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As a fundamental task in power system operations, transmission-constrained

unit commitment (TCUC) decides ON/OFF state (i.e., commitment) and

scheduled generation for each unit. Generally, TCUC is formulated as a

mixed-integer linear programming (MILP) and must be resolved within a

limited time window. However, due to the NP-hard property of MILP and the

increasing complexity of power systems, solving the TCUC within a limited

time is computationally challenging. Regarding the computation challenge,

the availability of historical TCUC data and the development of the machine

learning (ML) community are potentially helpful. To this end, this paper

designs an ML-aided framework that can leverage historical data in enabling

computation improvement of TCUC. In the offline stage, ML models are

trained to predict the commitments based on historical TCUC data. In the

online stage, the commitments are quickly predicted using the well-trained

ML. Furthermore, a feasibility checking process is conducted to ensure

the commitment feasibility. As a result, only a reduced TCUC with fewer

binary variables needs to be solved, leading to computation acceleration.

Case studies on an IEEE 24-bus and a practical 5655-bus system show the

effectiveness of the presented framework.

KEYWORDS

transmission-constrained unit commitment, machine learning, data-driven, artificial intelligence,

power system operation

1 Introduction

The transmission-constrained unit commitment (TCUC) problem has been widely
regarded as one of the most fundamental applications in power system operations
Li et al. (2022, 2021a,b, 2020); Wu J. et al. (2021); Liu et al. (2021b). In practice, the
TCUC is routinely implemented by Independent SystemOperators (ISO) to clear the day-
ahead electricity market within 4–6 h Chen et al. (2022a, 2016); Liu et al. (2020, 2021a);
Chen et al. (2021); Ma et al. (2021). Toward a specific power system consisting of massive
transmission lines and units, TCUC is mathematically formulated as a mixed-integer
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linear programming (MILP)withmassive binary and continuous
variables, as well as prevailing constraints. Aiming at least
operation cost, the MILP-based TCUC determines the optimal
ON/OFF state (i.e., commitment) and scheduled generation of
each unit to clear the electricity market. Typically, ISOs apply
powerful commercial solvers (e.g., Gurobi) to solve the MILP-
based TCUC problem on a daily basis Zhang et al. (2020).

Due to the rapid development of modern power systems,
the size and the complexity of TCUC increased significantly. For
example, 42,705 buses and 1,258 units exist in the Midcontinent
ISO Chen et al. (2013), resulting in a MILP-based TCUC model
with hundreds of thousands of variables and constraints.
Moreover, it is well known that the MILP problems belong to the
class of NP-hard problems. Consequently, an ongoing challenge
in ISOs is how to efficiently solve such a large-size MILP problem
within a limited time window.

Regarding the computation challenge, developments in
the machine learning (ML) community enable various ML
algorithms [e.g., deep neural network (DNN), decision tree
(DT), random forest (RF), and k-nearest neighbors (k-NN)]
to be practically helpful Nair et al. (2020). For example, Google
Research Team successfully developed a DNN-based framework
that can quickly solve large-size MILP problems without
optimality loss. The core is leveraging the massive historical
MILP instances to train an array of sophisticated heuristic
processes in the DNN. As long as the new features are
available, the well-trained DNN can quickly yet accurately
predict the binary solutions. However, even though the DNN
in Nair et al. (2020) shows remarkable ability to solve MILP,
it is still difficult to convince ISOs to replace mathematical-
programming-based commercial solvers with the black-box
ML algorithms. This is because the black-box solutions may
not satisfy all the physical constraints. Indeed, Álinson et al.
Xavier et al. (2021) pointed out that combining ML algorithms
and off-the-shelf solvers is more practical and reliable regarding
improving TCUC computation.

Inspired by the above problems, this paper presents a
data-driven ML-aided framework for improving the TCUC
computation while maintaining enough solution quality. First,
the historical TCUC optimal solutions and their corresponding
features are collected. Furthermore, the unit generation pattern
is analyzed, so that a target set I tar consisting of units to be
predicted can be identified. Under the lens of ML, determining
the commitments is essentially a multi-label classification
problem. Therefore, ML algorithms (i.e., DNN, DT, RF, and k-
NN) with remarkable multi-label classification ability are trained
to predict the commitments for the target units. Moreover, a
feasibility checking process is conducted to ensure the physical
feasibility of the predicted commitments. The corresponding
variables are fixed if the commitments are feasible; otherwise,
they are utilized as warm-starting solutions for Branch-and-
Bound algorithm. As a result, Gurobi could solve a MILP-based

TCUC with fewer binaries, which is computationally easier than
the original version.

The main works of this paper are summarized as follows:

• A data-driven ML-aided framework is presented for
improving the TCUC computation. The framework
possesses general and plug-and-play properties. That is, it
is compatible with various ML classification algorithms and
the ISOs’ practice. Most importantly, the feasibility checking
process ensures that the predicted commitments satisfy all
the constraints.
• Taking DNN, DT, RF, and k-NN as core, case studies

are conducted on an IEEE 24-bus system and a practical
5655-bus system, showing the computation benefits of the
framework. In addition, our results report an interesting
observation: the most naive k-NN significantly outperforms
DNN, DT, and RF under the framework. This observation
implies that learning TCUC could be a low-hanging fruit
Pineda and Morales (2021) not requiring sophisticated
methods. To improve the transparency of this paper, the
datasets and the ML codes have been uploaded at Lin 
(2022).

The remaining parts are organized as follows: Section 2
reviews related works; Section 3 introduces the mathematical
model of TCUC; Section 4 expounds the presented framework;
Section 5 shows the experimental results; Section 6 concludes
this paper.

2 Related works

Leveraging the black-box ML algorithms to solve TCUC
can be traced back to the 90s when Huang et al. Huang
and Huang (1997) combined neural networks and dynamic
programming for solving TCUC. After the 20th century, the
breakthroughs of commercial solvers enabled the mathematical
programming (white-box methods) to be mainstream in solving
TCUC.

In recent years, the significant progress of the ML
community has awakened the interest in applying ML
to TCUC Yang and Wu (2021). Typically, the main
applications can be categorized into 1) explicitly describing
the operation rules that are difficult to describe in the TCUC
model mathematically Li et al. (2019); Zhang et al. (2021);
Hou et al. (2020); Chen et al. (2022b); Ye et al. (2019), 2)
simplifying the TCUC model Mohammadi et al. (2021);
Yang et al. (2020); Wu T. et al. (2021); Pineda et al. (2020), and
3) accelerating the TCUC computation performance de Mars
and O’Sullivan (2021); Nikolaidis and Chatzis (2021); Pineda
and Morales (2021); Xavier et al. (2021); Yang et al. (2021);
Zhou et al. (2018); Zhou et al. (2021).
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Explicitly describing the operation rules. Li et al.
Li et al. (2019) applied a centralized Q-learning-based method
that requires no prior information on the actual cost functions,
thus can handle the cases that TCUC cost functions are
indescribable mathematically. Similarly, Zhang et al. (2021)
utilized DNN to encode the complicated frequency response
as constraints in the TCUC model. In Hou et al. (2020), a sparse
oblique DT was deployed to extract security rules as sparse
constraints. As a matter of fact, learning to approximate the
mathematically indescribable rules of TCUC explicitly has been
gradually recognized as an excellent alternative to improve
the TCUC performance. In Chen et al. (2022b), Chen et al.
employed a closed-loop predict-and-optimize method to learn
the RES prediction that can lead to better TCUC economics. In
addition, one desirable byproduct of such learning is the better
TCUC computation performance. For example, Ye et al. (2019)
combined deep learning and reinforcement learning to handle
the computation intractability caused by the non-convexity in a
bi-level electricity market model.

Simplifying the TCUC model. An important reason for
the difficulty of TCUC computation is the massive physical
constraints. In fact, a large part of the constraints is redundant.
Thus, ISOs can remove these constraints without affecting
the optimal solution. For example, Midcontinent ISO governs
a system with 42,705 buses but only considers about 20
transmission constraints in TCUC. As a result, leveraging
ML to filter out the redundant constraints is valuable. In
Mohammadi et al. (2021), a tree method was employed to
relieve the heavy computation burden by removing redundant
constraints (most of them are transmission constraints) from the
originalMILP-basedTCUCmodel. InYang et al. (2020), support
vector machine, RF, and neural network were applied to classify
whether a TCUC problem is a hard case. If identified as a hard
case, the decision variables are aggregated and reduced, leading
to a computationally easier TCUC. In Wu T. et al. (2021), the
commitment variables were directly decided by a convolutional
neural network. Thus the operators only need to solve a small-
scale convex optimization, leading to remarkable computation
improvement. Furthermore, Pineda et al. Pineda et al. (2020)
designed a simple yet effective k-NN-based method to
learn the congestion status of transmission lines so that the
redundant and inactive transmission constraints can be removed.
According to the experiments in Mohammadi et al. (2021);
Pineda et al. (2020); Yang et al. (2020); Wu T. et al. (2021),
simplifying the TCUC model by filtering out certain constraints
is valuable for practical TCUC.

Accelerating the TCUC computation performance. This
paper falls in this category, which is to accelerate TCUC
computation while trying to avoid quality losses as much
as possible. This category can be further divided into two
sub-categories 1) using ML for solving TCUC directly
Nikolaidis and Chatzis (2021); Zhou et al. (2018); de Mars and

O’Sullivan (2021); Yang et al. (2021) and 2) using ML to aid
commercial solvers for solving TCUC Xavier et al. (2021);
Zhou et al. (2021); Pineda and Morales (2021). In Nikolaidis and
Chatzis (2021), the authors developed a Gaussian-process-based
Bayesian optimization for quickly solving TCUC and showed
the effectiveness in the medium system. In Zhou et al. (2018),
reinforcement learning was deployed to enable multi-objective
TCUC solutions to bypass local optimum. In de Mars and
O’Sullivan (2021), a purely data-drivenmethod that can simulate
experts was presented to solve TCUC, which shows remarkable
ability in a practical system. Moreover, Yang et al. (2021)
designed a guided tree to solve TCUC, which computationally
outperforms the unguided tree. Even though experimental
results in Nikolaidis and Chatzis (2021); Zhou et al. (2018);
de Mars and O’Sullivan (2021); Yang et al. (2021) highlighted
certain preferable advantages of these black-box ML algorithms,
they lack comprehensive comparisons to the state-of-the-art
solvers. On the other hand, Zhou et al. (2021) leveraged the
classification-based method to identify useful TCUC instances,
of which binary variables are strategically utilized to fix that
in the new TCUC instance. According to their experiments,
the method leads to 58.82% computation improvement in
a Polish 2382-bus system while guaranteeing good solution
quality. Furthermore, Álinson et al. Xavier et al. (2021) designed
a framework involving k-NN and support vector machine for
boosting the computation performance of the commercial
solvers. According to their comprehensive experiments in 9
large-size systems, the speedup achieves 17.47x without loss
in solution optimality. As a result, Pineda and Morales (2021)
concluded that even a naive ML algorithm could significantly
boost the computation performance in solver-based TCUC
solving.

Instead of focusing on a single ML algorithm, this paper
presents a general ML-aided framework compatible with various
ML classification algorithms (i.e., DNN, DT, RF, and k-NN).
Additionally, the ML-aided framework is compared to the
traditional way based entirely on the commercial solvers. As
a result, case studies in IEEE 24-bus and practical 5655-bus
systems show the computation benefits.

3 Mathematical model of
transmission-constrained unit
commitment

The TCUC is modeled as in Eqs 1–13. The objective Eq. 1
is to minimize the total operation cost z, including start-up,
shut-down, and generation costs. Regarding the unit constraints,
Eqs 2, 3 indicate the minimum ON/OFF constraints; Eqs 4,
5 describe the linearized generation cost using |K| segments;
Eq. 6 limits the generation for each segment; Eq. 7 expresses the
generation limitations; Eq. 8 represents the logical relationship
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of the binary variables; Eqs 9, 10 are the ramping constraints;
Eq. 11 limits the scheduled RES power within its availability.
The system constraints include power balance Eq. 12 and
transmission capabilities Eq. 13. Generally, ISOs solve TCUC
Eqs 1–13 as long as the load demand L̂ and RES power Ŵ are
accessible. Therefore, the TCUC cost z(L̂,Ŵ) is represented as
the function of L̂ and Ŵ .

z(L̂,Ŵ) ≔min
x
∑
t∈T
∑
i∈I
(Csu

i Isuti +C
sd
i Isdti +C

p
ti) . (1)

Unit constraints:

∑t
t′=t−T u

i +1
Isut′i ≤ Iti ∀t ∈ T u

i , i ∈ I (2)

∑t
t′=t−Td

i +1
Isdt′i ≤ 1− Iti ∀t ∈ T d

i , i ∈ I (3)

Cp
ti = NiIti +∑k∈KCseg

ik Pseg
tik ∀t ∈ T , i ∈ I (4)

Pti =∑k∈KPseg
tik ∀t ∈ T , i ∈ I (5)

0 ≤ Pseg
tik ≤ ItiP̄

seg
ik ∀t ∈ T , i ∈ I ,k ∈K (6)

ItiP
min
i ≤ Pti ≤ ItiP

max
i ∀t ∈ T , i ∈ I (7)

Isuti − I
sd
ti = Iti − It−1,i ∀t ∈ T , i ∈ I (8)

Pti − Pt−1,i ≤ P
max
i (1− Iti) +R

up
i It−1,i +R

su
i (Iti − It−1,i)

∀t ∈ T , i ∈ I
(9)

Pt−1,i − Pti ≤ P
max
i (1− It−1,i) +R

dn
i It,i +R

sd
i (It−1,i − Iti)

∀t ∈ T , i ∈ I
(10)

0 ≤Wtj ≤ Ŵtj ∀t ∈ T , j ∈ J (11)

System constraints:

∑
i∈IPti +∑j∈JWtj =∑q∈QL̂tq ∀t ∈ T (12)

−Bb ≤∑i∈IτibPti +∑j∈J τjbWtj −∑q∈QτqbL̂tq ≤ Bb

∀t ∈ T ,b ∈ B
(13)

The computation intractability ofMILP-based TCUCmainly
stems from the binary variables Iti, Isuti , and Isdti . If the
number of the binary variables is reduced, the model could
be computationally easier. As a result, this paper aims to
present a ML-aided framework for identifying the binary
variables Iti quickly, so that the computation burden of
TCUC model can be relieved. However, the ML algorithms
cannot consider the physical feasibility especially the minimum
ON/OFF requirement Eqs 2, 3. Therefore, a feasibility checking
stage is also designed.

4 The ML-Aided framework

First, this section describes the dataset processing. And then,
the utilized ML algorithms and the tuned hyper-parameters are
briefly introduced. Finally, the steps to implement the framework
are expounded.

4.1 Construction of dataset

The construction of the dataset is shown as in Figure 1.

• A raw dataset is downloaded from Chen (2021). The dataset
includes load demand L̂n and RES power Ŵn, ranging
from 01/01/2018 to 12/31/2020 (1,096 dispatch days). The
RES/load data of each dispatch day has 3 more variants.
Therefore, 4384 RES/load instances exist and |N | = 4,384.
• Taking L̂n and Ŵn as inputs, Gurobi is applied to solve

TCUC Eqs 1–13 for each dispatch day n ∈N . As a result,
|N | instances S′′n as in Eq. 14 are obtained.

S′′n = {L̂n,Ŵn, I⋆n ,z⋆n ,ocs
n } ∀n ∈N (14)

For a system with |Q| load buses, |J | RES farms, and |I|
units, the corresponding L̂n, Ŵn, and I⋆n are |T | × |Q|, |T | × |J |,
and |T | × |I|matrices, respectively.

• The row-sum operation is applied on L̂n, resulting in a
|T |×1 vector L̃n. The tth element in L̃n represents the total
system load at hour t of day n. As a result, S′′n Eq. 14 is
converted into S′n Eq. 15. It should be noted that the row-
sum operation is only applied on L̂n. This is because L̂n
includes overly redundant elements, which may result in the
over-fitting issue.

S′n = {L̃n,Ŵn, I⋆n ,z⋆n ,ocs
n } ∀n ∈N (15)

• In the presented framework, each unit corresponds to a
predictor. Thus, S′n is further divided for unit i, leading to
Sn,i as in Eq. 16.

Sn,i = {L̃n,Ŵn, I⋆n,i,z
⋆
n ,ocs

n } ∀n ∈N , i ∈ I (16)

Here, I⋆n,i is the optimal commitment decision of unit i at day
n, which is a |T |×1 vector.

Taking {L̃n,Ŵn} as feature and I⋆n,i as label, the commitment
predictor Pi as in Eq. 17 can be trained for unit i.

Pi:ℝ(|T |⋅|Q|+|T |⋅|J |)×1→ℝ|T |×1 (17)

Under the lens ofML, thismapping is essentially amulti-label
classification.
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FIGURE 1
Steps to construct dataset.

Finally, the dataset is divided into two parts for creating
training and testing sets: 1) Training set (83%) ranging from
01/01/2018 to 06/30/2020, which is treated as historical dispatch
days indexed by h ∈H. 2) Testing set (17%) ranging from
07/01/2020 to 12/31/2020, which is regarded as the upcoming
days indexed by d ∈D. Eq. 18 states the relationship for the
datasets.

H∪D =N H∩D = ∅ (18)

4.2 Machine learning algorithms

Among the various ML algorithms, DNN, DT, RF, and k-NN
are utilized as the predictor.

4.2.1 Deep neural network
Essentially, DNN is an artificial neural network containing

two or more hidden layers, which has been recognized as a
powerful supervised ML algorithm. In the case of TCUC, a
simple DNN with 2 hidden layers for unit i is sketched as in
Figure 2.

The neurons in the hidden layers are based on certain
activation functions, such as rectified linear unit Eq. 19 and
threshold logic unit Eq. 20.

ReLU =max{w0 +w1 f1 +⋯+wm fm,0} (19)

TLU = w0 +w1 f1 +⋯+wm fm (20)

Here, w0 is a bias term and the remaining w indicate the weights
assigned for the gray arrows; f indicates the inputs for the
neurons. By combining many hidden layers, DNN has potential
to approximate the complex mapping from RES/load to the
optimal unit commitment.

Fine-tuning hyper-parameters, especially those for the
hidden layer structure, are the key to obtaining a high-
performance DNN. This paper utilizes a 10-fold grid search

to identify the best combination of hidden layer structure
hidden_layer_sizes = (150, 150, 150), (150, 100, 50),
(150, 150, 150, 150, 150, 150), (150, 125, 100, 75, 50,
25) and coefficient of the norm-2 regularization alpha =
0.000001, 0.001, 1. The adaptive moment estimation algorithm
Pedregosa et al. (2011) is utilized for the weight optimization,
due to its robustness. The rectified linear unit Eq. 19 is deployed
as the activation functions, which can lead to faster training.
DNN is sensitive to scaling, thus the features {L̃n,Ŵn} are
normalized into [0,1].

4.2.2 Decision tree
DT is a supervised ML algorithm that good at multi-

label classification. The most preferable property of DT is the
interpretability, which can visualize the map from the features
to the decisions. One byproduct caused by the interpretability is
feature selection. That is, DT can show which attribute of feature
has themost significant impact on the label. In the case of TCUC,
the visualization can show which RES/load bus has the greatest
impact on the commitment.

Additionally, DT can handle contextual data conveniently.
For example, the weather information (e.g., sunny or rainy) can
be utilized for training without digitization and normalization.
Instead, this is somehow difficult for DNN.

The training of DT is essentially a process ofminimizingGini
Impurity Eq. 21 or Entropy Eq. 22 for each node in a DT.

Ge = 1− ∑
z∈Z

Re,z
2 ∀e ∈ E (21)

Ee = − ∑
z∈Z ,Re,z≠0

Rn,z log2 (Rn,z) ∀e ∈ E (22)

Here, z/Z indicates the index/set of commitment classes; e/E
represents the index/set of the DT nodes; Re,z means the ratio
of commitment class z instances among the training instances in
the node e.

According to Pedregosa et al. (2011), the Gini Impurity
Eq. 21 and EntropyEq. 22 generally lead to similarDTpredictor.
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FIGURE 2
Structure of an illustrative DNN.

However, the former could be faster in terms of training.
Therefore, Gini Impurity Eq. 21 is utilized. In DT, 4 hyper-
parameters could affect the performance significantly, including
the maximum depth of DT max_depth = 5, 6, 7, 8, 9, the
minimum number of samples required to split an internal
node min_samples_split = 2, 4, the minimum number of
samples required to be at a leaf node min_samples_leaf =
2, 4, the maximum number of leaf nodes max_leaf_nodes =
5, 25. The best combination of these hyper-parameters are
identified via a 10-fold grid search.

4.2.3 Random forest
Ensembling a number of DTs results in a RF. The RF makes

predictions by comprehensively considering the voting results of
the DTs. Thus, RF is regarded as a boosting version of DT. The
RF and DT share similar properties (e.g., using Gini Impurity or
Entropy for measuring quality), except the interpretability. This
is because visualizing a tree is easy, but visualizing a forest is
difficult and meaningless.

Regarding the hyper-parameters of RF, the number of DTs in
the RF n_estimators = 5, 25, 50, the maximum depth of the
trees max_depth = 3, 5, 9, the minimum number of samples
required to split an internal node min_samples_split = 2,
4 are tuned via a 10-fold grid search. The quality measurement is
set as Gini Impurity that is consistent with DT.

4.2.4 K-nearest neighbor
Compared to DNN, DT, and RF, k-NN is a naive

ML algorithm. Essentially, k-NN conducts classification by

identifying the closest instances from historical instances.
In this paper, the following variant of k-NN with k = 1 is
designed.

First, the most closest historical instances h′ ∈H to dispatch
day d is identified, as shown in Eq. 23.

h′ ≔ arg min
h∈H
‖Vec(L̃d,Ŵd) −Vec(L̃h,Ŵh)‖2 (23)

Here, Vec(⋅) indicates the vectorizing operation that can
adaptively reformulate the matrices as a vector. Finally, historical
commitment solution I⋆h′,i is directly utilized as the prediction
Ipred,i .

4.3 Implementation steps

The process of implementing the presented ML-aided
framework is shown as in Figure 3, which can be summarized
as following:

• Based on a specified ML algorithm, a predictorPi is trained
for unit i ∈ I using the training set H.
• Taking {L̃d,Ŵd} as input features, the trained predictor Pi

predicts the commitment solution Ipred,i for unit i ∈ I tar.
• Given the predictions Ipred,i , feasibility checking process

is conducted. Specifically, it checks whether Ipred,i satisfies
the constraints Eqs 2–11. If satisfy, the corresponding
commitment decisions are fixed as Ipred,i , and then Gurobi
is utilized to solve Eqs 1–13 with less binary variables.
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FIGURE 3
Implementation steps of the ML-aided framework.

Otherwise, Ipred,i are utilized as warm-start solution for
solving Eqs 1–13.

After solving Eqs 1–13, record the computation time oml

and the optimal TCUC cost zml,⋆ under the presented ML-
aided framework. Furthermore, evaluating the computation
improvement Eq. 24 and optimality loss Eq. 25 compared to
ocs (computation time of being solved by commercial solvers
directly) and z⋆ (optimal TCUC cost provided by commercial
solvers).

Computation Improvementd =
|oml

d − o
cs
d |

ocs
d
∀d ∈D (24)

Optimality Lossd =
|zml,⋆

d − z
⋆
d |

z⋆d
∀d ∈D (25)

5 Case studies

Based on a small-size IEEE 24-bus system and a large-
size 5655-bus system, case studies are conducted to evaluate
the presented framework. Both the systems are tuned following
Chen et al. (2022b). The ML algorithms are carried out via
scikit-learn Pedregosa et al. (2011) based on Python 3.8. The
commercial solver is Gurobi 9.5.

5.1 Cases on 24-bus system

The IEEE 24-bus is sketched in Figure 4, in which 32
generators are involved.

The ON-state ratios of the generators are computed using
their historical datasets and listed in Table 1. According to
Table 1, some generators never startup (e.g., G01 and G02) or
shutdown (e.g., G28 and G29), leading to overly unbalanced
historical data. Therefore, only the generators with ON-state
ratios fall within [5%, 95%] are relatively suitable for being
predicted, resulting in set I tar = G03, G04, G07, G08, G20, G21,
G30, G31, G32.

5.1.1 Overall performance
Table 2 compares the computation improvement and the

optimality loss, in which the column label Feasible/Infeasible
indicates the performance on feasible/infeasible TCUC cases.
Regarding the computation improvement, k-NN surprisingly
outperforms other algorithms with 83.27% improvement. This
is due to the fact that the k-NN essentially picks an optimal
commitment result from the historical days, which can satisfy
all constraints of TCUC. Also, since the RES and load
information of the picked historical day and the upcoming
dispatch day is similar, the commitment results are mutually
feasible. Additionally, it should be pointed out that the warm-
start strategy for infeasible predictions may not lead to
positive computation improvement.This is because the infeasible
commitment could induce the Branch-and-Bound algorithm to
search from a bad initial node, thus worsening the computation
performance.

In terms of the optimality loss, only k-NN achieves
ignorable loss. The other ML algorithms suffer noticeable
optimality loss in the feasible cases. This point indicates that
the predicted commitments provided by DNN, DT, and RF are
mathematically far from the optimal commitment. As a result,
about half of these predicted commitments are infeasible. On
the other hand, k-NN directly identifies the mathematically
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FIGURE 4
The structure of the IEEE 24-bus system.

TABLE 1 ON-state ratio of generators in IEEE 24-bus system.

G01 0.0% G09 0.8% G17 0.2% G25 100%
G02 0.0% G10 0.8% G18 0.2% G26 100%
G03 10.6% G11 0.8% G19 0.3% G27 100%
G04 10.9% G12 1.1% G20 37.8% G28 100%
G05 0.0% G13 1.1% G21 54.2% G29 100%
G06 0.0% G14 1.1% G22 98.7% G30 50.0%
G07 25.9% G15 0.2% G23 98.6% G31 48.9%
G08 26.2% G16 0.2% G24 100% G32 77.2%

similar and feasible commitments from historical data, in which
the physical requirements are preserved entirely. Even though
the commitments are not exactly the same as the optimal
commitment, TCUC can still adjust scheduled power p to
achieve the optimal cost. As a result, k-NN achieves significant
computation improvement without optimality loss in all the
cases.

5.1.2 Prediction performance
Even though the prediction performance is not the main

concern of this paper, it is of interest to observe the relationship
between the accuracy and the computation improvement.

This section introduces accuracy Eq. 26, receiver operating
characteristic curve (ROC) scoreGéron (2019), precisionEq. 27,
and recall Eq. 28 to evaluate the prediction performance. The

ROC score is the area under the ROC curve, which can
be regarded as a comprehensive evaluation tool combining
precision and recall.

Accuracy = Correct Predictions
All Predictions

(26)

Precision = TrueON
TrueON+ FalseON

(27)

Recall = TrueON
TrueON+ FalseOFF

(28)

Figure 5 shows that DNN, DT, and RF are comparable
regarding accuracy. Additionally, Figure 5 utilizes a dashed line
to indicate the 50% ON-state ratio, which means an ideally
balanced dataset. Figure 5 illustrates that the closer to the 50%
line, the worse accuracy. This is because invariably predicting
ON/OFF can achieve good accuracy for the units always stay
ON/OFF state. On the other hand, when the ON-state ratio is
around 50% (e.g., G30 and G31), it is challenging to maintain
high accuracy.

Furthermore, Figure 6 shows that DNN, DT, and RF are
comparable and significantly outperform k-NN in terms of ROC
score. As a result, it can be concluded that DNN, DT, and
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TABLE 2 Computation improvement and optimality loss in IEEE 24-bus system.

ML Computation improvement Optimality loss Infeasible

Feasible (%) Infeasible All (%) Feasible (%) Infeasible All (%)

DNN 8.87 −3.14% 2.44 15.70 0.00% 7.29 53.51%
DT 7.87 −0.61% 4.42 26.06 0.00% 15.48 40.63%
RF 16.21 1.34% 8.13 14.45 0.00% 6.60 54.35%
k-NN 83.27 0.00% 83.27 0.00 0.00% 0.00 0.00%

FIGURE 5
Accuracy in IEEE 24-bus system.

FIGURE 6
ROC score in IEEE 24-bus system.

RF perform better than k-NN regarding prediction. This is
due to the sophisticated prediction mechanisms of these three
algorithms.

Furthermore, Table 3 lists the precision and recall. The
precision indicates the accuracy of the ON-state predictions;
the recall represents the ratio of ON states that the predictors
correctly detect. Clearly, these algorithms only perform well in

TABLE 3 Precision and recall in IEEE 24-bus system.

Predictor Precision Recall

Off On Off On

DNN 0.89 0.84 0.93 0.74
DT 0.89 0.83 0.88 0.78
RF 0.91 0.83 0.91 0.75
k-NN 0.86 0.73 0.89 0.67

the OFF-state cases, which are more frequent state than the ON
state. Therefore, Table 3 implies that all the algorithms struggle
to predict the less-frequent state.

5.2 Cases on 5655-bus system

This section investigates the ML-aided framework in the
5655-bus system Chen et al. (2022b). The system possesses 461
generators, 6,630 transmission lines, 5 aggregatedRES farms.The
predictorsmerely predict the 246 generators with a 5%–95%ON-
state ratio. Since our results show that the 5655-bus prediction
comparisons have the same trends as the 24-bus comparisons, the
prediction results for the 5655-bus are not specifically analyzed
in this section for better readability.

5.2.1 Overall performance
Table 4 compares the computation improvement and

optimality loss on a large-size 5655-bus system. Regarding
the computation improvement, k-NN still outperforms other
algorithms with a 64.62% improvement, of which all the
predictions are feasible. DNN, DT, and RF also achieve a
computation improvement of about 40%.

In terms of optimality loss, all the algorithms result in a loss
within 1%, which is acceptable because the computation benefits
are at least 40%.

In sum, except for k-NN, Table 4 indicates that DNN, DT,
and RF are comparable in the 5655-bus system regarding the
overall performance. However, DT has the fastest training speed
among the three algorithms, and DNN is the slowest. Therefore,
DT could be more preferable.
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TABLE 4 Computation improvement and optimality loss in 5655-Bus system.

ML Computation improvement Optimality loss Infeasible (%)

Feasible (%) Infeasible (%) All (%) Feasible (%) Infeasible (%) All (%)

DNN 53.89 −5.79 40.14 1.32 0.00 0.39 22.43
DT 60.39 −8.57 40.72 1.11 0.00 0.79 28.53
RF 61.17 −11.97 41.49 0.83 0.00 0.61 26.90
k-NN 64.62 0.00 64.62 0.19 0.00 0.19 0.00

5.2.2 Comparing performances in 24-bus and
5655-bus systems

Furthermore, it is worth comparing the framework
performances in the 24-bus and 5655-bus systems.

Regarding the computation improvement, the margin
between k-NN and the other three algorithms is smaller in
the 5655-bus. This is because, in such a large-size system, the
massive transmission constraints Eq. 13 are also the primary
cause of computational burden. Therefore, even though fixing
the binaries I can relieve the computational burden, the
accelerations cannot be as significant as the small-size 24-bus
system. Additionally, due to the remarkable adjusting ability
(i.e., massive online generator fleet) of the 5655-bus system, the
predicted commitments are more likely to be feasible, leading
to a lower infeasibility ratio in the 5655-bus system. Moreover,
it should be pointed out that the adverse effects of infeasible
predictions on TCUC instances also become more noticeable
in the 5655-bus system. The reason is that the Branch-and-
Bound algorithm is more sensitive to the initial node in the
large-size system. However, the infeasible predictions generally
make the Branch-and-Bound algorithm start from a bad initial
node.

It is also worth pointing out that the optimality losses of
DNN, DT, and RF become acceptable in the 5655-bus system.
This is also due to the fact that the 5655-bus system possesses
remarkable adjusting ability. Thus given different commitments
I , the TCUC can still achieve a solution that is mathematically
close to the optimal solution.

In summary, comparisons between the two systems
demonstrate that the presented ML-aided framework is suitable
for the large-size system with significant adjustment ability.

6 Conclusion and discussions

6.1 Conclusion

This paper designs an ML-aided framework for improving
the TCUC computation performance. Specifically, DNN, DT,
RF, and k-NN are leveraged to predict and fix the commitment
decisions of the TCUC models, so that Gurobi can solve a
reduced TCUC problem with fewer binary variables. To evaluate

the effectiveness of the framework, case studies are conducted
on a 24-bus system and a 5655-bus system. The following
conclusions are obtained:

• The presented ML-aided framework achieves significant
TCUC computation improvement, especially in the large-
size system, but at the expense of certain optimality loss. In
the small-size 24-bus system, the optimality loss could be
6%–17%. In the large-size 5655-bus system, the optimality
loss is merely within 1%, but the computation improvement
achieves as much as 64.62%.
• Our results report that the simplest k-NN outperforms

the other ML algorithms (DT, RF, and DNN) in terms of
computation improvement. Interestingly, the k-NN leads
to the worst prediction accuracy. This point indicates that
learning and accelerating TCUC could be a low-hanging
fruit Pineda and Morales (2021). In such a case, naive
algorithms could be more preferable than sophisticated
algorithms since pursuing the ultimate task improvement is
our primary goal.

6.2 Discussions

It is noteworthy that using infeasible predictions for the
warm start could adversely affect the computation, as shown in
Table 2 and Table 4. This adverse effect is even worse in the
5655-bus system. There are three potential options for relieving
this problem: 1) discarding the infeasible solution and solving
TCUC directly with the solver; 2) fixing the infeasible solution
(especially for constraints Eqs 2, 3) and then performing the
warm start; and 3) using k-NN to find the nearest feasible
solution to the infeasible solution and replacing it.

Although the presented framework cannot achieve the
impressive effectiveness as thementioned references [e.g., 17.47x
in Xavier et al. (2021) and 215.9x in Pineda andMorales (2021)],
it is more general, more exploratory, and more transparent.
Specifically, Pineda and Morales (2021) only considers the k-NN
method and does not discuss the data processing; in comparison,
the presented framework is compatible with DNN, DT, and RF
in addition to the k-NN, and is designed with a data-processing
stage. Moreover, this paper has open-sourced all the datasets and
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code, which can facilitate the further exploration of the presented
framework.

Additionally, it is worth pointing out that the TCUC model
in this paper does not yet consider the security constraints
(e.g., N-1 feasibility constraints) commonly used in practical
applications. This is because considering these constraints may
require decomposition algorithms to solve the TCUC model,
while this paper intends to focus on themost fundamental TCUC
problem, so that it is convenient to obtain a clear and intuitive
conclusion regarding the acceleration. However, this may raise
a question: is the presented framework still effective in extreme
scenarios? In light of this, future works will further refine the
TCUC model and discuss the effectiveness of the presented
framework in different scenarios.
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Nomenclature

Sets and indices

i/I Index/set of units.

I tar Set of target units to be predicted

t, t′/T Indexes/set of dispatch horizon

T u
i ON-time set {Tu

i ,…,T} of unit i

T d
i OFF-time set {Td

i ,…,T} of unit i

j/J Index/set of RES farms

q/Q Index/set of load buses

b/B Index/set of transmission branches

k/K Index/set of generation segments.

n/N Index/set of dispatch days in raw dataset.

h/H Index/set of historical dispatch days for training.

d/D Index/set of upcoming dispatch days for testing.

Sn Instance of dispatch day n.

Decision variables

x Vector of TCUC decisions. x = {I , Isu, Isd,Pseg ,P,W ,Cp}

Iti Commitment of unit i at hour t

Isuti Start-up decision of unit i at hour t

Isdti Shut-down decision of unit i at hour t

Pseg
tik The kth-segment generation of unit i at hour t

Pti Total scheduled generation of unit i at hour t

Wtj Scheduled generation of RES farm j at hour t

Cp
ti Generation cost of unit i at hour t

zn TCUC cost of dispatch day n

⋅⋆/ ⋅ pre Optimal/Predicted solution for a variable

Constant parameters

Csu
i /C

sd
i Start-up/Shut-down cost of unit i

T The last hour in set T

Tu
i /T

d
i Minimum ON-time/OFF-time of unit i

Pmin
i /P

max
i Minimum/Maximum generation unit of i

P̄seg
ik Limitation of kth-segment generation of unit i

Ŵ j Available power of RES farm j

Rup
i /R

dn
i /R

su
i /R

sd
i Upward/Downward/Start-up/Shut-down

ramping capacity of unit i

L̂tq Load demand of load bus q at hour t
Bb Transmission limitation of branch b

τqb Power shifting factor from bus q to branch q

Others

|⋅| Cardinality of a set

ocs/oml TCUC solving time of the commercial solver/ML-aided
framework

zml,⋆ TCUC cost of the ML-aided framework

TCUC Transmission-constrained unit commitment

MILP Mixed-integer linear programming

ML Machine learning

DT Decision tree

RF Random forest

DNN Deep neural network

k-NN k-nearest neighbors

RES Renewable energy source

ISO Independent System Operator

ROC Receiver operating characteristic
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