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Abstract 
 

In this paper multi-level multi-objective fractional programming problem (ML-MOFP) is considered 
where some or all of its coefficients in the objective function are rough intervals. At the first phase of the 
solution approach and to avoid the complexity of the problem, two FP problems with interval coefficients 
will be constructed.  One of these problems was a FP problem where all of its coefficients are lower 
approximations of the rough intervals and the other problem was a FP problem where all of its 
coefficients are upper approximations of rough intervals. At the second phase, a membership function 
was constructed to develop a fuzzy goal programming model for obtaining the satisfactory solution of the 
multi-level multi-objective fractional programming problem. The linearization process introduced by Pal 
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et al. [1] will be applied to linearize the membership functions.. Finally, a numerical example will be 
introduced to illustrate the theoretical results. 
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1 Introduction 
 
A hierarchical decision structures are common in government policies, competitive economic systems, 
supply chains, agriculture, bio fuel production, vehicle path planning problems, and so on. These types of 
problems can be formulated using a multi-level mathematical programming (MLMP) approach. In MLMP 
problems, one decision maker (DM) is located at each decision level, and objective functions needs to be 
optimized [2,3,4]. Multi-level optimization is a technique developed to solve decentralized problems with 
multiple decision-makers in hierarchical organizations [5]. 
 
During the past few decades, MLMP [2,3,6] as well as bi-level mathematical programming (BLMP) 
problems [7,8] have been deeply studied and many methodologies have been established for treating such 
problems. The uses of the concept of the membership function of fuzzy set theory to multi-level 
programming problems for satisfactory decision was first presented by Lai [9]. Sakawa et al. [10] developed 
an interactive fuzzy programming for MLMP with fuzzy parameters. Also, Abo-Sinna and Baky [2] 
presented balance space approach for multi-level multi-objective programming problems. 
 
In various areas of the real world, the problems are modeled as a multi-objective programming. Many 
methodologies have been presented for treating such problems [1]. However, the issue of choosing a proper 
method in a given context is still a subject of active research. 
 
Fractional programming deals with the optimization of one or more ratios of functions subject to set 
constraints. Recently, fractional programming has become one of the planning tools. It is applied in 
engineering, business, finance, economics and other disciplines [1,3,8,11]. Computer oriented technique was 
extended by Helmy et al. [12] to solve a special class of ML-MOFP problems. 
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Emam [13] presented a bi-level integer non-linear programming problem with linear or non-linear 
constraints, and in which the non-linear objective function at each level were maximized. It proposed a two 
planner integer model and a solution method for solving this problem. Therefore Emam proposed an 
interactive approach for solving bi-level integer multi-objective fractional programming problem [14]. 
 
The rough set expressed by a boundary region of a set which is described by lower and upper approximation 
sets where the set is considered as a crisp set if the boundary region is empty. This is exactly the idea of 
vagueness [15,16]. The approach for solving rough interval programming problem is to convert the objective 
function from rough interval to crisp using theorem of crisp evaluation. Roughness is a kind of uncertainty, 
another kind of uncertainty introduced in [17].  
 
Hamzehee et al. [18] presented a linear programming (LP) problem which is considered where some or all of 
its coefficients in the objective function and /or constraints are rough intervals. In order to solve this 
problem, two LP problems with interval coefficients will be constructed. One of these problems is a LP 
where all of its coefficients are upper approximations of rough intervals and the other problem is a LP where 
all of its coefficients are lower approximations of rough intervals. Using these two LPs, two newly solutions 
are defined. 
 
Many researches have been done in the area of rough set and rough intervals [19- 22]. 
 
In this paper multi-level multi-objective fractional programming problem is considered when some or all of 
the coefficients of the objective functions are rough intervals. The remaining of the paper unfolds as follows: 
Section 2 introduces formulation and solution concept. Section 3, introduces the solution algorithm. In 
section 4, an illustrative example will be introduced. Finally, in Section 4, conclusion and some open points 
for future research work are stated in the field of rough intervals multi-level multi-objective fractional 
programming problems. 
 

2 Problem Formulation and Solution Concept 
 
Multi-level programming problems have more than one decision maker. A decision maker is located at each 
decision level and a vector of fractional objective functions needs to be optimized. Consider the hierarchical 
system be composed of a t-level decision makers. Let the decision maker at the ���-level denoted by DM� 
controls over the decision variable �� = 
���, ���, … , ����� ∈ ��� , � = 1,2, … , �. where � = ���, ��, … , ��� ∈�� and � = ∑ ���� � . 
 
Mathematically, ML-MOFP problem with rough intervals in the objective functions of maximization-type 
may be formulated as follows: 
 
[�!� #$%$&] 
 ()�*��

  +���� =  ()�*��
,-�����, -�����, … , -�./���0,                                                                                  �1�     

          1ℎ343 ��, �5, … , ��  678936   
 [�;< #$%$&]  
 ()�*��

  +���� =  ()�*��
,-�����, -�����, … , -�.=���0,                                                                                  �2� 

 
  ⋮ 
 1ℎ343 ��  678936    
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[ ��? #$%$&] 
 ()�*��

  +���� =  ()�*��
,-�����, -�����, … , -�.@���0,                                                                                    �3�          

     6BCD3E� �7  
 

  � ∈ F = G� ∈ ��HI��� + I��� + ⋯ + I��� L≤=≥O C, � ≥ 0, C ∈ �.Q ,                                                �4� 

 where 
 

   -�W��� = X�W���Y�W��� = ∑ 
ZE�W[ , E�W\], ZE�W[ , E�W\ ]��W + 
Z^�W[ , ^�W\], Z^�W[ , ^�W\ ]�.�W � ∑ _�W�W + �̀W.�W �  ,        � = 1,2, … , �,           �5� 

 +����, +���� and +b��� are the objective functions of the first level decision maker (FLDM), second level 
decision maker (SLDM) and the third level decision maker respectively. 
 
G is the multi-level multi-objective convex constraint set. 
 
ZE�W[ , E�W\], ZE�W[ , E�W\ ]� are rough intervals coefficients of the objective function, 
 
Z^�W[ , ^�W\], Z^�W[ , ^�W\ ]� are rough intervals constants of the numerator.  
 
It is customary to assume that Y�W��� > 0 ∀ � ∈ F, also and ̀�W are constants of the denominator. 
 

Conversion of (ML-MOFP) problem with rough coefficient in objective functions into upper and lower 
approximations is usually a hard work for many cases, but transformation process needs to know the 
following definitions [18]: 
 

Definition 1 [18]:  
 
Rough Interval (RI) can be considered as a qualitative value from vague concept defined on a variable � in �. 
 
Definition 2 [18]:  
 
The qualitative value I is called a rough interval when one can assign two closed intervals I∗ and I∗ on � to 
it where I∗ ⊆ I ⊆ I∗. 
 
Remark 1 [18]: 
 
According to the rough interval properties we have 
 ZE�W[ , E�W\] ⊆ ZE�W[ , E�W\ ]→     E�W[ ≤ E�W[ ≤ E�W\ ≤ E�W\ , 

 Z^�W[ , ^�W\] ⊆ Z^�W[ , ^�W\ ]→  ̂ �W[ ≤ ^�W[ ≤ ^�W\ ≤ ^�W\  , 

 
Now, the equivalent problems of the (ML-MOFP) problem with rough coefficients in objective functions by 
using intervals method can be reformulated as follows: 
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The surely optimal range of ML-MOFP problem (1)-(5) can be gotten by solving the following two classical 
LFPs: 
 

(The lower intervals in the objective functions (LI)) 
 

FP1: FP2: 
[�!� #$%$&] 
 ()�*��

  +���� =  ()�*��
,-�����, -�����, … , -�./���0, 

(6) 
 1ℎ343 ��, �5, … , ��  678936 
 [�;< #$%$&] 
 ()�*��

  +���� =  ()�*��
,-�����, -�����, … , -�.=���0, 

(7) ⋮ 1ℎ343 ��  678936 
 [ ��? #$%$&] 
 ()�*��

  +���� =  ()�*��
,-�����, -�����, … , -�.@���0,   

(8) 
 6BCD3E� �7         

   � ∈ F =
g� ∈ ��hI��� + I��� + ⋯ + I��� L≤=≥O C, � ≥ 0,

 C ∈ �.
i 

(9) where 
 

-�W��� = X�W���Y�W��� = ∑ E�W[ �W + ^�W[.�W �∑ _�W�W + �̀W.�W � , �
= 1,2, … , �.                                �10� 

[�!� #$%$&] 
 ()�*��

  +���� =  ()�*��
,-�����, -�����, … , -�./���0, 

(11) 
 1ℎ343 ��, �5, … , ��  678936 

 [�;< #$%$&] 
 ()�*j=

  +���� =  ()�*��
,-�����, -�����, … , -�.=���0, 

(12) ⋮ 1ℎ343 ��  678936 
 [ ��? #$%$&] 
 ()�*��

  +���� =  ()�*��
,-�����, -�����, … , -�.@���0,    

(13) 
 6BCD3E� �7   
         � ∈ F =

g� ∈ ��hI��� + I��� + ⋯ + I��� L≤=≥O C, � ≥ 0,
 C ∈ �.

i  
(14) Where 

 

 -�W��� = X�W���Y�W��� = ∑ E�W\�W + ^�W\.�W �∑ _�W�W + �̀W.�W � , �
= 1,2, … , �.                               �15� 

 
While the possibly optimal range of ML-MOFP problem (1)-(5) can be gotten by solving the following two 
classical LFPs: 
 

(The upper intervals in the objective functions (UI) 
 

FP3: FP4: 
[�!� #$%$&] 
 ()�*��

 +���� =
[�!� #$%$&] 
 ()�*��

  +���� =
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FP3: FP4: ()�*��
,-�����, -�����, … , -�./���0,(16)  

            1ℎ343 ��, �5, … , ��  678936   
 [�;< #$%$&]  
 ()�*��

 +���� = ()�*��
,-�����, -�����, … , -�.=���0, 

(17) 
 
  ⋮ 1ℎ343 ��  678936    
 [ ��? #$%$&] 
 ()�*��

  +���� =  ()�*��
,-�����, -�����, … , -�.@���0, 

(18)  6BCD3E� �7       
     � ∈ F =
g� ∈ ��hI��� + I��� + ⋯ + I��� L≤=≥O C, � ≥ 0,

 C ∈ �.
i 

(19) 
 where 

-�W��� = X�W���Y�W��� = ∑ E�W[ �W + ^�W[.�W �∑ _�W�W + �̀W.�W �  , �
= 1,2, … , �.                                  �20� 

 

 ()�*��
,-�����, -�����, … , -�./���0,(21)       

       1ℎ343 ��, �5, … , ��  678936  
  [�;< #$%$&]  
 ()�*��

  +���� =  ()�*��
,-�����, -�����, … , -�.=���0,     

(22) 
  ⋮ 
 1ℎ343 ��  678936   
  [ ��? #$%$&] 
 ()�*��

  +���� =  ()�*��
,-�����, -�����, … , -�.@���0,    

(23)            6BCD3E� �7      
      � ∈ F =

g� ∈ ��hI��� + I��� + ⋯ + I��� L≤=≥O C, � ≥ 0,
 C ∈ �.

i 

(24) 
 Where 

 

 -�W��� = X�W���Y�W��� = ∑ E�W\ �W + ^�W\.�W �∑ _�W�W + �̀W.�W �  , �
= 1,2, … , �.                                  �25� 

 
For solving the previous classical four (ML-MOFP) problems simultaneously, the fuzzy goal programming 
approach will be applied. The linearization procedure introduced by pal et al. [1] will be applied to linearize 
the membership goals. 
 

2.1 Fuzzy goal programming approach for (ML-MOFP) problems 
 
The vector of objective functions for each decision maker is formulated as a fuzzy goal characterized by the 
membership functions l
m�n�, �� = 1,2, … , ��, �D = 1,2, … , (��, at each level.  
 
2.1.1 Characterization of membership functions 
 
To define the membership functions of the fuzzy goals each objective function's individual maximum is 
taken as the corresponding aspiration level, as follows [3,4]: 
 B�W = ()�*j∈o  ,-�W���0,     �� = 1,2, … , ��, � D = 1,2, … , (��.                                                                �26� 
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where B�W , �� = 1,2, … , ��,   �D = 1,2, … , (��,  give the upper tolerance limit or aspiration level of 
achievement for the membership function of �D��  objective function. Similarly, each objective function's 
individual minimum is taken as the corresponding aspiration level, as follows: 
 q�W = (��*j∈o  ,-�W���0,     �� = 1,2, … , ��, � D = 1,2, … , (��.                                                                 �27� 

 

where q�W , �� = 1,2, … , ��, � D = 1,2, … , (��, give the lower tolerance limit or lowest acceptable level of 
achievement for the membership function of �D�� objective function. It can be assumed reasonably the values 

of ,-�W���0 ≥ B�W , �� = 1,2, … , ��, � D = 1,2, … , (��,  are acceptable and all values less than q�W =(��*j∈o  ,-�W���0 , are absolutely unacceptable. Then, the membership function l�W ,-�W���0,  as shown in 

Fig(1.a), for the �D�� fuzzy goal can be formulated as [4]: 
 

lm�n ,-�W���0 =
st
u
tv 1,                               �- ,-�W���0 ≥ B�W ,          

 ,-�W���0 w q�WB�W – q�W ,     �-  q�W ≤ ,-�W���0 ≤ B�W ,
 0,                            �- ,-�W���0 ≤ q�W ,          

     �� = 1,2, … , ��, � D = 1,2, … , (��,        �28�z 
 

 
Fig. 1. �{� membership functions of ,|�}���0 

  
2.2 Fuzzy goal programming methodology 
 
In the decision-making context, each decision maker is interested in maximizing his or her own objective 
function; the optimal solution of each DM, when calculated in isolation, would be considered as the best 
solution and the associated value of the objective function can be considered as the aspiration level of the 
corresponding fuzzy goal. In fuzzy programming approach, the highest degree of membership is one. For the 
defined membership functions in equation (28), the flexible membership goals having the aspired level unity 
can be represented as follows: 
 lm�n ,-�W���0 +  _�W~ w _�W� = 1,    �� = 1,2, … , ��,   �D = 1,2, … , (��,                                                    �29�      

 
or equivalently as: 
 ,-�W���0 w q�WB�W – q�W + _�W~ w _�W� = 1,    �� = 1,2, … , ��,   �D = 1,2, … , (��,                                                 �30� 
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where _�W~ , _�W� ≥ 0 with _�W~  _�W� = 0, �� = 1,2, … , ��,   �D = 1,2, … , (��  represent the under- and over- 
deviations, respectively, from the aspired levels [3]: 
 
In the methodology of goal programming, the under- and over- deviational variables are included in the 
achievement function for minimizing them depends on the type of the objective functions to be optimized. In 
the proposed FGP approach, the sum of under deviational variables is required to be minimized to achieve 
the aspired level. It may be noted that any over-deviation from a fuzzy goal indicates the full achievement of 
the membership value [3]. The equivalent proposed final (ML-MOFP) model of the problem can be 
formulated as follows: 
 

(��  � = � 1�W~  _�W~ + � 1�W~ _�W~ + ⋯ +.=
W � � 1�W~ _�W~.@

W � ,./
W �                                                                          �31� 

    6BCD3E� �7   
 

 ,-�W���0 w q�WB�W – q�W + _�W~ w _�W� = 1,         �� = 1,2, … , ��, � D = 1,2, … , (��,                                             �32� 

             ��� = ���∗ ,                            �� = 1,2, … , � w 1�,   �� = 1,2, … , �� �,                                                     (33) 

� ∈ F = G� ∈ ��HI��� + I��� + ⋯ + I��� L≤=≥O C, � ≥ 0 , C ∈ �.    Q                                        (34) 

 _�W~  _�W� = 0, )�_ _�W~ , _�W� ≥ 0, �� = 1,2, … , ��,   �D = 1,2, … , (��,                                                 �35� 
  
where � represents the achievement function consisting of the weighted under-deviational variables of the 
fuzzy goals. The numerical weights 1�W~ represent the relative importance of achieving the aspired levels of 
the respective fuzzy goals. To assess the relative importance of the fuzzy goals properly, the values of 1�W~ 
are determined as [3]: 
 1�W~ = 1B�W w q�W ,      �� = 1,2, … , ��, � D = 1,2, … , (��,                                                                            �36� 

 
2.3 Linearization of membership goals 
 
It can be easily noted that the membership goals in equations (32) are nonlinear in nature and this may needs 
difficult computational in the solution process. To avoid these problems, a linearization procedure is 
presented in this section [1]. The linearization process for the membership goals in (32) considering the 
expression of -�W��� in equation (5) will be firstly introduced. 
 
The �D�� membership goals can be presented as: 
 lm�n ,-�W���0 + _�W~ w _�W� = 1,                                                                                                                      �37� 

 ��W ,-�W���0 w ��Wq�W + _�W~ w _�W� = 1,       1ℎ343     ��W = 1B�W w q�W ,                                                  �38� 

 

-�W��� = X�W���Y�W��� = ∑ E�W[ �W + ^�W[�W �∑ _�W�W + �̀W�W � , � = 1,2, … , �.       
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using the expression of  -�W��� , the above goal in equation (38) can be presented as:   
 

��W ���}# �� + ^�W[�<�}�� + �̀W w ��Wq�W + _�W~ w _�W� = 1,                                                                                           �39� 

 
 ��WZ � ��}# �� + ^�W[ ]  w ��Wq�WZ�<�}�� + �̀W] + _�W~ Z�<�}�� + �̀W] w _�W�Z�<�}�� + �̀W] = Z�<�}�� + �̀W],  
 ��WZ � ��}# �� + ^�W[ ] + _�W~Z�<�}�� + �̀W] w _�W� Z�<�}�� + �̀W] = 
1 + ��Wq�W�Z�<�}�� + �̀W],  
 ��WZ � ��}# �� + ^�W[ ]  + _�W~ Z�<�}�� + �̀W ] w _�W�Z�<�}�� + �̀W] = ��W� Z�<�}�� + �̀W],  
 
where  ��W� = 
1 + ��Wq�W�, 
 Z��W  � ��}# � w ��W� �<�}�]� + _�W~ Z �<�}�� + �̀W] w _�W� Z �<�}�� + �̀W] = Z��W� 
 �̀W� w ��W
^�W[ �],  
  ��W[ � + _�W~ Z�<�}�� + �̀W] w _�W� Z�_�W�� + �̀W] =  ��W[ ,                                                                              �40� 
 
Where  
 

  ��W[ = Z��W  � ��}# � w ��W� �<�}�])�_                                                                                                  (41a) 
 
   ��W[ = Z��W� 
 �̀W� w ��W
^�W[ �], �� = 1,2, … , ��, �D = 1,2, … , (��                                                    (41b) 

 
Thus, considering the method of variable change presented by Pal et al. [1] the goal expression in equation 
(39) can be linearized as follows.  
 
By setting,    
         Y�W~ = _�W~ Z�_�W�� + �̀W] )�_ Y�W� = _�W� Z�_�W�� + �̀W],                                                                    (42) 
 
Then the linear form of expression in equation (40) is obtained as: 
  ���W[ �� + Y�W~ w Y�W� =  ��W[ ,                                                                                                                           �43� 
 
with  Y�W~, Y�W� ≥ 0;  )�_ Y�W~ Y�W� = 0  since _�W~ , _�W� ≥ 0  and �<�}�� + �̀W > 0 . Now, it is noted that, 

minimization of  _�W~  means minimization of Y�W~ = _�W~ Z�<�}�� + �̀W] which is also nonlinear. It may be noted 
that when the membership goal is fully achieved, _�W~ = 0, and when its achievement is zero, _�W~ = 1, are 
found in the solution [2,19]. So, involvement of _�W~ ≤ 1, in the solution leads to impose the following 
constraint in the model of the problem: 
       Y�W~Z�<�}�� + �̀W] ≤ 1.                                                                                                                                    �44� 

 
Now, based on the simplest version of goal programming, the final proposed FGP model of the (FP1) 
becomes:  
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    (��  � = � 1�W~  Y�W~ + � 1�W~ Y�W~ + ⋯ +.=
W � � 1�W~ Y�W~

.@
W � ,./

W �                                                                     �45� 

 6BCD3E� �7   
  ��W[ � + Y�W~ w Y�W� =  ��W[ ,            �� = 1,2, … , ��, � D = 1,2, … , (��,                                                 (46) 

 
 ��� = ���∗ ,                                     �� = 1,2, … , � w 1�,   �� = 1,2, … , �� �,                                           (47) 
 
 w�_�W�� + Y�W~ ≤ �̀W ,                  �� = 1,2, … , ��,   �D = 1,2, … , (��,                                                  (48) 
 

 � ∈ F = G� ∈ ��HI��� + I��� + ⋯ + I��� L≤=≥O C, � ≥ 0 , C ∈ �.   Q                                       (49) 

 
 Y�W~, Y�W� ≥ 0,        �� = 1,2, … , ��, �D = 1,2, … , (��,                                                                        (50) 

 
Similarly, applying the linearization process of the membership goals considering the expression of -�W��� in 
equations (15),(20) and (25).  
 

3 Solution Algorithm  
 
Step (1): reformulate problem (1)-(5) into (FP1), (FP2), (FP3) and (FP4). 
 
Step (2): For problem (FP1), Compute B�W , q�W , 1�W~, � = 1,2, … , �, D = 1, … , (�. 
 

Step (3): Construct the membership functionl�W ,-�W���0 , � = 1,2, … , �, D = 1, … , (�. 
 
Step (4): Compute  ��W[ )�_   ��W[ , � = 1,2, … , �, D = 1, … , (� according to equation (41a), (41b). 
 

Step (5): Do the linearization process for l�W ,-�W���0 according to equation (43). 

 
Step (6): Put � = 1 in FGP model (45)-(50). 
 
Step (7): Solve FGP model (45)-(50) to get ��� = ���∗  , � = 1,2, … , ��. 
 
Step (8): put � = � + 1 in FGP model (45)-(50) and go to step (7). 
 
Step (9): If   � > � w 1, go to step (10), otherwise go to step (8).  
 
Step (10): Solve FGP model (45)-(50) with ��� = ���∗  , � = 1,2, … , � w 1, � = 1,2, … , ��. 
 
 Step (11): If the DM solves (FP2), (FP3), and (FP4) go to step 13, otherwise go to step12. 
 
Step (12): Repeat steps from (2) to (10) for (FP2), (FP3), and (FP4). 
 
Step (13): Define the surely and possibly optimal range for problem (1)-(5). 
 
Step (14): Stop. 
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4 An Illustrative Example 
 
To demonstrate the proposed FGP approach, consider the following ��� w ��+�� problem with rough 
intervals in the objective functions. 
 
[�!� #$%$& ] 
 

()�*��
  

�
�� -�� = 2�[2,3], [1,5]��� + �[3,5], [2,7]��� + �b + �[2,3], [1,4]�2�� + �� + �b + 1 ,

-�� = �[6,7], [5,9]��� w �� + �[1,3], [1,6]��b + �[1,3], [0,5]��� + �b + 3 �
��, 

 1ℎ343 ��, �5678936 
 
 Z�;< #$%$&] 
 

()�*��
  

�
��-�� = 2�� + �[5,6], [3,8]��� w 2�[0,3], [0,6]��b + �[5,6], [3,7]��� + �b + 4 ,

-�� = �� w �[3,4], [2,6]��� + �[1,3], [1,7]��b + �[3,4], [2,6]�2�� + �b + 6 �
��, 

 1ℎ343 �5678936 
 [5�< #$%$&] 
 

()�*�5
  

�
��-b� = �[2,5], [1,8]��� w 2�� + �b + �[4,5], [3,6]��b + 2 ,

-b� = 5�� + 2�[1,2], [1,4]��� w �b + �[6,7], [5,8]��� + 3�� + �b + 7 �
��, 

 6BCD3E� �7 
 3�� + 5�� + �b ≤ 35, 

 2�� w �� + 12�b ≤ 20,  
 5�� + 6�b ≤ 16 , 
 ��, ��, �b ≥ 0. 

 
For solving the previous example, it will be reformulated into lower intervals problems and upper intervals 
problems as follows [18]:  
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(The lower intervals coefficients (LI)) 
 

FP1: FP2: 
 
[�!� #$%$&] 
 ()�*��

 ,�j/�bj=�j����j/�j=�j��� , �j/~j=�j���j=�j��b 0,  

 1ℎ343 ��, �5  678936   
 [�;< #$%$&]  
 ()�*��

 ,�j/��j=��j/�j��� , j/~bj=�j��b�j/�j��� 0  

 1ℎ343 �5  678936    
 ()�*�5

 ,�j/~�j=�j���j��� , �j/��j=~j���j/�bj=�j��� 0       

      6BCD3E� �7 
 3�� + 5�� + �b ≤ 35, 2�� w �� + 12�b ≤ 20,  
 5�� + 6�b ≤ 16 , 
 ��, ��, �b ≥ 0. 

 
[�!� #$%$&] 
 ()�*��

 ,�j/��j=�j��b�j/�j=�j��� , �j/~j=�bj��bj=�j��b 0,  

 1ℎ343 ��, �5  678936   
 [�;< #$%$&]  
 ()�*��

 ,�j/��j=~�j���j/�j��� , j/~�j=�bj����j/�j��� 0  

 1ℎ343 �5  678936    
 ()�*�5

 ,�j/~�j=�j���j��� , �j/��j=~j���j/�bj=�j��� 0           

    6BCD3E� �7 
 3�� + 5�� + �b ≤ 35, 2�� w �� + 12�b ≤ 20,  
 5�� + 6�b ≤ 16 , 
 ��, ��, �b ≥ 0. 

 
(The upper intervals coefficients (UI) 

 
FP3: FP4: 
[�!� #$%$&] 
 ()�*��

 ,�j/��j=�j����j/�j=�j��� , �j/~j=�j�j=�j��b 0,  

 1ℎ343 ��, �5  678936   
 [�;< #$%$&]  
 ()�*��

 ,�j/�bj=�bj/�j��� , j/~�j=�j����j/�j��� 0  

 1ℎ343 �5  678936    
 ()�*�5

 ,j/~�j=�j��bj��� , �j/��j=~j���j/�bj=�j��� 0           

  6BCD3E� �7 
 

[�!� #$%$&] 
 ()�*��

 ,��j/��j=�j����j/�j=�j��� , �j/~j=��j���j=�j��b 0,  

 1ℎ343 ��, �5  678936   
 [�;< #$%$&]  
 ()�*��

 ,�j/��j=~��j���j/�j��� , j/~�j=��j����j/�j��� 0  

 1ℎ343 �5  678936    
 ()�*�5

 ,�j/~�j=�j���j��� , �j/��j=~j���j/�bj=�j��� 0         

      6BCD3E� �7 
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3�� + 5�� + �b ≤ 35, 
 2�� w �� + 12�b ≤ 20,  
 5�� + 6�b ≤ 16 , 
 ��, ��, �b ≥ 0. 

3�� + 5�� + �b ≤ 35, 
 2�� w �� + 12�b ≤ 20,  
 5�� + 6�b ≤ 16 , 
 ��, ��, �b ≥ 0. 

 
For solving (FP1), the individual maximum and minimum values are summarized in Table 1. The decided 
aspiration levels, upper tolerance limits and the weights 1�W  are also considered. 
 

Table 1. Individual maximum, minimum values, ��}, ��} and weights ��}. 
 

 -����� -����� -����� -����� -b���� -b���� ()� 
-�W���� 2.761905 20.3333 5.25 0.6086 12 3.29411 (�� 
-�W���� 1.375 -0.354838 0.882353 -1.1 0.4 0.5 B�W 2.7 20 5 0.6 12 3.2 q�W 1.3 -0.35 0.88 -1 0.4 0.5 1�W 0.714 0.094 0.243 0.625 0.086 0.37 
  
The coefficient of the linearized membership goals are presented in Table 2.      
 

Table 2. The coefficient of the linearized membership goals  �� �}�  {;<  ��} 
 

 -����� -����� -����� -����� -b���� -b���� 
 ��W[ �¡
 L w10.214w1.214O¡

  L 0.294w1.029w0.931O¡
 Lw0.7281.2150.001 O¡

  L w1.25w1.875w2.25 O¡
  L 0.172w0.172w0.948O¡

  L 0.665w2.815w1.555O¡
  

 ��W[  0.5 2.891 3.641 0.375 1.724 6.075 

 
4.1 Solving the 1st level FGP model   (�� � = 0.714Y��~ + 0.094Y��~   
 6BCD3E� �7 
 w�� + 0.214�� w 1.214�b + Y��~ w Y��� = 0.5, 
 0.294�� w 1.029�� w 0.931�b+Y��~ w Y��� = 2.891, 
 w2�� w �� w �b + Y��~ ≤ 1, 
 w�� w �b + Y��~ ≤ 3, 
 3�� + 5�� + �b ≤ 35, 
 2�� w �� + 12�b ≤ 20,  
 5�� + 6�b ≤ 16 , 
 ��, ��, �b, Y��~ , Y��� , Y��~ , Y��� ≥ 0 
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Using Lingo programming, the compromise solution of the 1st level problem is obtained as;   ����, ���, �b� � =�0,2.3364,0�.  
 
4.2 Solving the 2nd level FGP model 
 (�� � = 0.714Y��~ + 0.094Y��~ + 0.243Y��~ + 0.625Y��~   6BCD3E� �7  w�� + 0.214�� w 1.214�b + Y��~ w Y��� = 0.5,  0.294�� w 1.029�� w 0.931��+Y��~ w Y��� = 2.891,  w0.728�� + 1.215�� + 0.001�b + Y��~ w Y��� = 3.641,  w1.25�� w 1.875�� w 2.25�b + Y��~ w Y��� = 0.375,  w2�� w �� w �b + Y��~ ≤ 1,        w�� w �b + Y��~ ≤ 3,        w�� w �b + Y��~ ≤ 4,        w2�� w �b + Y��~ ≤ 6,        3�� + 5�� + �b ≤ 35,  2�� w �� + 12�b ≤ 20,   5�� + 6�b ≤ 16 ,   �� = 0,  ��, �b, Y��~ , Y��� , Y��~ , Y��� , Y��~ , Y��� , Y��~ , Y��� ≥ 0.    
 
Using Lingo programming, the compromise solution of the 2nd level problem is obtained as: ��1

0,�2
0,�3

0� =�0,0,0�. 
 
4.3 Solving the 3rd level FGP model 
 (�� � = 0.714Y��~ + 0.094Y��~ + 0.243Y��~ + 0.625Y��~ + 0.086Yb�~ + 0.37Yb�~   6BCD3E� �7  w�� + 0.214�� w 1.214�b + Y��~ w Y��� = 0.5,  0.294�� w 1.029�� w 0.931�b+Y��~ w Y��� = 2.891,  w0.728�� + 1.215�� + 0.001�b + Y��~ w Y��� = 3.641,  w1.25�� w 1.875�� w 2.25�b + Y��~ w Y��� = 0.375,  
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0.172�� w 0.172�� w 0.948�b + Yb�~ w Yb�� = 1.724,  0.665�� w 2.815�� w 1.555�b+Y��~ w Y��� = 6.075,  w2�� w �� w �b + Y��~ ≤ 1,        w�� w �b + Y��~ ≤ 3,        w�� w �b + Y��~ ≤ 4,        w2�� w �b + Y��~ ≤ 6,        w�b + Yb�~ ≤ 2,        w�� w 3�� w �b + Yb�~ ≤ 7,        3�� + 5�� + �b ≤ 35,  2�� w �� + 12�b ≤ 20,   5�� + 6�b ≤ 16 ,   �� = 0,   �� = 0,  �b, Y��~ , Y��� , Y��~ , Y��� , Y��~ , Y��� , Y��~ , Y��� ≥ 0.    
 
Using Lingo programming, the compromise solution of the 3rd level problem is obtained as: ����, ���, �b�� =�0,0,0�. 
 
and -�� = 2,   -�� = 0.33333,   -�� = 1.25,    -�� = 0.5,    -b� = 2,    -b� = 0.85714 . 
 
Similarly, applying the proposed algorithm to solve (FP2), (FP3) and (FP4), we get the following intervals: 
 

The surely optimal range The possibly optimal range 
FLDM: ¢|��# , |��£ ¤ = [2,3], 

 ¢|��# , |��£ ¤ = [0.333333,1], 
¢|��# , |��£ ¤ = [1.1838462,4]. 

 
 ¢|��# , |��£ ¤ = [w0.0577434,1.666666]. 

SLDM: ¢|��# , |��£ ¤ = [1.25,1.5],        ¢|��# , |��£ ¤ = [0.5,0.666666], 
¢|��# , |��£ ¤ = [0.88788465,1.75], 

 
 ¢|��# , |��£ ¤ = [0.2720512667 , 1]. 

TLDM: ¢|5�# , |5�£ ¤ = [2,2.5],     ¢|5�# , |5�£ ¤ = [0.58714,1],    
 

¢|5�# , |5�£ ¤ = [1.3161538,3]. 
 
 ¢|5�# , |5�£ ¤ = [0.7108077816 , 1.142857143]. 
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5 Conclusion and Summary 
 
Multi-level multi-objective fractional programming problem (ML-MOFP) was considered where some or all 
of its coefficients in the objective function are rough intervals. Two FP problems with interval coefficients 
constructed. One of these problems was a FP where all of its coefficients are lower approximation of the 
rough intervals and the other problem was a FP where all of its coefficients are upper approximations of 
rough intervals. A fuzzy goal programming model has been formulated to obtain   the satisfactory solution of 
the multi-level multi-objective fractional programming problem.  
 
At the end, there exist many other open points for future work and research which should be explored and 
studied in the area of multi- level multi-objective rough interval optimization such as: 
 

1. An algorithm is required for treating multi-level multi-objective integer fractional decision-making 
problems with rough parameters in the objective functions; in the constraints and in both. 

2. An algorithm is needed for dealing with multi- level multi-objective mixed integer fractional 
decision-making problems with rough parameters in the objective functions; in the constraints and 
in both. 

3. An algorithm must be investigated for treating multi- level multi-objective integer quadratic 
decision-making problems with rough parameters in the objective functions; in the constraints and 
in both. 
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