

1.3 The model equations 
 
From the above assumptions and the schematic diagram, the model will be governed by the following non – 
linear differential equation; 
 

���

��
= π� + ��� − ��� − ����                                                                                                       (1) 

 
���

��
= ��� − (�� + �)��                                                                                                                 (2) 

 
���

��
= ��� − (�� + � + �)��                                                                                                           (3) 

 
���

��
= ��� − (�� + � + �)��                                                                                                            (4) 

 
���

��
= ��� − (�� + �)��                                                                                                                   (5) 

 
���

��
= �� − ������ − ����                                                                                                               (6) 
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���

��
= ������ − ����                                                                                                                         (7) 

 
where 
 

� = ���� − ����                                                                                                                                (8) 
 
With the initial conditions ��(0)= ��

�,��(0)= ��
�,��(0)= ��

�,��(0)= ��
�,��(0)= ��

�,��(0)=
��
�,��(0)= ��

� and  �(0)= ��. The force of infection � = ���� − ����, where �� and �� are the effective 
contact between infected rats and either susceptible humans or susceptible rodents and effective contact 
between infected human and susceptible human respectively with, 
 

��(�)= ��(�)+ ��(�)+ ��(�)+ ��(�)+ ��(�)                                                                            (9) 
 
Where ��(�) denotes the total human population at a given time with its time derivative given by; 
 

���

��
=

���

��
+

���

��
+

���

��
+

���

��
+

���

��
                                                                                               (10) 

 
Plugging (1) – (5) into (10) gives 
 

���

��
= �� − (�� + ��)� − ����                                                                                                     (11) 

 
Also, 
 

��(�)= ��(�)+ ��(�)                                                                                                                    (12) 
 
Where ��(�) denotes the total rodents population at a given time with its time derivative given by; 
 

�� �

��
=

���

��
+

���

��
                                                                                                                               (13) 

 
Substituting (6) and (7) into (13) gives 
 

�� �

��
= �� − ����                                                                                                                            (14) 

 

1.4 The invariant region (region of biological interest)  
 
As the system (1) – (5) monitors human population, all related state variables and parameters are assumed to 
be non – negative for all � ≥ 0. Therefore, the above system is dissipative in the proper subset Γ ⊂ ℝ�

� . 
Thus, we state and prove the following results: 
 
Lemma 1: The solutions of the system (1) – (7) are feasible for all � > 0 if they enter the invariant region 
Γ = (��,��,��,��,��,��,��). 
 
Proof 1: 
 
Let Γ = (��,��,��,��,��,��,��) be any solution of the system (1) – (7), with non – negative initial 
conditions. From equation (11), we see that in the absence of Lassa fever (�� = �� = 0), we obtained; 
 

���

��
≤ �� − ����                                                                                                                      (15) 

 
Rearranging (15) gives 
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���

��
+ ���� ≤ ��                                                                                                                    (16) 

 

Solving (16) using the method of integrating factor (IF) we compute the IF as follows: 
 

�� = �∫���� = ����                                                                 (17) 
 

Multiplying both sides of (16) by (17) yields 
 

����
���
��

+ �����
��� ≤ ���

��� 

 

That is,  
 
�

��
(�����

���)≤ ���
���                                                                                                           (18) 

 

Integrating both sides of (18) gives  
 

��(�)�
��� ≤

��

��
���� + �                                                                                                             (19) 

 

Where � is a constant of integration. 
 
This means 

��(�)≤
��

��
+ ������                                                                                                                (20) 

 
Applying the initial condition: ��(0)= ��

�, we obtain; 
 

��
� −

��

��
≤ �                             (21) 

 

Substituting (21) into (20) we have 
 

��(�)≤
��
��

+ ���
� −

��
��
� ����� 

 

Applying Birkhoff and Rota’s theorem on differential inequality (Birkhoff and Rota, 1982), we have 

0 ≤ ��(�)≤
��

��
, as � → ∞. 

 

The total population approaches � =
��

��
, as � → ∞. which is commonly known as the carrying capacity. 

Therefore, the feasible solutions set of the extended model (1) – (5) enters the region below 
 

�Γ = Γ = (��,��,��,��,��)∈ ℝ�
� : �� > 0,�� ≥ 0,�� ≥ 0,�� ≥ 0,�� ≥ 0,�� ≤

��

��
�. 

 

Thus in this region our model is biologically feasible. Here whenever � >
��

��
 then 

�� �

��
< 0 which means the 

population reduces asymptotically to the carrying capacity and whenever � ≤
��

��
 every solution with initial 

condition in Γ remains in that region for � > 0, so the model is well posed in Γ. Therefore, the region Γ is 
positively – invariant (i.e. solutions remain positive for all time.) and the model is well posed and 
biologically meaningful and this ends the proof of the Lemma 1. 
 

1.5 Existence of disease free equilibrium state (ℇ�) of the model 
 
Here, we compute the model disease free equilibrium state by setting the time – derivatives on the right hand 
sides of the model system (1) – (9) to zero such that 
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���

��
=

���

��
=

���

��
=

���

��
=

���

��
=

���

��
=

���

��
= 0                                                                                        (22) 

 
So that we now have 
 

0 = π� + ��� − (���� + ����)�� − ����                                                                                  (23) 
 

0 = (���� + ����)�� − (�� + �)��                             (24) 
 

0 = ��� − (�� + � + �)��                                                                                                            (25) 
 

0 = ��� − (�� + � + �)��                                                                                                         (26) 
 

0 = ��� − (�� + �)��                                                                                                       (27) 
 

0 = �� − ������ − ����                                                                                                                 (28) 
 
0 = ������ − ����                                                                                                                          (29) 

 
Recall that, the disease free equilibrium state of the model (1) – (9) is scenario where there is no disease in 
the system which implies that 
 

�� = �� = �� = �� = �� = 0           
                                                                          
Plugging (31) into (1) – (9) and solving accordingly we obtain 
 

ℇ� = (��
�,��

�,��
�,��

�,��
�,��

�,��
�)= �

��

��
,0,0,0,0,

��

��
,0�                                                                 (30) 

 

1.6 Effective Reproduction Number (����) 

 
ℛ� = �(����)            

                                                                                       
where �(����) is the spectral radius of next generation matrix. 
 
We calculate the basic reproduction number using the next generation operator method on the system (1) – 
(9) as follows; 
 
The vector �� of the rates of the new infection in compartment ��,��,��,��and �� is given by  
 

�� =

⎝

⎜
⎛

(���� + ����)��
0
0
0

������ ⎠

⎟
⎞

                                                                                                          (31) 

 
Also, the remaining transfer terms in compartment ��,��,��,�� and �� is given by 
 

�� =

⎝

⎜
⎛

(�� + �)��
(�� + � + �)�� − ���
(�� + � + �)�� − ���
(�� + �)�� − ���

���� ⎠

⎟
⎞

                                                                                              (32) 
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The matrix of partial derivative of �� at the disease free equilibrium state at ℇ� = (��
�,0,0,0,0,��

�,0) is given 
by  
 

�(ℇ�)=

⎝

⎜
⎜
⎛

0
����

��
0 0

����

��

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0
����

�� ⎠

⎟
⎟
⎞

                                                                              (33)     

         
Rewriting (33) yields  
 

�(ℇ�)=

⎝

⎜
⎛

0 ��� 0 0 ���
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 ���⎠

⎟
⎞

                                (34)                

                                           
where; 
 

��� =
����

��

��� =
����

��

��� =
����

��

                                                                                                                                       (35) 

 
Also, the matrix of the partial derivatives of  ��  at the disease free equilibrium state          
ℇ� = (��

�,0,0,0,0,��
�,0) is given by 

 

�(ℇ�)=

⎝

⎜
⎛

(�� + �) 0 0 0 0

−� (�� + � + �) 0 0 0

0 −� (�� + � + �) 0 0

0 0 − � (�� + �) 0
0 0 0 0 ��⎠

⎟
⎞

                                     (36) 

 
Equation (36) can also be written as; 
 

�(ℇ�)=

⎝

⎜
⎛

��� 0 0 0 0
−��� ��� 0 0 0
0 −��� ��� 0 0
0 0 −��� ��� 0
0 0 0 0 ���⎠

⎟
⎞

                                                                                (37) 

 
where; 
 

�

��� = �� + � ��� = ��
��� = �� + � + � ��� = �
��� = �� + � + � ��� = �
��� = �� + � ��� = �

�                                                                                                      (38) 
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Computing the inverse of (37) gives 
 

��� =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

�

���
0 0 0 0

���

������

�

���
0 0 0

0
���

������

�

���
0 0

���������

������������

���

������

���

������

�

���
0

0 0 0 0
�

���⎠

⎟
⎟
⎟
⎟
⎟
⎞

                                                                            (39) 

 
Rewriting (39) we have; 
 

��� =

⎝

⎜
⎛

��� 0 0 0 0
��� ��� 0 0 0
0 ��� ��� 0 0
��� ��� ��� ��� 0
0 0 0 0 ���⎠

⎟
⎞

                                                                                          (40) 

 
where; 
 

��� =
�

(����)
                                (41) 

 

��� =
�

(����)(������)
                 (42) 

 

��� =
�

(������)
                                                                                                                                (43) 

 

��� =
�

(������)(������)
                                                                      (44) 

 

��� =
�

(������)
                                                                                                                                 (45) 

 

��� =
���

(����)(������)(������)(����)
                             (46) 

 

��� =
�

(������)(����)
                               (47) 

 

��� =
�

(������)(����)
                                                                                                                     (48) 

 

��� =
�

(����)
                                                                                                                                   (49) 

 

��� =
�

��
                                                                                                                                          (50) 

 
To compute ���� we use (41) and (43) so that; 
 

���� =

⎝

⎜
⎛

0 ��� 0 0 ���
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 ���⎠

⎟
⎞

⎝

⎜
⎛

��� 0 0 0 0
��� ��� 0 0 0
0 ��� ��� 0 0
��� ��� ��� ��� 0
0 0 0 0 ���⎠

⎟
⎞
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���� =

⎝

⎜
⎛

0 ������ 0 0 ������
0 ������ 0 0 ������
0 0 0 0 0
0 ������ 0 0 ������
0 0 0 0 ������⎠

⎟
⎞
                                                                                                 (51) 

 
It follows that the effective reproduction number ℛ��� is computed by taking the spectral radius (dominant 

eigenvalue) of the matrix ����using the characteristics equation 36 and 42 
 

���(���� − �� �)= 0                                                                                                                                   (52) 
 
                                                  or 

�
�

− � ������ 0 0 ������
0 ������ − � 0 0 ������
0 0 − � 0 0
0 ������ 0 − � ������
0 0 0 0 ������ − �

�
�
= 0                                                                                    (53) 

 
Evaluating (56) accordingly gives; 
 

 �� = �� = �� = 0                                                                                                                                          (54) 
 
and 

��,�� = ��� �
�����

��(�� + �)(�� + � + �)
,
����
��

�                                                                                 (55) 

 
Therefore, the largest (dominant) eigenvalue also known as the effective reproduction denoted by  ℛ���is  
given by  
 

ℛ��� =
�����

��(����)(������)
                                                                                                                             (56) 

 
with  
 
�

��
,

�

(����)
 and

�

(������)
 which refers to per capital human mortality,  

 
Table 2. Parameters values for numerical and sensitivity analysis 

 
Parameters Values Sources 
��  2000 [18] 
��  500 [18] 
�� 0.2 [18] 
�� 0.2 Estimated 
� 0.003 [18] 
� 0.2 Estimated 
� 0.75 Assumed 
�� 0.02 [18] 
�� 0.02 [18] 
� 0.1 Assumed 
� 0.54 Assumed 
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Biological Interpretation 1: The biological meaning of the parameter components of the effective 
reproduction number are as follows: 
 

�
��

��
�: The carrying capacity for human population. 

�
�

����
�: The proportion of individuals from the exposed human that becomes infectious. 

�
��

������
�: The average number of susceptible human infected by a single human infectious. 

  

1.7 Numerical simulations  

 
Here, we carryout numerical simulation of the model (1) – (9) using the set of reasonable parameters and 
initial values given in Tables 2 and 3 and 4 whose sources are mainly from [24] as well as assumed values 
based on the literature of the disease in order to have more realistic simulation results. 
 

Table 3. Parameters values for numerical and sensitivity analysis 
 

Variables Values Sources 

��(�) 10000 [19] 

��(�) 3000 ������� 

��(�) 2000 [19] 

��(�) 1500 ������� 

��(�) 600 [19] 

��(�) 200 [19] 

��(�) 125 [19] 
 

Table 4. Sensitivity indices of ���� 

 

S/N Parameter Sensitivity index Sign 

1 �� 1.0000000000 + 

2 �� 1.0000000000 + 

3 � 0.8695652173 + 

4 � 0.3125000000 −  

5 � 0.6250000000 −  

6 �� 1.9320652180 −  
 

2 Numerical Results 
 
In this sub – section, we presents the numerical results of the above experiment as follows: 
 

2.1 Simulation results showing the trends of the state variables of the lassa fever 
model with separation rate for the infected class 

 
The impact of separation rate � on Lassa fever is investigated. The result of this is given in Fig. 2.  We 
observed that, an increase in the separation rate brings about a declined in the infected humans. This is true 
because as separation for treatment increases, infected human population on the order hand reduces. This 
also shows that, treatment of Lassa fever will go a long way in curtailing the disease through separation and 
treatment of the infected humans. 
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Fig. 2. Simulation results showing the effect of separation rate � on infected humans 
 

 
 

Fig. 3. Simulation results showing the impact of treatment rate � on infected individuals 
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2.2 Simulation results showing the trends of the state variables of the lassa fever 
model with recovery rate due to treatment for; infected humans and treated 
humans 

 
Numerical results depicted on Fig. 4 indicates that, increasing treatment rate reduces the infected humans 
population, this is in line with reality because treatment of the infected persons through separation of 
infected individuals brings about reduction in number of person infected with Lassa fever.  

 

 
 

Fig. 4. Simulation results showing the effect of treatment rate � on treated humans 
 

3 Conclusion 
 
Nigeria is endemic to Lassa Fever and has being rated as one of the country in West Africa with the high 
transmission rate of Lassa fever, but we should not panic as the impact of this paper will highly contribute in 
curbing Lassa fever since our Reproduction number is less than one (ℛ��� < 1), which simply implies that 

Lassa Fever can be eradicated from the country. Therefore we conclude that since our ℛ��� < 1 is less than 

one the disease will surely die out in infinite time.  
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