An Autonomous Incremental Learning Algorithm for Radial Basis Function Networks

Ozawa, Seiichi and Tabuchi, Toshihisa and Nakasaka, Sho and Roy, Asim (2010) An Autonomous Incremental Learning Algorithm for Radial Basis Function Networks. Journal of Intelligent Learning Systems and Applications, 02 (04). pp. 179-189. ISSN 2150-8402

[thumbnail of JILSA20100400002_62596478.pdf] Text
JILSA20100400002_62596478.pdf - Published Version

Download (1MB)

Abstract

In this paper, an incremental learning model called Resource Allocating Network with Long-Term Memory (RAN-LTM) is extended such that the learning is conducted with some autonomy for the following functions: 1) data collection for initial learning, 2) data normalization, 3) addition of radial basis functions (RBFs), and 4) determination of RBF cen-ters and widths. The proposed learning algorithm called Autonomous Learning algorithm for Resource Allocating Network (AL-RAN) is divided into the two learning phases: initial learning phase and incremental learning phase. And the former is further divided into the autonomous data collection and the initial network learning. In the initial learning phase, training data are first collected until the class separability is converged or has a significant dif-ference between normalized and unnormalized data. Then, an initial structure of AL-RAN is autonomously determined by selecting a moderate number of RBF centers from the collected data and by defining as large RBF widths as possible within a proper range. After the initial learning, the incremental learning of AL-RAN is conducted in a sequential way whenever a new training data is given. In the experiments, we evaluate AL-RAN using five benchmark data sets. From the experimental results, we confirm that the above autonomous functions work well and the efficiency in terms of network structure and learning time is improved without sacrificing the recognition accuracy as compared with the previous version of AL-RAN.

Item Type: Article
Subjects: Grantha Library > Engineering
Depositing User: Unnamed user with email support@granthalibrary.com
Date Deposited: 03 Feb 2023 10:43
Last Modified: 07 May 2024 05:12
URI: http://asian.universityeprint.com/id/eprint/121

Actions (login required)

View Item
View Item